首页

> 期刊论文知识库

首页 期刊论文知识库 问题

高效液相色谱仪论文参考文献

发布时间:

高效液相色谱仪论文参考文献

其他甾体取本品适量,精密称定,以甲醇为溶剂,配制成每1ml含2mg的溶液(1)与每1ml含的溶液(2)。用含量测定项下的方法和溶液,取8μl注入液相色谱仪,调整仪器灵敏度,使主成分峰高度达记录仪的满标度。再分别取溶液(1)和(2)各8μl,进样。记录色谱图至主成分峰保留时间的倍。溶液(1)显示的杂质峰数不得超过3个,各杂质峰面积及其总和分别不得大于溶液(2)主峰面积的1/2和3/4。干燥失重取本品,置五氧化二磷干燥器中,减压干燥至恒重,减失重量不得过(附录ⅧL)。含量测定:照高效液相色谱法(附录ⅤD)测定。色谱条件与系统适用性试验,用十八烷基硅烷键合硅胶为填充剂,甲醇-水(82:18)为流动相;检测波长为241nm。理论板数按苯丙酸诺龙峰计算应不低于2300,苯丙酸诺龙峰与内标物质峰的分离度应符合要求。内标溶液的制备取丙酸睾酮约50mg,精密称定,置50ml量瓶中,加甲醇溶解并稀释至刻度,摇匀,即得。测定法:取苯丙酸诺龙对照品约50mg,精密称定,置25ml量瓶中,加甲醇溶解并稀释至刻度,摇匀;精密量取该溶液与内标溶液各5ml,置25ml量瓶中,用甲醇稀释至刻度,摇匀;取8μl注入液相色谱仪,记录色谱图;另取本品适量,同法测定,按内标法以峰面积计算,即得。测定法方法名称: 苯丙酸诺龙原料药-苯丙酸诺龙-高效液相色谱法应用范围: 本方法采用高效液相色谱法测定苯丙酸诺龙原料药中苯丙酸诺龙的含量。本方法适用于苯丙酸诺龙原料药。方法原理: 供试品经甲醇溶解并定量稀释,加入内标后再经甲醇定量稀释,进入高效液相色谱仪进行色谱分离,用紫外吸收检测器,于波长241nm处检测苯丙酸诺龙的峰面积,计算出其含量。试剂: 1. 甲醇2. 丙酸睾酮仪器设备: 1. 仪器 高效液相色谱仪 色谱柱十八烷基硅烷键合硅胶为填充剂,理论塔板数按苯丙酸诺龙峰计算应不低于2300。 紫外吸收检测器2. 色谱条件 流动相:甲醇 水=82 检测波长: 柱温:室温试样制备: 1. 内标溶液的制备精密称取丙酸睾酮50mg,置50mL量瓶中,加甲醇溶解并稀释至刻度,摇匀,即为内标溶液。2. 对照品溶液的制备精密称取苯丙酸诺龙对照品50mg,置25mL量瓶中,加甲醇溶解并稀释至刻度,摇匀,精密量取该溶液与内标溶液各5mL,置25mL量瓶中,用甲醇稀释至刻度,摇匀,即为对照品溶液。3. 供试品溶液的制备精密称取供试品50mg,同对照品溶液的制备,即为供试品溶液。注:“精密称取”系指称取重量应准确至所称取重量的千分之一。“精密量取”系指量取体积的准确度应符合国家标准中对该体积移液管的精度要求。操作步骤: 分别精密吸取对照品溶液和供试品溶液各10mL,注入高效液相色谱仪,用紫外吸收检测器于波长241nm处测定苯丙酸诺龙(C27H34O3)的峰面积,计算出其含量。参考文献: 中华人民共和国药典,国家药典委员会编,化学工业出版社,2005版,二部,。

方法名称: 醋酸曲安奈德—醋酸曲安奈德的测定—高效液相色谱法应用范围: 本方法采用高效液相色谱法测定醋酸曲安奈德的含量。本方法适用于醋酸曲安奈德。方法原理: 供试品用甲醇溶解并稀释成一定浓度的溶液,进入高效液相色谱仪进行色谱分离,用紫外吸收检测器,于波长240nm处检测醋酸曲安奈德的吸收值,计算出其含量。试剂: 1. 甲醇(色谱纯)2. 水(色谱纯)3. 乙醚4. 炔诺酮仪器设备: 1. 仪器 高效液相色谱仪 色谱柱十八烷基硅烷键合硅胶为填充剂,理论板数按醋酸地塞米松峰计算应不低于 2300,醋酸地塞米松与内标物质峰分离度应符合规定。 紫外吸收检测器2. 色谱条件 流动相:甲醇-水-乙醚= 62 38 检测波长: 柱温:室温试样制备: 1. 对照品溶液的制备取醋酸曲安奈德对照品适量,精密称定,加甲醇溶解并定量稀释制成,每1mL中含的溶液,精密量取该溶液10mL与内标溶液5mL,置50mL量瓶中,加流动相稀释至刻度,摇匀。2. 供试品溶液的制备取本品适量,精密称定,加甲醇溶解并定量稀释制成,每1mL中约含的溶液,精密量取该溶液10mL与内标溶液5mL,置50mL量瓶中,加流动相稀释至刻度,摇匀。3. 内标溶液的配制取炔诺酮适量,加甲醇制成每1mL中约含的溶液,即得。注:“精密称取”系指称取重量应准确至所取重量的千分之一。“精密量取”系指量取体积的准确度应符合国家标准中对该体积移液管的精度要求。操作步骤: 分别精密吸取上述对照品溶液与供试品溶液各20μL 注入高效液相色谱仪,用紫外吸收检测器,于波长240nm处测定,记录色谱图,按内标法以峰面积计算其含量。参考文献: 中华人民共和国药典,国家药典委员会编,化学工业出版社,2005年版,一部,p844。

毕业论文高效液相色谱法参考文献

色谱分析技术能够实现原料分离,分析环节中同时完成多种任务,下面是我为大家精心推荐的色谱分析技术论文,希望能够对您有所帮助。

涂料检测中的现代色谱分析技术应用分析

摘 要:文章首先介绍了气相色谱法涂料检验的原理,并对检验环节中常见的问题以及解决对策进行分析。从技术的优缺点两方面进行。其次重点分析高效液相色谱法的应用原理,并对涂料检测环节的技术要点做出总结。帮助提升检测结果的准确性。

关键词:涂料检测;现代色谱;气相色谱法

1 高效液相色谱法

该种技术融合了传统工艺中的优点,同时也对存在的问题做出优化,更高效的解决检测期间的影响问题。这种技术能够实现原料分离,分析环节中同时完成多种任务,与传统方法相比较在时间上会有明显的减少,尤其是对受热程度的分析判断,更高效合理。检验环节中常见的加热问题,成为色谱分析的首要影响因素,如果不能合理的设置温度,很容易造成分析结合与实际情况不符合。大部分涂料都是液体形式的,在性质上更具有稳定性,原料选取的量也能得到控制。随着对环保和健康的日益重视,国家陆续出台了一些涂料相关的有毒有害标准,涂料的生产工艺和配方也随之调整优化。但也不乏有生产厂家使用现行标准中还未被限量的有毒有害物质来替代已被限量的物质。这就要求在检验工作中不仅要依照现行标准对涂料样品进行检验,还要积极发现还未被限量的有毒有害物质。涂料产品成分复杂多样,高效液相色谱法属于分离性分析方法,能够对绝大部分的有机物进行分析,尤其是对挥发性不强,高温易分解的物质,能获得比其他方法更好更稳定的结果。

涂料中含有的化学物质可能会对环境造成污染,因此目前的检测工作也大部分是针对生态环保来进行的,目的在于避免质量检测不达标的物质投入到使用中。因此检测工作要有明确的目标,对待检物质中可能会含有的污染物进行判断。有毒涂料防污剂有机锡的HPLC分析在船舶防污涂料抑制海洋生物污损中发挥了非常有效的作用,随着海洋监测技术的发展,有机锡的毒性和对生态系统的危害越来越多地被人类认识。海洋环境中的有机锡浓度很低(10-12~10-9),而且种类繁多,因此用传统的仪器很难满足高灵敏度、高选择性的分析要求。其中较成熟的方法是以GC(凝胶色谱)为分离手段,配以适合金属离子分析的检测器。

HPLC能对不适应GC的有机锡进行分析,适用于大多数极性及非极性有机锡化合物的直接分离。不需萃取及衍生,在常温下可直接分离样品中不同形态的锡,不但缩短了分析时间,而且还减少了分析过程中可能的损失;可通过改变固定相和流动相获得最佳分离;尤其适用于具有生物活性化合物的分离与形态分析。凝胶色谱法是液相色谱法的一种,其分离原理与其他色谱法不同,是按分子体积的大小进行分离,所以也称为体积排阻色谱法。高效凝胶渗透色谱是20世纪60年代发展起来的一种液相色谱方法,主要用途是测定高聚物的相对分子质量及其分布。

2 气相色谱法

裂解气相色谱-傅里叶变换红外光谱联用

能够用来判断树脂涂料中的组成成分,同样是针对光谱来进行,该种技术方法在所得结果上更具有全面性,融合了两种技术方法中的优点,在对色谱类型进行判断时可以直接显示结果。生产工艺不断进步后,涂料中的含有成分也在逐渐复杂化,高分子结构在普通的红外光谱下不容易分析。关于该种色谱技术,在国内的研究起步较晚,应用环节也是根据已有的研究结果来探讨的。

我国学者在研究过程中,提取涂料中的成分,将检测得到的成分含量录入到计算机设备中进行分析,更准确的定位色谱表现形式与其中涂料含量的函数关系。该种技术可以选择任意部分涂料进行检测,不需要对测试点进行选取,节省时间的同时也能够减少标样点,对未来的工作开展有很大帮助。这一特征性也是该技术能够得到应用落实的原因。

红外光照作用下,涂料发生的裂解反应是检测开展的依据,不需要再次选择分析的样本,可以直接根据反应过程来分析结果。面对比较复杂的分析对象时,仅仅依靠简单的裂解很难实现目标,简单的升高温度能够促进涂料裂解,再根据反应发生的情况来判断是否达到可以检测的点。红外光照在其中发挥着催化的作用,可以应对化合物检测。但涂料的形式并不是如此简单,还包含了聚合物形式,红外光谱检测的效果便会受到阻碍。

裂解气相色谱-质谱联用

涂料由几大部分组成,树脂原料常常被应用在基料制作中。对于耐高温性质好,并且不容易分离的材料,不能再通过高温裂解的方式来检验。但检验方法在原理上都相同,遇到的难题是如何促使裂解反应发生。常见的方法是对分子结构链进行破坏,涂料中的成分自然分解,此时在对色谱表现形式进行分析,能更好的完成任务。裂变过程中会散发出能量,不同分子结构链变化期间所散发的热量也不相同,同时也与基料自身耐高温形式相关。

了解到裂变需要经过高温加热来实现分析检测时,关键技术是对温度的控制,如果加热温度超出了需求范围,很容易造成分子结构链过于零散,影响到结果的判断。不可忽略的一点是,涂料在高温状态下其中的一些物质容易发生氧化反应,分解出检测环节不需要的物质,对任务开展产生阻碍。由此可见,这种方法虽然操作过程简单,结果分析准确,但却容易受外界因素影响。

涂料在高温环境下发生反应变化需要一段融合的时间,而破坏结构链是在高温加热的瞬间完成的。检测环节中,可以在短时间内瞬间升高温度,这样能够避免物质的高温氧化反应,提升检测结果的可靠性。影响物质并不能被完全消除,只是尽可能的将生成量控制在合理范围内,不对检验分析造成影响。根据检验结果可以了解到,不同的基料材质对涂料色谱表现形式会产生影响,在检测环节需要对原料组成成分进行判断,明确高温状态下可能会发生的反应类型。任务进行期间,需要选取不同涂料的样品来测试,避免掺入其他杂质。所选取的量要均等,观察检测结果的同时将原始数据整理记录,用于后续的分析检验环节,可以更好的对比。根据反应发生的形式对检验技术进行选择,涂料色谱分析在流程上会有明显的进步。

3 结论

快速灵敏的仪器分析法在很大程度上取代了繁琐费时的化学分析法,打破了化学分析的局限,极大地提高了分析工作的效率、分析精度与可靠性,而先进的色谱技术已成为涂料成分检测不可缺少的重要手段。

参考文献

[1] 宋晓波,兰小军,丁立群.现代色谱分析技术在涂料检测中的应用[J].上海涂料,2013(03).

[2] 尹洧.色谱分析技术在食品检测中的应用[J].农业工程,2012(08).

点击下页还有更多>>>色谱分析技术论文

建议你去“色谱世界”网站看看,这个网站在色谱方面非常专业,有很多技术资料及高手,应该能帮到你的。

方法名称: 万氏牛黄清心丸-栀子苷-高效液相色谱法应用范围: 本方法采用高效液相色谱法测定万氏牛黄清心丸中栀子苷的含量。本方法适用于中成药万氏牛黄清心丸。方法原理: 供试品加甲醇超声,滤过,用高效液相色谱仪进行色谱分离,用紫外吸收检测器,于波长238nm处检测栀子苷的吸收值,计算其含量。试剂: 1. 甲醇(色谱纯)2. 乙腈(色谱纯)3.水为重蒸水4.栀子苷对照品(中国药品生物制品检定所)仪器设备: 1 仪器 高效液相色谱仪 色谱柱十八烷基硅胶键合硅胶为填充剂,Kromasil C18(250×,5um),理论板数按栀子苷计应符合规定。可变波长紫外检测器 色谱工作站 超声发生器2 色谱条件 流动相:甲醇+乙腈=10+流速:检测波长: 柱温:室温试样制备: 1. 对照品溶液的制备取栀子苷对照品适量,精密称定,加甲醇制成每毫升含的溶液,即得对照品溶液。精密量取栀子苷对照品溶液、、、、,分别置于5ml 量瓶中,加甲醇稀释至刻度,摇匀。2. 供试品溶液的制备取本品10g,研细,过20目筛,精密称取约,置于50mL具塞锥形瓶中,加甲醇25mL,密塞,称定重量。超声处理20min,放冷至室温,再称定重量,加甲醇补足减失的重量,摇匀。精密量取溶液10mL分别置于25mL量瓶中,加甲醇稀释至刻度,摇匀,微孔滤膜(μm)滤过,即得供试品溶液。操作步骤: 1. 标准曲线的制备精密吸取20ul,注入液相色谱仪,测定峰面积,以进样量X为横坐标,峰面积Y为纵坐标,绘制标准曲线。回归方程为:y=,r=0. 9997(n=5),线性范围为。2. 供试品的测定精密吸取供试品溶液20μL注入高效液相色谱仪测定峰面积,外标法计算栀子苷的含量。注:“精密称取”系指称取重量应准确至所称取重量的千分之一。“精密量取”系指量取体积的准确度应符合国家标准中对该体积移液管的精度要求。参考文献: 卢兴红,张兰桐,反相高效液相色谱法测定栀子及其制剂中栀子苷的含量,中国药房,2003,14(12):748~750。

液相色谱仪论文题目

液相色谱仪的分析难道不是应该建立在实验之上么

三聚氰胺检测方法汇总检测方法GC-MS法测定动物食品中的三聚氰胺Spectra-Quad实现三聚氰胺含量在线检测超高效液相色谱_电喷雾串联质谱法测定饲料中残留的三聚氰胺反相高效液相色谱法测定饲料中三聚氰胺的含量高效液相色谱-二极管阵列法测定高蛋白食品中的三聚氰胺高效液相色谱法(HPLC)测定饲料中三聚氰胺的含量高效液相色谱-四极杆质谱联用测定饲料中三聚氰胺含量固相萃取与高效液相色谱联用测定宠物食品中三聚氰胺液相色谱串联质谱法(LC-MSMS)分析宠物食品中三聚氰胺液相色谱-串联质谱法测定饲料中三聚氰胺残留GC-MS法测定动物食品中的三聚氰胺附:三聚氰胺检测方法示例仪器与条件高效液相色谱仪;二极管阵列检测器(DAD),检测波长240nm,柱温:40℃。(1)AgelaVenusilTMASBC18(×250mm);缓冲液:10mM柠檬酸,10mM庚烷磺酸钠;流动相:缓冲溶液:乙腈=85:15;流速:。(2)AgelaVenusilTMASBC8(×250mm);流动相:缓冲液:乙腈=85:15;缓冲液:10mM柠檬酸,10mM辛烷磺酸钠,调pH为;流速:;离子交换固相萃取柱AgelaClearnertTMPCX试剂与样品宠物饲料样品(农业部饲料供应中心提供);甲醇、乙腈为北京艾杰尔科技有限公司提供;氨水、乙酸铅、三氯乙酸、均购于北京化学试剂公司;三聚氰胺标准品、柠檬酸、辛烷磺酸钠(Sigma公司);甲醇为色谱纯,其他均为化学纯。实验方法1、样品前处理方法(1)标准样品配制:取50mg三聚氰胺标准品,以20%甲醇溶解定容至50mL得到1000ppm的标准溶液,使用时,以提取液(三氯乙酸)稀释至所要的浓度。(2)提取:称取饲料样品5g,加入三氯乙酸提取液,充分混匀,加入2mL2%乙酸铅溶液,超声20min。然后取部分溶液转移至10mL离心管中,8000rpm/min离心10min,取上清液3mL过混合型阳离子交换小柱(PCX)。(3)净化(PCX小柱,60mg/3mL):a)活化及平衡:3mL甲醇,3mL水b)上样:加入提取液3mLc)淋洗:3mL水;3mL甲醇;弃去淋洗液并将小柱抽干。d)洗脱:5mL5%氨化甲醇(v/v)洗脱。(5%氨化甲醇的配制:5mL氨水+95mL甲醇)。e)浓缩:50℃,氮气吹干,20%甲醇/水定容至2mL,HPLC分析或衍生后GC/MS分析。2、三聚氰胺被立案三聚氰胺HPLC-UV检测方法三聚氰胺是强极性化合物,在传统的反相C18柱上保留很差,需要用离子对试剂色谱方法才能有良好的保留与分离,按照美国食品药品监督管理局(FDA)的三聚氰胺检测方法和中国农业部公布的三聚氰胺检测方法,采用艾杰尔(Agela)ASB系列亲水色谱柱,可以得到良好的分离效果:(a)色谱柱:×250mm;标准:FDA方法;流动相:缓冲液:乙腈=85:15;缓冲液:10mM柠檬酸,10mM辛烷磺酸钠,调pH为;流速:;柱温:40oC;波长:240nm(b)色谱柱:×250mm;标准:中国农业部颁标准方法;缓冲液:10mM柠檬酸,10mM庚烷磺酸钠;流动相:缓冲溶液:乙腈=85:15;流速:;柱温:40℃;波长:240nm空白加水平(mg/L)回收率三聚氰胺LC-MS检测方法由于FDA公布的HPLC-UV方法中,流动相添加了离子对试剂,因此限制了液质联用方法的使用;但不用离子对试剂色谱方法,三聚氰胺在传统的C18柱上保留很差,不能得到较好的分离定量〔3〕。基于此问题,艾杰尔科技公司自主开发了新的方法,采用艾杰尔(Agela)ASB系列亲水色谱柱,不用离子对试剂也能得到有效的保留与分离。因此方法中流动相不含离子对试剂,可以用于质谱检测。与FDA2007年4月公布的《UpdatedFCCDevelopmentalMelamineQuantitation(HPLC-UV)》相比较,该方法大大降低了最低检测限(MSD:;UV:2ppm),提高了检测灵敏度。以该方法分别在××250mm得到很好的谱图。缓冲液:10mM的NH4AC;流动相:Buffer::ACN=95:5;流速:;进样量:样品先用70%ACN溶解成约1mg/mL,用ACN稀释成,进10uL;柱温:40℃;波长:240nm结果与讨论1、阳离子交换柱(PCX)三聚氰胺呈弱碱性(弱阳离子化合物),净化过程一般应选择阳离子交换柱。混合型的阳离子交换柱(PCX)通过将磺酸基团(-SO3H)键合在极性高聚物聚苯乙烯/二乙烯苯(PEP)吸附剂上,具有阳离子交换和反相吸附两种机理,并具有以下优点:a)可通过两种不同溶液的洗涤(水/一定pH值的缓冲溶液和有机溶剂),使样品更干净,提高检测的灵敏度。b)批次重复性好。c)回收率高,重现性好,即使小柱跑干也可以得到较高回收率。2、LC-MS方法优点:(1)检测过程简便:无须添加离子对试剂,三聚氰胺就可得到良好的保留与分离,避免了配制离子对流动相的复杂过程。(2)提高了检测的灵敏度:无离子对试剂,可以用于质谱检测器,大大降低了最低检测限(MSD:;UV:2ppm)。(3)降低了检测成本:不用离子对试剂,就不再需要买价格较贵的离子对试剂了,从而降低了检测成本。(4)延长了色谱柱的使用寿命:避免了使用离子对试剂减少色谱柱寿命的影响。(5)该方法所使用的色谱柱具有通用性:无论是用FDA方法、中国农业部部颁标准方法和本公司开发的LC-MS方法,使用艾杰尔(Agela)ASB系列亲水色谱柱均能得到一个很好的检测结果,从而给客户提供了多种选择空间。国家食品质量监督检测中心有关人士说,在现有的国家标准奶粉检测中,主要进行蛋白质、脂肪、细菌等检测。三聚氰胺属于化工原料,是不允许添加到食品中的,所以现有标准不会包含相应内容。也就是说,三聚氰胺不属于常规检测项目,正常情况下,很少有人会想到去检测它。

色谱图,其实简单地讲,是一个横坐标是时间,纵坐标是电信号的二维图谱。

你这张是色谱图的坐标,但是并没有出图。

这个才是图谱。

和实验相关的参数:

1、保留时间

如果使用同样的色谱柱,同样的流动相,分析同样的样品,那么这个样品的保留时间,应该是固定的。不同保留时间的色谱峰,应该表现出的是不同的物质。如果你跑的是反相色谱,那么色谱峰越靠后,它对应物质的极性也就越小。

比如这一针,样品中一共有八个峰,那么对应的应该是八个物质。比如说,你手上有正十六烷的试剂,进样分析是左右,那么,你的实验条件下,左右的色谱峰就应该是正十六烷。或者说,正十六烷在该实验条件下的保留时间是。

2、峰面积

这是你在色谱图中可以读出来的参数,你的液相色谱工作站应该是岛津的软件,上面应该有保留时间、峰高、峰面积的参数。在同一个色谱条件下,同一个物质的浓度和峰面积是成正比的。也就是说,如果你配制的正十六烷,进样后峰面积是10000,那么,你配制的正十六烷,进样后峰面积差不多就是5000。

3、波长

同一样品,同一方法,同一色谱柱,在不同波长的峰面积是不同的。一个物质指在某些特殊波长下有吸收。比如一个物质在210nm和254nm处有吸收。那么波长在280nm处可能无法检出该物质。所以一个实验方法开始时要进行波长扫描。

这个是因为液相配置的检测器大多都是紫外检测器的缘故。

基本情况就是这样,具体的东西,你要根据你的实验数据以及研究课题自己来写。

化学分析是指利用化学反应和它的计量关系来确定被测物质的组成和含量的一类分析方法。测定时需使用化学试剂、天平和一些玻璃器皿。 仪器分析(近代分析法或物理分析法):是基于与物质的物理或物理化学性质而建立起来的分析方法。这类方法通常是测量光、电、磁、声、热等物理量而得到分析结果,而测量这些物理量,一般要使用比较复杂或特殊的仪器设备,故称为“仪器分析”。仪器分析除了可用于定性和定量分析外,还可用于结构、价态、状态分析,微区和薄层分析,微量及超痕量分析等,是分析化学发展的方向。 相对于化学分析仪器分析有以下特点: 1. 灵敏度高,检出限量可降低。如样品用量由化学分析的mL、mg级降低到仪器分析的g、L级,甚至更低。适合于微量、痕量和超痕量成分的测定。 2. 选择性好。很多的仪器分析方法可以通过选择或调整测定的条件,使共存的组分测定时,相互间不产生干扰。 3. 操作简便,分析速度快,容易实现自动化。 仪器分析的特点(与化学分析比较) 4. 相对误差较大。化学分析一般可用于常量和高含量成分分析,准确度较高,误差小于千分之几。多数仪器分析相对误差较大,一般为5%,不适用于常量和高含量成分分析。 5. 仪器分析需要价格比较昂贵的专用仪器。 二者相同点 : 1、都可作为定性定量的分析方法。化学分析一般可用于常量和高含量成分分析,准确度较高,误差小于千分之几。多数仪器分析相对误差较大,一般为5%,不适用于常量和高含量成分分析。 2、分析原理一致。

高效液相色谱本科毕业论文

乖乖,这几个可以吧,呵呵,你自己打开看看吧!1、固相萃取高效液相色谱-质谱联用测定猪肉中的莱克多巴胺[药学专业]固相萃取高效液相色谱-质谱联用测定猪肉中的莱克多巴胺[药学专业]中文摘要目的:建立高效液相色谱三重四级杆质谱测定猪肉中莱克多巴胺的方法。 方法:通过液液分配和固相萃取提取、净化猪肉中添加的莱克多巴胺液相,进行LC-MS分析(选择多...2、藏药四臣浸膏对大白鼠的抗炎药效学研究[药学专业]藏药四臣浸膏对大白鼠的抗炎药效学研究[药学专业]中文摘要目的:通过现代药理学实验方法,观察藏药四臣浸膏的抗炎药效作用并初步探讨其作用机理。方法:采用抗炎实验法对纽扣致大白鼠肉芽肿及蛋清致大白鼠动物模型肿胀作用研究。结论:藏...3、止咳藏药复方浸膏的药效学研究[药学专业]止咳藏药复方浸膏的药效学研究[药学专业]中文摘要目的:通过现代药理学实验方法,对止咳藏药复方浸膏的抗炎作用进行考察。方法:采用抗炎实验法对止咳藏药复方浸膏进行抗炎药效的研究。结论:止咳藏药复方浸膏在10、5、3g生药/kg剂量下对...

别傻了 写一篇论文100分 别说100分了 现实生活中貌似听说几百块呢劳心劳力的

You can read

去“仪器信息网”上学学,上面资料很多,求人不如求己!

论文高效液相色谱的研究意义

关于高效液相色谱的应用回答如下:

一、分离混合物

高效液相色谱法只要求样品能制成溶液,不受样品挥发性的限制,流动相可选择的范围宽,固定相的种类繁多,因而可以分离热不稳定和非挥发性的、离解的和非离解的以及各种分子量范围的物质。

通过与试样预处理技术相配合,高效液相色谱法所达到的高分辨率和高灵敏度,可分离并同时测定性质上十分相近的物质,能够分离复杂混合物中的微量成分。并且随着固定相的发展,还可在充分保持生化物质活性的条件下完成对其的分离。

二、仪器联用

高效液相色谱仪与结构仪器的联用是一个重要的发展方向。高效液相色谱一质谱联用技术受到普遍重视,如分析氨基甲酸酯农药和多核芳烃等:高效液相色谱一红外光谱联用也发展很快,如在环境污染分析测定水中的烃类等.使环境污染分析得到新的发展。

三、生化分析

由于高效液相色谱法具有高分辨率、高灵敏度、速度快、色谱柱可反复利用,流出组分易收集等优点,因而被广泛应用到生物化学、食品分析、医药研究、环境分析、无机分析等各种领域,并已成为解决生化分析问题有前途的方法。

高效液相色谱法是在经典色谱法的基础上,引用了气相色谱的理论,在技术上,流动相改为高压输送(最高输送压力可达);色谱柱是以特殊的方法用小粒径的填料填充而成,从而使柱效大大高于经典液相色谱(每米塔板数可达几万或几十万);同时柱后连有高灵敏度的检测器,可对流出物进行连续检测。 特点 1.高压:液相色谱法以液体为流动相(称为载液),液体流经色谱柱,受到阻力较大,为了迅速地通过色谱柱,必须对载液施加高压。一般可达150~350×105Pa。 2. 高速:流动相在柱内的流速较经典色谱快得多,一般可达1~10ml/min。高效液相色谱法所需的分析时间较之经典液相色谱法少得多,一般少于 1h 。 3. 高效:近来研究出许多新型固定相,使分离效率大大提高。 4.高灵敏度:高效液相色谱已广泛采用高灵敏度的检测器,进一步提高了分析的灵敏度。如荧光检测器灵敏度可达10-11g。另外,用样量小,一般几个微升。 5.适应范围宽:气相色谱法与高效液相色谱法的比较:气相色谱法虽具有分离能力好,灵敏度高,分析速度快,操作方便等优点,但是受技术条件的限制,沸点太高的物质或热稳定性差的物质都难于应用气相色谱法进行分析。而高效液相色谱法,只要求试样能制成溶液,而不需要气化,因此不受试样挥发性的限制。对于高沸点、热稳定性差、相对分子量大(大于 400 以上)的有机物(这些物质几乎占有机物总数的 75% ~ 80% )原则上都可应用高效液相色谱法来进行分离、分析。 据统计,在已知化合物中,能用气相色谱分析的约占20%,而能用液相色谱分析的约占70~80%。 高效液相色谱按其固定相的性质可分为高效凝胶色谱、疏水性高效液相色谱、反相高效液相色谱、高效离子交换液相色谱、高效亲和液相色谱以及高效聚焦液相色谱等类型。用不同类型的高效液相色谱分离或分析各种化合物的原理基本上与相对应的普通液相层析的原理相似。其不同之处是高效液相色谱灵敏、快速、分辨率高、重复性好,且须在色谱仪中进行。 高效液相色谱法的主要类型及其分离原理 根据分离机制的不同,高效液相色谱法可分为下述几种主要类型: 1 .液 — 液分配色谱法(Liquid-liquid Partition Chromatography)及化学键合相色谱(Chemically Bonded Phase Chromatography) 流动相和固定相都是液体。流动相与固定相之间应互不相溶(极性不同,避免固定液流失),有一个明显的分界面。当试样进入色谱柱,溶质在两相间进行分配。达到平衡时,服从于下式: 式中,cs—溶质在固定相中浓度;cm--溶质在流动相中的浓度; Vs—固定相的体积;Vm—流动相的体积。LLPC与GPC有相似之处,即分离的顺序取决于K,K大的组分保留值大;但也有不同之处,GPC中,流动相对K影响不大,LLPC流动相对K影响较大。 a. 正相液 — 液分配色谱法(Normal Phase liquid Chromatography): 流动相的极性小于固定液的极性。 b. 反相液 — 液分配色谱法(Reverse Phase liquid Chromatography): 流动相的极性大于固定液的极性。 c. 液 — 液分配色谱法的缺点:尽管流动相与固定相的极性要求完全不同,但固定液在流动相中仍有微量溶解;流动相通过色谱柱时的机械冲击力,会造成固定液流失。上世纪70年代末发展的化学键合固定相(见后),可克服上述缺点。现在应用很广泛(70~80%)。 2 .液 — 固色谱法 流动相为液体,固定相为吸附剂(如硅胶、氧化铝等)。这是根据物质吸附作用的不同来进行分离的。其作用机制是:当试样进入色谱柱时,溶质分子 (X) 和溶剂分子(S)对吸附剂表面活性中心发生竞争吸附(未进样时,所有的吸附剂活性中心吸附的是S),可表示如下: Xm + nSa ====== Xa + nSm 式中:Xm--流动相中的溶质分子;Sa--固定相中的溶剂分子;Xa--固定相中的溶质分子;Sm--流动相中的溶剂分子。 当吸附竞争反应达平衡时: K=[Xa][Sm]/[Xm][Sa] 式中:K为吸附平衡常数。[讨论:K越大,保留值越大。] 3 .离子交换色谱法(Ion-exchange Chromatography) IEC是以离子交换剂作为固定相。IEC是基于离子交换树脂上可电离的离子与流动相中具有相同电荷的溶质离子进行可逆交换,依据这些离子以交换剂具有不同的亲和力而将它们分离。 以阴离子交换剂为例,其交换过程可表示如下: X-(溶剂中) + (树脂-R4N+Cl-)=== (树脂-R4N+ X-) + Cl- (溶剂中) 当交换达平衡时: KX=[-R4N+ X-][ Cl-]/[-R4N+Cl-][ X-] 分配系数为: DX=[-R4N+ X-]/[X-]= KX [-R4N+Cl-]/[Cl-] [讨论:DX与保留值的关系] 凡是在溶剂中能够电离的物质通常都可以用离子交换色谱法来进行分离。 4 .离子对色谱法(Ion Pair Chromatography) 离子对色谱法是将一种 ( 或多种 ) 与溶质分子电荷相反的离子 ( 称为对离子或反离子 ) 加到流动相或固定相中,使其与溶质离子结合形成疏水型离子对化合物,从而控制溶质离子的保留行为。其原理可用下式表示: X+水相 + Y-水相 === X+Y-有机相 式中:X+水相--流动相中待分离的有机离子(也可是阳离子);Y-水相--流动相中带相反电荷的离子对(如氢氧化四丁基铵、氢氧化十六烷基三甲铵等);X+Y---形成的离子对化合物。 当达平衡时: KXY = [X+Y-]有机相/[ X+]水相[Y-]水相 根据定义,分配系数为: DX= [X+Y-]有机相/[ X+]水相= KXY [Y-]水相 [讨论:DX与保留值的关系] 离子对色谱法(特别是反相)发解决了以往难以分离的混合物的分离问题,诸如酸、碱和离子、非离子混合物,特别是一些生化试样如核酸、核苷、生物碱以及药物等分离。 5 .离子色谱法(Ion Chromatography) 用离子交换树脂为固定相,电解质溶液为流动相。以电导检测器为通用检测器,为消除流动相中强电解质背景离子对电导检测器的干扰,设置了抑制柱。试样组分在分离柱和抑制柱上的反应原理与离子交换色谱法相同。 以阴离子交换树脂(R-OH)作固定相,分离阴离子(如Br-)为例。当待测阴离子Br-随流动相(NaOH)进入色谱柱时,发生如下交换反应(洗脱反应为交换反应的逆过程): 抑制柱上发生的反应: R-H+ + Na+OH- === R-Na+ + H2O R-H+ + Na+Br- === R-Na+ + H+Br- 可见,通过抑制柱将洗脱液转变成了电导值很小的水,消除了本底电导的影响;试样阴离子Br-则被转化成了相应的酸H+Br-,可用电导法灵敏的检测。 离子色谱法是溶液中阴离子分析的最佳方法。也可用于阳离子分析。 6 .空间排阻色谱法(Steric Exclusion Chromatography) 空间排阻色谱法以凝胶 (gel) 为固定相。它类似于分子筛的作用,但凝胶的孔径比分子筛要大得多,一般为数纳米到数百纳米。溶质在两相之间不是靠其相互作用力的不同来进行分离,而是按分子大小进行分离。分离只与凝胶的孔径分布和溶质的流动力学体积或分子大小有关。试样进入色谱柱后,随流动相在凝胶外部间隙以及孔穴旁流过。在试样中一些太大的分子不能进入胶孔而受到排阻,因此就直接通过柱子,首先在色谱图上出现,一些很小的分子可以进入所有胶孔并渗透到颗粒中,这些组分在柱上的保留值最大,在色谱图上最后出现。气相色谱法(gas chromatography 简称GC)是色谱法的一种。色谱法中有两个相,一个相是流动相,另一个相是固定相。如果用液体作流动相,就叫液相色谱,用气体作流动相,就叫气相色谱。气相色谱法由于所用的固定相不同,可以分为两种,用固体吸附剂作固定相的叫气固色谱,用涂有固定液的担体作固定相的叫气液色谱。按色谱分离原理来分,气相色谱法亦可分为吸附色谱和分配色谱两类,在气固色谱中,固定相为吸附剂,气固色谱属于吸附色谱,气液色谱属于分配色谱。按色谱操作形式来分,气相色谱属于柱色谱,根据所使用的色谱柱粗细不同,可分为一般填充柱和毛细管柱两类。一般填充柱是将固定相装在一根玻璃或金属的管中,管内径为2~6mm。毛细管柱则又可分为空心毛细管柱和填充毛细管柱两种。空心毛细管柱是将固定液直接涂在内径只有~的玻璃或金属毛细管的内壁上,填充毛细管柱是近几年才发展起来的,它是将某些多孔性固体颗粒装入厚壁玻管中,然后加热拉制成毛细管,一般内径为~。

高效液相色谱(HPLC)重复性检查是将同一已知浓度的样品, 或者已知不同浓度的样品进行仪器测试, 已确定仪器检测的准确性。其意义在于建立HPLC检测的准确度, 避免出现误差。

相关百科

热门百科

首页
发表服务