首页

> 期刊论文知识库

首页 期刊论文知识库 问题

十二烷基苯磺酸钠论文

发布时间:

十二烷基苯磺酸钠论文

通过在装有搅拌器、温度计、滴液漏斗和回流冷凝器的250mL四口瓶中,加入十二烷基苯35mL(),搅拌下缓慢加入质量分数98%硫酸35mL,温度不超过40℃,加完后升温至60~70℃,反应2h。将上述磺化混合液降温至40~50℃,缓慢滴加适量水(约15mL),倒入分液漏斗中,静止片刻,分层,放掉下层(水和无机盐),保留上层(有机相)。配制质量分数10%氢氧化钠溶液80mL,将其加入250mL四口瓶中约60~70mL,搅拌下缓慢滴加上述有机相,控制温度为40~50℃,用质量分数10%氢氧化钠调节pH=7~8,并记录质量分数10%氢氧化钠总用量。于上述反应体系中,加入少量氯化钠,渗圈试验清晰后过滤,得到白色膏状产品,即为十二烷基苯磺酸钠。 相关化学反应为: 十二烷基苯磺酸钠是由十二烷基苯与发烟硫酸或三氧化硫磺化,再用碱中和制得。用发烟硫酸磺化的缺点是反应结束后总有部分废酸存在于磺化物料中。中和后生成的硫酸钠带入产品中,影响了它的纯度。目前,工业上均采用三氧化硫-空气混合物磺化的方法。三氧化硫可由60%发烟硫酸蒸出,或将硫磺和干燥空气在炉中燃烧,得到含SO34%~8%体积分数的混合气体。将该混合气体,通入装有烷基苯的磺化反应器中进行磺化。磺化物料进入中和系统用氢氧化钠溶液进行中和,最后进入喷雾干燥系统干燥。得到的产品为流动性很好的粉末。生产工艺流程: 直馏煤油经脱氢后,十二烯烃和苯由供料泵进入烷化器,再将生成的十二烷基苯(LAB)送入磺化器1,与进入磺化器的三氧化硫(3%~5%),瞬间发生磺化反应,产物经气液分离器2、循环泵3、冷却器4处理之后,部分回到反应器底部,用于磺酸的急冷,部分反应产物被送入老化器5,调整反应保持时间再进入水化器6成酸,最后经中和器7制得烷基苯磺酸钠(LAS)。尾气经除雾器8去酸雾,再经吸收塔9吸收后放空。

阴离子型表面活性剂。因生产成本低、性能好,因而用途广泛,是家用洗涤剂用量最大的合成表面活性剂,也生产一部分镁、钙等无机盐及三乙醇胺等有机胺盐。十二烷基苯磺酸钙[27176-87-0]具有优良的乳化性能,是配制各种农药用的混合型乳化剂的重要组成部分。可由苯与α-烯烃在三氯化铝催化剂下缩合,缩合液经碱洗、水洗后蒸出回收苯,真空蒸馏得到精制烷基苯。然后用发烟硫酸磺化、白灰中和(在2倍量乙醇中进行),得到十二烷基苯磺酸钙。用作丙烯酸酯乳液聚合的阴离子乳化剂。CAS No.: 25155-30-0是一种阴离子表面活性剂,其临界胶束浓度为*10-3mol/L 烷基苯磺酸钠是黄色油状体,经纯化可以形成六角形或斜方形强片状结晶.具有微毒性,已被国际安全组织认定为安全化工原料,可在水果和餐具清洗中应用。烷基苯磺酸钠在洗涤剂中使用的量最大,由于采用了大规模自动化生产,价格低廉。在洗涤剂中使用的烷基苯磺酸钠有支链结构(ABS)和直链结构(LAS)两种,支链结构生物降解性小,会对环境造成污染,而直链结构易生物降解,生物降解性可大于90%,对环境污染程度小。 烷基苯磺酸钠是中性的,对水硬度较敏感,不易氧化,起泡力强,去污力高,易与各种助剂复配,成本较低,合成工艺成熟,应用领域广泛,是非常出色的阴离子表面活性剂。烷基苯磺酸纳对颗粒污垢,蛋白污垢和油性污垢有显著的去污效果,对天然纤维上颗粒污垢的洗涤作用尤佳,去污力随洗涤温度的升高而增强,对蛋白污垢的作用高于非离子表面活性剂,且泡沫丰富。但烷基苯磺酸钠存在两个缺点,一是耐硬水较差,去污性能可随水的硬度而降低,因此以其为主活性剂的洗涤剂必须与适量螯合剂配用。二是脱脂力较强,手洗时对皮肤有一定的刺激性,洗后衣服手感较差,宜用阳离子表面活性剂作柔软剂漂洗。近年来为了获得更好的综合洗涤效果,LAS常与AEO等非离子表面活性剂复配使用。LAS最主要用途是配制各种类型的液体、粉状、粒状洗涤剂,擦净剂和清洁剂等。

分子式:C18H29NaO3S 分子量: CAS号:25155-30-0 简称: DBS, 性状: 固体 白色或淡黄色粉末, 溶解性: 易溶于水,易吸潮结块。 毒性: 无毒。由直链烷基苯(LAB)用三氧化硫或发烟硫酸磺化生成烷基磺酸,再中和制成。阴离子型表面活性剂。因生产成本低、性能好,因而用途广泛,是家用洗涤剂用量最大的合成表面活性剂,也生产一部分镁、钙等无机盐及三乙醇胺等有机胺盐。十二烷基苯磺酸钙 [27176-87-0]具有优良的乳化性能,是配制各种农药用的混合型乳化剂的重要组成部分。可由苯与α-烯烃在三氯化铝催化剂下缩合,缩合液经碱洗、水洗后蒸出回收苯,真空蒸馏得到精制烷基苯。然后用发烟硫酸磺化、白灰中和(在2倍量乙醇中进行),得到十二烷基苯磺酸钙。用作丙烯酸酯乳液聚合的阴离子乳化剂。[CAS No.: 25155-30-0]CAS No.: 25155-30-0是一种阴离子表面活性剂,其临界胶束浓度为*10-3mol/L 烷基苯磺酸钠是黄色油状体,经纯化可以形成六角形或斜方形强片状结晶.具有微毒性, 已被国际安全组织认定为安全化工原料,可在水果和餐具清洗中应用。烷基苯磺酸钠在洗涤剂中使用的量最大,由于采用了大规模自动化生产,价格低廉。在洗涤剂中使用的烷基苯磺酸钠有支链结构(ABS)和直链结构(LAS)两种,支链结构生物降解性小,会对环境造成污染,而直链结构易生物降解,生物降解性可大于90%,对环境污染程度小。 烷基苯磺酸钠是中性的,对水硬度较敏感,不易氧化,起泡力强,去污力高,易与各种助剂复配,成本较低,合成工艺成熟,应用领域广泛,是非常出色的阴离子表面活性剂。烷基苯磺酸纳对颗粒污垢,蛋白污垢和油性污垢有显著的去污效果,对天然纤维上颗粒污垢的洗涤作用尤佳,去污力随洗涤温度的升高而增强,对蛋白污垢的作用高于非离子表面活性剂,且泡沫丰富。但烷基苯磺酸钠存在两个缺点,一是耐硬水较差,去污性能可随水的硬度而降低,因此以其为主活性剂的洗涤剂必须与适量螯合剂配用。二是脱脂力较强,手洗时对皮肤有一定的刺激性,洗后衣服手感较差,宜用阳离子表面活性剂作柔软剂漂洗。近年来为了获得更好的综合洗涤效果,LAS常与AEO等非离子表面活性剂复配使用。LAS最主要用途是配制各种类型的液体、粉状、粒状洗涤剂,擦净剂和清洁剂等。

苯与烷烃酸性比较研究论文

苯的酸性比烷烃的酸性大。苯是一种碳氢化合物,是有酸性的,而且比烷烃的酸性要大。烷烃是只有碳碳单键的链烃,是最简单的一类有机化合物。

烷烃不能与液溴与酸性高锰酸钾反应烯烃可以使液溴与酸性高锰酸钾褪色苯不能使液溴和酸性高锰酸钾褪色

乙烷与苯的酸性比较,苯的酸性大于乙烷,乙烷都是饱和键,相对更稳定,而苯有不饱和键容易发生加成反应,取代反应等。

烯烃>炔烃>烷烃烷烃性质稳定烯烃的双键是一个pai键,一个sigema键,而炔烃的是1个sigema键,2个pai键,性质跟稳定。(打不上希腊字母,我说的是单烯烃,如果是2烯烃,共轭烯烃等,就说不定了)

二甲基苯甲酸的研究论文下载

最佳回答:酯化的速度的大小排序:苯甲酸,邻甲基苯甲酸,2,6-二甲基苯甲酸。原因是甲基是电子基团,导致羧基电离度降低,酸性弱。

找了一篇专利描述,不知道对你有没有些微帮助。

--------------------------------------------------------------------

一种利用固体核磁碳谱检测煤结构参数的定量分析方法与流程

文档序号:11197378

导航: X技术> 最新专利>测量装置的制造及其应用技术

本发明涉及固体核磁碳谱分析技术领域,特别涉及一种利用固体核磁碳谱检测煤结构参数的定量分析方法。

背景技术:

煤是一种由多种官能团、多种化学键组成的复杂有机大分子。了解煤大分子结构模型对认识煤的物理化学性质有重要意义。从煤有机分子的碳结构角度,可以揭示煤液化产物的碳结构变化,为推导煤液化反应机理奠定良好的基础。对煤组成结构深入研究,与工艺性能相结合,能更好的指导工业生产,实现煤炭清洁高效的利用。

煤中只有少部分是可溶于各种溶剂的小分子化合物,其余的大部分是不能被溶解的大分子骨架结构。运用固体核磁共振技术可以在对煤进行非破坏性研究情况下,直接检测煤样,得到煤碳结构参数。由于13C核天然丰度低,13C的NMR信号弱、探测灵敏度低,而且由于外磁场中核的各种相互作用以及固体中化学位移各向异性,磁核之间的直接偶极相互作用引起了谱线增宽、不对称线型,分辨率下降情况。直到70年代中期,随着固体核磁交叉极化(CP)和魔角旋转(MAS)等技术发展,固体13C-NMR逐渐应用于煤的研究中。CP技术增强了稀核信号,提高灵敏度,解决碳原子的纵向弛豫时间(T1)太长的问题;而MAS技术则消除化学位移的各向异性;边带压制技术(TOSS)消除样品快速旋转时使得某些原子核的共振谱线产生较大的旋转边带。所以为了窄化谱线、增加灵敏度,得到高分辨率的固体13C-NMR图谱时通常联合使CP、MAS和TOSS等几种技术,这已成为当今研究煤分子结构的普遍方法。

80年代固体核磁技术在常规固体高分辨核磁共振谱的基础上又发展了偶极相移技术,可以区分质子化碳和非质子化碳,提供芳碳率、芳氢率及脂碳率等新的结构信息。到了90年代,利用常规固体技术和偶极相移技术结合谱图分段积分方法得到更为详细的碳结构参数,但是偶极相移技术操作较复杂,需要多次实验,耗时甚多。1996年Koh Kidena等人运用CP和SPE 13C-NMR测试PM煤碳结构,通过分峰拟合(拟合软件为MacAlice)的方法将碳信号分为11类含碳官能团信号,如表1所示。

表1 13C NMR中不同类型碳对应的化学位移

如今基于不同类型碳的不同化学位移归属,结合计算机辅助技术—分峰拟合技术能够直观、精细和快速的得到多种不同类型碳的含量,得到不同碳材料的结构参数。

由于13C CP/TOSS/MAS NMR中CP技术将丰核(1H)较大的自旋状态极化转移给较弱的稀核(13C),使稀核(13C)极化而迅速恢复平衡,缩短了测试时间,但在对氢去耦过程中增强了碳原子能量,使得碳谱谱线增强。简而言之,当分子内两个磁核之间空间位置相近时,对氢核去耦时达到饱和的氢核会将能量转移到碳核上,从而使得碳谱谱线增强,该现象称为碳核Overhause效应(NOE)。因此13C CP/TOSS/MAS NMR谱图中碳原子谱线的强度并不能定量的反映分子内不同化学环境下碳原子的相对数量,交叉极化实验中,接触时间的不足、射频场的不均匀性、NOE效应的存在都使得固体核磁定量不准确,与理论碳结构参数存在误差,不能准确进行碳材料的定量研究。液体核磁中运用门控去耦技术已消除了核Overhause效应,可以很好的进行碳结构定量。而固体核磁定量大多是通过对谱仪硬件的提升以及脉冲序列的巧妙设计,以达到定量效果,但还未见到快速、有效方便的定量方法。90年代Robert 等在研究中就表明CP技术的运用主要使季碳芳香碳的磁化比例比质子化碳低,所测得的芳香度要偏低。所以对于大量不带质子碳原子的高成熟煤样,如无烟煤测出的误差要相对小一些,而对于大量带质子碳原子的低阶煤中误差就比较大。所以煤结构分析中煤固体核磁碳结构参数定量分析就显得尤为重要。

煤的组成结构模型一直是煤化学研究的核心问题之一。在煤结构方面,中国专利CN 104091504A蔺华林等人通过对煤样固体核磁表征以及对煤液化油气质联用分析构建了煤大分子模型。通过固体核磁碳谱测试表征煤的详细碳结构参数,能够为煤结构模型准确构建奠定坚实的基础,所以获得固体核磁碳结构参数的准确合理性就显得尤为重要。由于核Overhause效应等因素的存在,运用13C CP/TOSS/MAS NMR测试结果对碳材料直接分析,表征碳结构参数不够准确,测定的参数存在一定的误差。

技术实现要素:

本发明的目的在于修正煤中固体核磁碳谱测定碳结构参数的误差,得到相对准确的碳结构参数,提供了一种利用固体核磁碳谱检测煤结构参数的定量分析方法。

所述方法包括如下步骤:

S1)选取模型化合物;

所述模型化合物包括一系列带脂肪侧链和/或含杂原子官能团的固体芳香化合物,各所述模型化合物的芳香度不同,所述芳香度为不饱和碳原子数与总碳原子数之比;

S2)测定各模型化合物的固体核磁碳谱;

S3)建立校正固体核磁碳谱测试误差的回归曲线方程;

根据不同类型碳原子位移归属和步骤S2测定的固体核磁碳谱,运用分峰拟合方法拟合得到各模型化合物的不同类型碳原子含量拟合值,求和分别计算出各模型化合物的饱和碳原子含量拟合值X%和不饱和碳原子含量拟合值Y%;

再将各模型化合物的饱和碳原子含量拟合值X%分别与各模型化合物的饱和碳原子含量理论值进行回归分析,获得饱和碳校正固体核磁测试误差的回归曲线方程(Ⅰ),

X’=f(X) (Ⅰ);

将各模型化合物的不饱和碳原子含量拟合值Y%分别与各模型化合物的不饱和碳原子含量理论值进行回归分析,获得不饱和碳校正固体核磁测试误差的回归曲线方程(Ⅱ),

Y’=f(Y) (Ⅱ);

其中X’、Y’分别为与X和Y对应的修正值;

S4)验证回归曲线方程准确性;

将已知结构的验证化合物按照步骤S2相同的测试条件测定固体核磁碳谱,所述验证化合物也为带脂肪侧链和/或含杂原子官能团的固体芳香化合物;同样通过分峰拟合得到验证化合物的不同类型碳原子含量拟合值,求和分别计算出验证化合物的饱和碳原子含量拟合值X%和不饱和碳原子含量拟合值Y%,然后分别代入回归曲线方程(Ⅰ)和(Ⅱ)得到对应的修正值X’和Y’,再将修正值与验证化合物的理论值比较,验证回归曲线方程的准确性;若验证化合物的饱和碳原子含量和不饱和碳原子含量的修正值与理论值相对误差大于10%,说明准确性不高,重新调整模型化合物的种类和数量,重复步骤S1~S3,直到验证化合物的饱和碳原子含量和不饱和碳原子含量的修正值与理论值相对误差小于10%;

S5)待测煤样碳结构参数的测定及修正;

将待测煤样按照步骤S2中相同的测试条件进行固体核磁碳谱测试,同样通过分峰拟合得到待测煤样的不同类型碳原子含量拟合值,求和分别计算出待测煤样的饱和碳原子含量拟合值X%和不饱和碳原子含量拟合值Y%,然后分别代入回归方程(Ⅰ)和(Ⅱ)得到待测煤样对应的修正值X’和Y’,再根据X’和待测煤样的各个类型的饱和碳原子含量拟合值等比例计算出各个类型的饱和碳原子含量的修正值,根据Y’和待测煤样的各个类型的不饱和碳原子含量拟合值等比例计算出各个类型的不饱和碳原子含量的修正值。上述修正值即为修正后的待测煤样碳结构参数。

所述饱和碳原子含量指饱和碳原子(本文中又称脂肪碳)在总的碳原子中的占比,不饱和碳原子含量指不饱和碳原子(本文中又称芳香碳)在总的碳原子中的占比,下同。

优选的,所述模型化合物选自苯系、萘系和蒽菲系化合物中的至少三种化合物,各化合物纯度大于98%,其中芳香度最低的为30~40%,最高的为90~95%。

优选的,所述模型化合物包括:3,4-二甲基苯甲酸、十二烷基苯磺酸钠、2-萘乙酸、2-甲基萘和9-甲基蒽。

优选的,所述验证化合物也选自苯系、萘系和蒽菲系化合物。

优选的,所述验证化合物为9,10-二甲基蒽。

优选的,步骤S2、S4和S5中,模型化合物、验证化合物及待测煤样在测定固体核磁碳谱前,粉碎研磨至80目以下并在65℃下真空干燥24h。

优选的,步骤S2、S4和S5中,固体核磁碳谱测试条件为:脉冲序列为CP/TOSS,13C共振频率与仪器相匹配,交叉极化接触时间为1~5ms,循环延迟时间为1~10s,魔角转速为3~7k Hz,转子外径为4~7mm。

优选的,步骤S3中,选用Origin软件进行模型化合物非性回归分析,曲线的相关系数R2大于后得到相应的回归曲线方程。

本发明的一些较佳实施例中,回归曲线方程(Ⅰ)和(Ⅱ)均为非线性二次函数,通式如下:

X’=a1+b1X+c1X2

Y’=a2+b2Y+c2Y2

式中:a1,b1,c1,a2,b2,c2为曲线回归系数。

本发明具有以下优点和有益效果:

本发明的所述方法以一系列带脂肪侧链和/或含杂原子官能团的苯系、萘系和蒽菲系化合物作为模型化合物,通过测定模型化合物的固体核磁碳谱,确定不同模型化合物碳结构参数误差,将模型化合物碳谱分峰拟合的脂肪碳和芳香碳拟合值与样品碳结构的理论值进行回归分析,得到脂肪碳和芳香碳的校正固体核磁碳谱测试误差回归曲线方程,同时再运用已知结构的模型化合物验证回归方程的准确性;通过对不同模型化合物的固体核磁测定及回归分析,利用回归曲线方程对待测煤样的拟合参数进行修正,可有效解决固体核磁碳谱测试中碳结构参数的误差,实现固体核磁碳谱定量分析。本发明的所述方法为13C CP/TOSS/MAS NMR技术与非线性回归方程相结合,能够快速方便的获得相对准确的不同类型碳结构参数,为煤中碳结构分析提供了新的技术保障,提供了一种简便易行的结构参数修正方法。应用所述方法能够相对准确的测定煤结构参数,从而可以从有机碳角度更好的了解煤的结构和性质,为煤结构的解析提供新的技术支撑,对煤的高效转化和利用起指导作用。

所述的方法不仅适用于煤中碳结构的分析,同样适用于油页岩矿产类含碳固体物质及生物质类含碳固体物质中的固体核磁碳谱的分析。

附图说明

图1为不同模型化合物脂肪碳拟合值与理论值回归曲线图;

图2为不同模型化合物芳香碳拟合值与理论值回归曲线图;

图3为淖毛湖褐煤的分峰拟合图;

图4为小龙潭褐煤的分峰拟合图;

图5为黑山次烟煤的分峰拟合图。

具体实施方式

以下结合具体实施例,对本发明作进一步说明。应理解,以下实施例仅用于本发明而非用于限定本发明的范围。

实施例1新疆淖毛湖褐煤(NMH)碳结构参数的分析

S1)样品及预处理

待测煤样:新疆淖毛湖褐煤。

模型化合物:3,4-二甲基苯甲酸、十二烷基苯磺酸钠、2-萘乙酸、2-甲基萘、9-甲基蒽;如表2所示,其中十二烷基苯磺酸钠的芳香度最低为%,9-甲基蒽的芳香度最高为%,其余的间于两者之间。

验证化合物:9,10-二甲基蒽,芳香度为%。

预处理:将上述待测煤样、模型化合物和验证化合物分别粉碎研磨至80目以下,煤样在65℃下真空干燥24h,干燥、均匀稳定的样品能保证样品在高速旋转或受到强电磁辐射时不爆炸。

S2)测定各模型化合物的固体核磁碳谱

分别将约150mg研磨均匀后的3,4-二甲基苯甲酸、十二烷基苯磺酸钠、2-萘乙酸、2-甲基萘、9-甲基蒽分别装入4mm ZrO2转子中,在BrukerAVANCEIII500型核磁共振波谱仪上选用脉冲序列为CP/TOSS进行固体核磁碳谱测试,选用4mm固体高分辨率魔角旋转探头。测试条件为:13C共振频率,交叉极化接触时间为1ms,循环延迟时间为3s,魔角转速为 Hz,转速为5600r/s。

S3)建立校正固体核磁碳谱测试误差的回归曲线方程

根据表1所示的不同类型碳位移归属和步骤S2测定的固体核磁碳谱,运用分峰拟合方法拟合得到各模型化合物的各个类型碳原子含量的拟合值(X3%,Xa%,X2%,X1+X*%,XO%,YH%,YB%,YS%,YO%,YCC1%,YCC2%),求和分别计算出各模型化合物的脂肪碳含量拟合值X%和芳香碳含量拟合值Y%,

X=X3+Xa+X2+X1+X*+XO,Y=YH+YB+YS+YO+YCC1+YCC2。

将各模型化合物的芳香碳和脂肪碳的拟合值与其理论值进行误差比较,结果见表2所示。

表2不同模型化合物碳结构理论值与实测值误差

由表2可知,通过上述常规的测定固定核磁碳谱以及分峰拟合的方法测得的碳结构拟合值与理论值误差较大,原因就是由于核Overhause效应等因素使得芳香碳和脂肪碳谱线强度增量不一致。

将步骤S2)中分峰拟合得到的各模型化合物的脂肪碳和芳香碳含量拟合值与各模型化合物的脂肪碳和芳香碳含量理论值进行回归分析,分析结果见图1和图2,相应的,得到脂肪碳校正固体核磁碳谱测试误差非线性回归曲线方程:

X’=(R2=,n=2) (Ⅰa)

以及芳香碳校正固体核磁碳谱测试误差非线性回归曲线方程:

Y’=(R2=,n=2) (Ⅱa)

式中X’、Y’分别为与X和Y对应的修正值。

脂肪碳的理论值与拟合值以及芳香碳的理论值和拟合值有良好的相关性,相关系数R2=;换言之固体核磁碳谱测试误差可以用响应非线性二次函数进行修正。。

S4)回归曲线方程准确性验证

将9,10-二甲基蒽按照步骤S2中相同的测试条件测定固体核磁碳谱,分峰拟合得到9,10-二甲基蒽的不同类型碳原子含量拟合值,求和分别计算出9,10-二甲基蒽的饱和碳原子含量和饱和不碳原子含量的拟合值X和Y,然后分别代入回归曲线方程(Ⅰa)和(Ⅱa)得到的X’和Y’为修正值,将9,10-二甲基蒽的饱和碳原子含量和不饱和碳原子含量修正前后的拟合值与理论值比较,结果见表3,修正后脂肪碳和芳香碳与其理论值相对误差均在10%以内,故运用非线性回归方法可以很好的修正固体核磁碳谱测试中的脂肪碳和芳香碳含量误差,可以得到较为准确的结构参数。

表3 9,10-二甲基蒽中碳结构实测值和理论值误差

S5)淖毛湖褐煤(NMH)结构参数的测定及修正

将淖毛湖褐煤煤样按照步骤S2中相同的测试条件进行固体核磁碳谱测试,同样通过分峰拟合得到淖毛湖褐煤煤样的不同类型碳原子含量拟合值,求和分别计算出淖毛湖褐煤煤样的饱和碳原子含量拟合值X%和不饱和碳原子含量拟合值Y%,然后分别代入回归方程(Ⅰa)和(Ⅱa)得到淖毛湖褐煤煤样对应的修正值X’和Y’,再根据X’和淖毛湖褐煤煤样的各个类型的饱和碳原子含量拟合值等比例计算出各个类型的饱和碳原子含量的修正值,结果见表4,根据Y’和待测煤样的各个类型的不饱和碳原子含量拟合值等比例计算出各个类型的不饱和碳原子含量的修正值,结果见表5。

表4修正前后淖毛湖褐煤不同类型脂肪碳分布

表5修正前后淖毛湖褐煤不同类型芳香碳分布

同时对煤样作元素分析,元素分析结果如表6所示。

以H/C作为对比参数,煤结构中氢原子以脂肪氢和芳香氢的形式存在,其中脂肪氢部分包括甲基、次甲基以及亚甲基形式,而芳香氢中则主要以质子化氢以及羧基中的氢存在,不考虑酚类,则煤的H/C原子比可根据公式估算:H/C=(YH+(1-Y)×)/100。修正前后淖毛湖褐煤H/C原子比及芳香度(芳香碳含量)见表6。

表6修正前后淖毛湖褐煤H/C及芳香度

由表6可知,运用非线性回归曲线方程对NMH煤修正后的不同结构参数估算的H/C原子比与元素分析结果具有一致性。对NMH煤的不同类型碳结构参数修正可靠,非线性回归曲线方程修正后能够得到相对准确的碳结构参数。

实施例2小龙潭褐煤(XLT)碳结构参数的分析

按照实施例1的分析步骤对小龙潭褐煤进行分析

步骤S5中,将小龙潭褐煤煤样按照步骤S2中相同的测试条件进行固体核磁碳谱测试,同样通过分峰拟合得到小龙潭褐煤煤样的不同类型碳原子含量拟合值,求和分别计算出小龙潭褐煤煤样的饱和碳原子含量拟合值X%和不饱和碳原子含量拟合值Y%,然后分别代入回归方程(Ⅰa)和(Ⅱa)得到小龙潭褐煤煤样对应的修正值X’和Y’,再根据X’和小龙潭褐煤煤样的各个类型的饱和碳原子含量拟合值等比例计算出各个类型的饱和碳原子含量的修正值,结果见表7,根据Y’和小龙潭褐煤煤样的各个类型的不饱和碳原子含量拟合值等比例计算出各个类型的不饱和碳原子含量的修正值,结果见表8。

表7修正前后小龙潭煤不同类型脂肪碳分布

表8修正前后小龙潭煤不同类型芳香碳分布

同样对小龙潭褐煤进行元素分析,元素分析结果以及修正前后小龙潭煤的H/C原子比及芳香度(芳香碳含量)见表9。

表9修正前后小龙潭煤H/C及芳香度

由表9可知,运用非线性回归曲线方程对XLT煤修正后的不同结构参数估算的H/C原子比与元素分析结果具有一致性。对XLT煤的不同类型碳结构参数修正可靠,非线性回归曲线方程修正后能够得到相对准确的碳结构参数。

实施例3黑山次烟煤(HS)碳结构参数的分析

按照实施例1的分析步骤对黑山次烟煤进行分析

步骤S5中,将黑山次烟煤煤样按照步骤S2中相同的测试条件进行固体核磁碳谱测试,同样通过分峰拟合得到黑山次烟煤煤样的不同类型碳原子含量拟合值,求和分别计算出黑山次烟煤煤样的饱和碳原子含量拟合值X%和不饱和碳原子含量拟合值Y%,然后分别代入回归方程(Ⅰa)和(Ⅱa)得到黑山次烟煤煤样对应的修正值X’和Y’,再根据X’和黑山次烟煤煤样的各个类型的饱和碳原子含量拟合值等比例计算出各个类型的饱和碳原子含量的修正值,结果见表10,根据Y’和黑山次烟煤煤样的各个类型的不饱和碳原子含量拟合值等比例计算出各个类型的不饱和碳原子含量的修正值,结果见表11。

表10修正前后黑山次烟煤不同类型脂肪碳分布

表11修正前后黑山次烟煤不同类型芳香碳分布

同样对黑山次烟煤煤进行元素分析,元素分析结果以及修正前后黑山次烟煤的H/C原子比及芳香度(芳香碳含量)见表12。

表12修正前后黑山次烟煤H/C及芳香度

由表12可知,运用非线性回归曲线方程对HS煤修正后的不同结构参数估算的H/C原子比与元素分析结果具有一致性。对HS煤的不同类型碳结构参数修正可靠,非线性回归曲线方程修正后能够得到相对准确的碳结构参数。

综上所述,本发明通过测定不同模型化合物固体核磁碳谱测试误差,将不同模型化合物碳谱分峰拟合的脂肪碳和芳香碳测试值与样品碳结构的理论值进行回归分析,得到脂肪碳和芳香碳的校正固体核磁碳谱测试误差的回归曲线方程,同时再运用已知结构的模型化合物验证回归方程的准确性;通过对不同模型化合物的固体核磁测定及回归分析,解决了由于核Overhause效应等因素引起的碳结构参数的误差,13C CP/TOSS/MAS NMR技术与回归曲线方程相结合能够快速方便的获得相对准确的不同类型碳结构参数,为煤碳结构分析提供了新的技术保障,提供了一种简便易行的结构参数修正方法。

以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变形或修改,这并不影响本发明的实质内容。

更正,应是二甲氧基苯甲酸,昨天查了资料,用硫酸二甲酯故今天决定放弃。多谢大家。

2-甲基苯甲酸无臭。2-甲基苯甲酸大多为白色颗粒,无臭或微带安息香气味,味微甜,有收敛性,易溶于水,白色结晶粉未,熔点173-177℃,医药中间体。邻甲基苯甲酸是一种化学品,分子式是C8H8O2,用于农药、医药及有机化工原料的合成,是生产除草剂稻无草的主要原料。

巯基乙酸钠的推广应用与研究论文

叔丁醇还原乙酸钠。它具有很强的还原性,可以将乙酸钠变成乙醇或水,同时也会产生甲醛或其他有机物质。

别名: 硫代乙醇酸钠Sodium Thioglycolate分子式:C2H3NaO2S分子量:熔点 >300°C (572°F)

它在铜钼矿浮选中,用作铜矿物和硫铁矿的抑制剂。采用先进的技术以及优良的工艺精制而成,对铜,硫以及其他物质有明显的抑制作用,从而有效地提高了钼精矿的品味。作为一种新型的硫化矿的有效抑制剂在选钼生产中已经成功应用多年,可完全替代剧毒抑制剂氰化钠。主要的是在选钼过程中本产品不仅抑制了铅、锌、铁、铜等金属杂质,而且还对硅、硫等非金属物质的降低也起到了很好的作用。该药剂使用剂量少,用法简单方便,能更好的节约成本,增加经济效益。不仅提高了产品的质量,而且无污染、无毒害、对生产区域的环境保护起到了积极的作用。是国家环保部门积极推荐的环保型无污染产品。

二硝基苯工艺设计毕业论文

一种3-硝基-2-甲基苯甲酸的制备方法,其特征在于,包括以下步骤: (1)在酸性有机溶剂中,在催化剂、引发剂存在下,以氧气为氧化剂,将3-硝基邻二甲苯氧化为3-硝基-2-甲基苯甲酸; 所述催化剂为醋酸钴、醋酸锰或两者的混合物;所述引发剂为溴化钠、二溴乙烷、二溴海因、N-羟基邻苯二甲酰亚胺或N-溴代丁二酰亚胺或二者以上混合; 所述酸性有机溶剂为乙酸,所述乙酸中含有质量分数0~17%的水,所述酸性有机溶剂与所述3-硝基邻二甲苯的质量比为~; (2)反应完成后,降温结晶,过滤得3-硝基-2-甲基苯甲酸粗品与滤液; 所述反应完成时原料3-硝基邻二甲苯HPLC含量小于<10%,所述粗品的HPLC纯度为85-95%,所述母液含水量为6-28%; (3)3-硝基-2-甲基苯甲酸粗品经重结晶,得3-硝基-2-甲基苯甲酸。

问题一:传质分离过程的分类 按物理化学原理,工业常用的传质分离操作可分为平衡分离过程和速率分离过程两大类: 借助分离媒介(如热能、溶剂和吸附剂),使均相混合物系统变成两相系统,再以混合物中各组分在处于相平衡的两相中不等同的分配为依据而实现分离。根据两相的状态可分为:①气(汽)液传质过程,如蒸馏、吸收等;②液液传质过程,如萃取;③气(汽)固传质过程,如吸附、色层分离、参数泵分离等;④液固传质过程,如浸取、吸附、离子交换、色层分离、参数泵分离等。平衡时组分在两相中的浓度关系,可以用相平衡比(或分配系数)Ki表示:式中yi和xi分别表示组分i在两相中的浓度。对于x和y相的命名,按习惯把吸收、蒸馏中的气相或汽相称为y相,把萃取中的萃取液作为y相。一般说,相平衡比取决于两相的特性以及物系的温度和压力。i和j两个组分的相平衡比Ki和Kj之比值称为分离因子αij:在某些传质分离过程中,分离因子往往又有专门名称。例如:在蒸馏中称为相对挥发度;在萃取中称为选择性系数。一般将数值大的相平衡比Ki作分子,故αij大于1。只要两组分的相平衡比不相等(即αij≠1),便可采用平衡分离过程加以分离,αij越大就越容易分离。大多数系统的相平衡比和分离因子都不大,一次接触平衡所能达到的分离效果很有限,需要采取多级逆流操作来提高分离效果。为适应各种不同的系统以及操作条件和分离要求,要相应地使用多种不同类型的传质设备。 在某种推动力(浓度差、压力差、温度差、电位差等)的作用下,有时在选择性透过膜的配合下,利用各组分扩散速度的差异实现组分的分离。这类过程所处理的原料和产品通常属于同一相态,仅有组成上的差别。速率分离方法可分为:①膜分离,如超过滤、反渗透、渗析和电渗析等。②场分离,如电泳、热扩散、超速离心分离等。膜分离与场分离的区别是:前者用膜分隔两股流体,后者则是不分流的。不同类型的速率分离过程,分别应用不同的设备,并采用不同的方法进行设计计算和操作控制。 问题二:传质单元高度和传质单元数有何物理意义 传质单元高度是在逆流操作的微分接触传质设备中,使浓度变化达到传质单元数为?1所需的设备接触传质段高度。编辑摘要传质单元高度?-?传质单元高度?传质单元高度?-?正文在逆流操作的微分接触传质设备中,使浓度变化达到传质单元数为?1所需的设备接触传质段高度。传质单元高度综合反映了设备的传质特性,可根据两相的流量和传质总系数分别用下式计算:式中(HTU)和(HTU)分别为用x相和y相参数表示的传质单元高度;Cx和Cy分别为两相的摩尔流率;KOx和KOy分别为以x相摩尔分率差和y相摩尔分率差为推动力的两相的传质总系数;α为比表面积,即单位设备体积的传质面积。传质单元高度的概念,广泛应用于吸收、萃取和精馏等的设计计算中。已知传质单元高度和传质单元数,其乘积即为完成给定分离任务所需的设备接触传质段高度。两相流速有变化时,传质系数的变化较大,传质单元高度的变化较小。因此,在逆流操作的微分接触传质设备的放大设计时,采用传质单元高度的计算方法,较为方便和可靠。传质单元高度由实验测定,它与设备结构、物系性质以及两相流速等因素有关,变动范围很大。吸收用的填充塔,其传质单元高度多为~,用于精密精馏的填充塔或膜式塔,其传质单元高度较小,有的仅为几厘米。 问题三:化工设计《年产12000吨二硝基苯工艺设计研究》的论文怎么下载?求好心网友帮助 数据库中只有文摘,没有全文,估计不公开吧。 年产12000吨二硝基苯工艺设计研究 二硝基苯是间二硝基苯、对二硝基苯及邻二硝基苯的总称,是制造染料、颜料、农药以及聚亚酰胺类功能材料的重要原料。目前国内生产厂家大都采用间歇生产工艺,分两步将苯硝化制得二硝基苯。但是,用此方法生产二硝基苯具有劳动强度大、产量小、劳动环境差、污染大等缺点。急需开发能够克服这些缺点的连续硝化法生产工艺,以满足国民经济发展的需要。本文主要研究以连续硝化法合成二硝基苯的工艺,主要内容如下: 1.以苯为原料制备二硝基苯合成工艺研究 以苯和混酸为原料,系统开展了间歇硝化法和模拟连续硝化制备二硝基苯的合成实验研究。结果表明,与间歇法相比,连续法硝化具有很多优点。例如,其硫酸用量只是间歇法的%,硝酸和碱的用量也低于间歇法。收率在98%左右,比间歇法约高1个百分点。 2.二硝基苯连续法硝化的生产工艺设计 在上述研究基础上,进一步开展了生产工艺设计研究,进行了热量衡算和物料衡算,对连续法硝化的核心设备反应釜等的传质、传热和反应进行了详细的设计计算,并综合考虑工艺流程、设备布置和自动控制等问题,同时对间歇法和连续硝化法在安全、原料的消耗定额、环境保护和经济技术指标方面进行了比较分析。基于该工艺的试生产己取得满意效果。与间歇法硝化相比,该工艺具有如下优势:产量大,自动化程度高,劳动强度低,生产环境好,酸、碱用量及废水的排放量有显著降低。 综上所述,本文开展了二硝基苯的连续法硝化合成研究及实际生产工艺设计。试生产已取得圆满成功。其投资相对较小,利润较高,投资回收期短,抗风险能力强,社会和经济效益显著。 作者:孟明 学科专业:轻工技术与工程 授予学位:硕士 学位授予单位:华东理工大学 导师姓名:解永树 何旭斌 学位年度:2012 语 种:chi 分类号: 关键词:二硝基苯 合成工艺 连续硝化法 设备布置 自动控制 在线出版日期:2013年4月26日 问题四:纳米材料传热传质毕业设计好做么 纳米材料传热传质毕业设计好做么 不好做 主要是检测比较难做,而且一般需要大量的时间 问题五:Fluent的离散相(DPM)怎么设定?如果在计算完连续相后再加入离散相? define-mod偿ls-discrete phase开启离散相模型设定参数,define-injections设置颗粒注射射流 问题六:什么叫相分离 在橡胶加工多相体系中,由于某一环境条件变化在相与相之间出现分离的不稳定倾向。 在胶料中由于橡胶的高黏度,即使所含各组分分散不均也不会出现相分离,在宏观上仍保持均一性,只是由于橡胶柔性分子在小区域内的高活动性,使不相容的二相分离而形成微观多相形态,只有加入适当溶剂后,由于橡胶分子活动性增大,黏度降低,两种橡胶才会自动分离而出现宏观相分离。 相分离在材料和化学领域也有应用。如在富硅氧化硅(SiOx, 1 问题七:填料吸收塔中 为防止壁流效应而设置的装置是什么机器? :填料塔是一种常用的气液传质设备,通过对传统填料塔内气液二相流动行为的研究,提出了一种带折流挡板的新型填料塔锗流填料塔。实验表明,错流填料塔能更好地消除壁流,改善气液二相的接触状况;错流填料塔的吸收率明显大于普通填料塔,在气液二相流量一定时,吸收率随着∥D(板间距与塔径之比)的减小而逐渐增大,当∥D=o.8时,吸收率最大;当∥D<O.8时,随着气量的增加,吸收率逐渐减小,仅在小气速下,吸收率较大,在气速较大时,由于压降过大,导致吸收操作无法正常进行填料塔是以塔内的填料作为气液两相间接触构件的传质设备。填料塔的塔身是一直立式圆筒,底部装有填料支承板,填料以乱堆或整砌的方式放置在支承板上。填料的上方安装填料压板,以防被上升气流吹动。液体从塔顶经液体分布器喷淋到填料上,并沿填料表面流下。气体从塔底送入,经气体分布装置(小直径塔一般不设气体分布装置)分布后,与液体呈逆流连续通过填料层的空隙,在填料表面上,气液两相密切接触进行传质。填料塔属于连续接触式气液传质设备,两相组成沿塔高连续变化,在正常操作状态下,气相为连续相,液相为分散相。 当液体沿填料层向下流动时,有逐渐向塔壁集中的趋势,使得塔壁附近的液流量逐渐增大,这种现象称为壁流。壁流效应造成气液两相在填料层中分布不均,从而使传质效率下降。因此,当填料层较高时,需要进行分段,中间设置再分布装置。液体再分布装置包括液体收集器和液体再分布器两部分,上层填料流下的液体经液体收集器收集后,送到液体再分布器,经重新分布后喷淋到下层填料上。 填料塔具有生产能力大,分离效率高,压降小,持液量小,操作弹性大等优点。 填料塔也有一些不足之处,如填料造价高;当液体负荷较小时不能有效地润湿填料表面,使传质效率降低;不能直接用于有悬浮物或容易聚合的物料;对侧线进料和出料等复杂精馏不太适合等。

相关百科

热门百科

首页
发表服务