首页

> 期刊论文知识库

首页 期刊论文知识库 问题

rcnn论文题目

发布时间:

rcnn论文题目

论文: Sparse R-CNN: End-to-End Object Detection with Learnable Proposals

论文认为,目前的目标检测算法可以按预设框的多少分为两种:

上述两种方法都会预测大量的结果,需要进行NMS后处理,而在训练的时候会存在many-to-one的问题,并且anchor的设置对性能的影响很大。   于是,很多研究开始探讨稀疏(sparse)检测,比如近期的DETR算法。该算法不需要预设anchor,并且预测的结果可直接输出,不需要后处理。但论文认为DETR并不是真正的稀疏检测,因为DETR在各位置提取特征时,需要与全图的上下文进行交互,而真正的稀疏检测应该满足sparse boxes和sparse features,即较少的初始框设定以及框之间不需要过多的特征互动。   为此,论文提出了Sparse R-CNN,如图1c所示,仅需设定少量anchor即可进行检测,而且能够进行set prediction,免去NMS等后处理,其核心主要包含以下几点:

Sparse R-CNN的推理流程如图3所示,输入图片、可学习的proposal boxes以及可学习的proposal features,根据proposal boxes提取对应的RoIAlign特征,dynamic head将proposal features转换为卷积核参数,对RoIAlign特征进一步提取特征,再进行后续的分类和回归。整体的思想和Fast RCNN很像,将selective search替换为proposal boxes,再增加其它更强的模块。

论文采用FPN-ResNet作为主干网络,输出多层特征,每层特征的维度都是256。采用更复杂的主干网络可以获得更好的性能,但论文与Faster R-CNN对齐,采用标准的实现。

Sparse R-CNN的核心是采用数目固定的小批量可学习proposal boxes( )作为region proposal,而非RPN。每个box为4-d参数,在0~1范围内,值为归一化的中心点坐标、宽度和高度。这些参数在训练过程中通过反向传播进行更新,包含了训练集目标位置的统计信息,可用于推理时的初步目标位置猜测。

尽管4维的proposal box能够直观地表示目标的定位,但缺少了目标的信息,比如目标的姿态和形状,所以论文引入proposal feature( )进行补充。proposal features是高维的可学习向量,与proposal boxes一一对应,用于丰富目标的RoIAlign特征。

Dynamic instance interactive head的结构如图4所示,每个proposal box都有一个专属的预测head。给定 个proposal boxes和 个proposal features,先通过RoIAlign提取每个box的 维特征,Dynamic instance interactive head将其对应的 维proposal feature转换为卷积参数,使用这个卷积参数对RoIAlign特征进行提取,得到目标的 维特征,最后经过简单的3层感知机进行分类与回归。   Dynamic instance interactive head也可以使用类似Cascade R-CNN那样的级联模式进一步的提升性能,将输出的新回归框和 维特征作为下一次迭代的proposal box和proposal feature即可。

Sparse R-CNN的训练采用set prediction的形式,将固定数量的预测结果与GT之间进行二分图最优的匹配,然后计算损失值,完整的损失函数为:

各模块对比实验。

性能与收敛性。

在COCO上进行对比。

Sparse R-CNN贯彻了稀疏的思想,只提供少量初始框,可进行Set prediction,颠覆了当前密集预测的检测思路,整体框架十分简洁,跟Fast RCNN有点像,十分值得大家阅读。

论文名称:Rich feature hierarchies for accurate object detection and semantic segmentation 提出时间:2014年 论文地址: 针对问题: 从Alexnet提出后,作者等人思考如何利用卷积网络来完成检测任务,即输入一张图,实现图上目标的定位(目标在哪)和分类(目标是什么)两个目标,并最终完成了RCNN网络模型。 创新点: RCNN提出时,检测网络的执行思路还是脱胎于分类网络。也就是深度学习部分仅完成输入图像块的分类工作。那么对检测任务来说如何完成目标的定位呢,作者采用的是Selective Search候选区域提取算法,来获得当前输入图上可能包含目标的不同图像块,再将图像块裁剪到固定的尺寸输入CNN网络来进行当前图像块类别的判断。 参考博客: 。 论文题目:OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks 提出时间:2014年 论文地址: 针对问题: 该论文讨论了,CNN提取到的特征能够同时用于定位和分类两个任务。也就是在CNN提取到特征以后,在网络后端组织两组卷积或全连接层,一组用于实现定位,输出当前图像上目标的最小外接矩形框坐标,一组用于分类,输出当前图像上目标的类别信息。也是以此为起点,检测网络出现基础主干网络(backbone)+分类头或回归头(定位头)的网络设计模式雏形。 创新点: 在这篇论文中还有两个比较有意思的点,一是作者认为全连接层其实质实现的操作和1x1的卷积是类似的,而且用1x1的卷积核还可以避免FC对输入特征尺寸的限制,那用1x1卷积来替换FC层,是否可行呢?作者在测试时通过将全连接层替换为1x1卷积核证明是可行的;二是提出了offset max-pooling,也就是对池化层输入特征不能整除的情况,通过进行滑动池化并将不同的池化层传递给后续网络层来提高效果。另外作者在论文里提到他的用法是先基于主干网络+分类头训练,然后切换分类头为回归头,再训练回归头的参数,最终完成整个网络的训练。图像的输入作者采用的是直接在输入图上利用卷积核划窗。然后在指定的每个网络层上回归目标的尺度和空间位置。 参考博客: 论文题目:Scalable Object Detection using Deep Neural Networks 提出时间:2014年 论文地址: 针对问题: 既然CNN网络提取的特征可以直接用于检测任务(定位+分类),作者就尝试将目标框(可能包含目标的最小外包矩形框)提取任务放到CNN中进行。也就是直接通过网络完成输入图像上目标的定位工作。 创新点: 本文作者通过将物体检测问题定义为输出多个bounding box的回归问题. 同时每个bounding box会输出关于是否包含目标物体的置信度, 使得模型更加紧凑和高效。先通过聚类获得图像中可能有目标的位置聚类中心,(800个anchor box)然后学习预测不考虑目标类别的二分类网络,背景or前景。用到了多尺度下的检测。 参考博客: 论文题目:DeepBox: Learning Objectness with Convolutional Networks 提出时间:2015年ICCV 论文地址: 主要针对的问题: 本文完成的工作与第三篇类似,都是对目标框提取算法的优化方案,区别是本文首先采用自底而上的方案来提取图像上的疑似目标框,然后再利用CNN网络提取特征对目标框进行是否为前景区域的排序;而第三篇为直接利用CNN网络来回归图像上可能的目标位置。创新点: 本文作者想通过CNN学习输入图像的特征,从而实现对输入网络目标框是否为真实目标的情况进行计算,量化每个输入框的包含目标的可能性值。 参考博客: 论文题目:AttentionNet: AggregatingWeak Directions for Accurate Object Detection 提出时间:2015年ICCV 论文地址: 主要针对的问题: 对检测网络的实现方案进行思考,之前的执行策略是,先确定输入图像中可能包含目标位置的矩形框,再对每个矩形框进行分类和回归从而确定目标的准确位置,参考RCNN。那么能否直接利用回归的思路从图像的四个角点,逐渐得到目标的最小外接矩形框和类别呢? 创新点: 通过从图像的四个角点,逐步迭代的方式,每次计算一个缩小的方向,并缩小指定的距离来使得逐渐逼近目标。作者还提出了针对多目标情况的处理方式。 参考博客: 论文题目:Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition 提出时间:2014年 论文地址: 针对问题: 如RCNN会将输入的目标图像块处理到同一尺寸再输入进CNN网络,在处理过程中就造成了图像块信息的损失。在实际的场景中,输入网络的目标尺寸很难统一,而网络最后的全连接层又要求输入的特征信息为统一维度的向量。作者就尝试进行不同尺寸CNN网络提取到的特征维度进行统一。创新点: 作者提出的SPPnet中,通过使用特征金字塔池化来使得最后的卷积层输出结果可以统一到全连接层需要的尺寸,在训练的时候,池化的操作还是通过滑动窗口完成的,池化的核宽高及步长通过当前层的特征图的宽高计算得到。原论文中的特征金字塔池化操作图示如下。 参考博客 : 论文题目:Object detection via a multi-region & semantic segmentation-aware CNN model 提出时间:2015年 论文地址: 针对问题: 既然第三篇论文multibox算法提出了可以用CNN来实现输入图像中待检测目标的定位,本文作者就尝试增加一些训练时的方法技巧来提高CNN网络最终的定位精度。创新点: 作者通过对输入网络的region进行一定的处理(通过数据增强,使得网络利用目标周围的上下文信息得到更精准的目标框)来增加网络对目标回归框的精度。具体的处理方式包括:扩大输入目标的标签包围框、取输入目标的标签中包围框的一部分等并对不同区域分别回归位置,使得网络对目标的边界更加敏感。这种操作丰富了输入目标的多样性,从而提高了回归框的精度。 参考博客 : 论文题目:Fast-RCNN 提出时间:2015年 论文地址: 针对问题: RCNN中的CNN每输入一个图像块就要执行一次前向计算,这显然是非常耗时的,那么如何优化这部分呢? 创新点: 作者参考了SPPNet(第六篇论文),在网络中实现了ROIpooling来使得输入的图像块不用裁剪到统一尺寸,从而避免了输入的信息丢失。其次是将整张图输入网络得到特征图,再将原图上用Selective Search算法得到的目标框映射到特征图上,避免了特征的重复提取。 参考博客 : 论文题目:DeepProposal: Hunting Objects by Cascading Deep Convolutional Layers 提出时间:2015年 论文地址: 主要针对的问题: 本文的作者观察到CNN可以提取到很棒的对输入图像进行表征的论文,作者尝试通过实验来对CNN网络不同层所产生的特征的作用和情况进行讨论和解析。 创新点: 作者在不同的激活层上以滑动窗口的方式生成了假设,并表明最终的卷积层可以以较高的查全率找到感兴趣的对象,但是由于特征图的粗糙性,定位性很差。相反,网络的第一层可以更好地定位感兴趣的对象,但召回率降低。 论文题目:Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks 提出时间:2015年NIPS 论文地址: 主要针对的问题: 由multibox(第三篇)和DeepBox(第四篇)等论文,我们知道,用CNN可以生成目标待检测框,并判定当前框为目标的概率,那能否将该模型整合到目标检测的模型中,从而实现真正输入端为图像,输出为最终检测结果的,全部依赖CNN完成的检测系统呢? 创新点: 将当前输入图目标框提取整合到了检测网络中,依赖一个小的目标框提取网络RPN来替代Selective Search算法,从而实现真正的端到端检测算法。 参考博客 :

论文: 《Rich feature hierarchies for accurate object detection and semantic segmentation》 发表年份:2013 RCNN(Regions with CNN features)是将CNN用到目标检测的一个里程碑,借助CNN良好的特征提取和分类性能,通过RegionProposal方法实现目标检测问题的转化。 Region proposal是一类传统的候选区域生成方法,论文使用 selective search  生成大约2k个候选区域(先用分割手段将图片完全分割成小图,再通过一些合并规则,将小图均匀的合并,经过若干次合并,直到合并成整张原图),然后将proposal的图片进行归一化(大小为217*217)用于CNN的输入。 对每个Region proposal使用CNN提取出一个4096维的特征向量 CNN提取的特征输入到SVM分类器中,对region proposal进行分类,与 ground-truth box的IoU大于的为正样本,其余为负样本。论文中每个图片正样本个数为32负样本个数为96。得到所有region proposals的对于每一类的分数,再使用贪心的非极大值抑制方法对每一个SVM分类器类去除相交的多余的框。 使用一个线性回归器对bounding box进行修正,proposal bounding box的大小位置与真实框的转换关系如下: 综上,整个网络结构如下:R-CNN在当年无论是在学术界还是工业界都是具有创造性的,但是现在来看RCNN主要存在下面三个问题: 1)多个候选区域对应的图像需要预先提取,占用较大的磁盘空间; 2)针对传统CNN需要固定尺寸(217*217)的输入图像,crop/warp(归一化)产生物体截断或拉伸,丧失或者改变了图片本身的信息; 3)每一个ProposalRegion都需要进入CNN网络计算,上千个Region存在大量的范围重叠,重复的CNN特征提取导致巨大的计算浪费。论文: 《Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition》 发表年份:2015 既然CNN特征提取如此耗时,为什么还要对每个Region proposal进行特征提取,而不是整体进行特征提取,然后在分类之前做一次Region的截取呢,于是就诞生了SPP-Net。 1.解决了CNN需要固定大小输入的变换后导致图片信息丢失或者变化的问题 2.对于一张图,只需要进行一次的特征提取运算,避免了R-CNN中特征重复计算的问题 CNN为什么需要固定大小的输入? R-CNN中会对图片缩放成217*217的固定大小,从而导致物体发生形变(如下图的上部分所示)。与前面不同,SPP-Net是加在最后一个卷积层的输出的后面,使得不同输入尺寸的图像在经过前面的卷积池化过程后,再经过SPP-net,得到相同大小的feature map,最后再经过全连接层进行分类 以AlexNet为例,经CNN得到conv5输出的任意尺寸的feature map,图中256-d是conv5卷积核的数量。将最后一个池化层pool5替换成SPP layer,将feature map划分成不同大小的网格,分别是`4x4`,`2x2`,`1x1`,每个网格中经过max pooling,从而得到4x4+2x2+1x1=21个特征值,最后将这21个特征值平铺成一个特征向量作为全连接层的输入,这种方式就是 空间金字塔池化 。 与R-CNN不同,SPP-Net中是将整张图片进行一次特征提取,得到整张图片的feature map,然后对feature map中的候选区域(RoIs)经过空间金字塔池化,提取出固定长度的特征向量进入全连接层。 原图候选区域与特征图上的RoIs的转换流程:综上,整个网络结构如下图。SPP-Net相比R-CNN做了很多优化,但现在来看依然存在一些问题,主要如下:论文: 《Fast R-CNN》 发表年份:2015 Fast R-CNN是对R-CNN的一个提升版本,相比R-CNN,训练速度提升9倍,测试速度提升213倍,mAP由66%提升到主要改进点如下:多任务损失函数(Multi-task Loss):         Fast R-CNN将分类和边框回归合并,通过多任务Loss层进一步整合深度网络,统一了训练过程。分为两个损失函数:分类损失和回归损失。分类采用softmax代替SVM进行分类,共输出N(类别)+1(背景)类。softmax由于引入了类间竞争,所以分类效果优于SVM,SVM在R-CNN中用于二分类。回归损失输出的是4*N(类别),4表示的是(x,y,w,h分别表示候选框的中心坐标和宽、高)。 SVD对全连接层进行分解:         由于一张图像约产生2000个RoIs,将近一半多的时间用在全连接层计算,为了提高运算速度,使用 SVD(奇异值分解) 对全连接层进行变换来提高运算速度。一个大的矩阵可以近似分解为三个小矩阵的乘积,分解后的矩阵的元素数目远小于原始矩阵的元素数目,从而达到减少计算量的目的。通过对全连接层的权值矩阵进行SVD分解,使得处理一张图像的速度明显提升。 论文: 《Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks》 发表年份:2016         SPP-Net和Fast R-CNN都有一个非常耗时的候选框选取的过程,提取候选框最常用的SelectiveSearch方法,提取一副图像大概需要2s的时间,改进的EdgeBoxes算法将效率提高到了,但是还是比较耗时。         Fast R-CNN中引入Region Proposal Network(RPN)替代Selective Search,同时引入anchor box应对目标形状的变化问题(anchor就是位置和大小固定的box,可以理解成事先设置好的固定的proposal) Region Proposal Network:         RPN的核心思想是候选框的提取不在原图上做,而是在feature map上做,这意味着相比原图更少的计算量。在Faster R-CNN中,RPN是单独的分支,通过RPN提取候选框并合并到深度网络中。多尺度先验框: RPN网络的特点在于通过滑动窗口的方式实现候选框的提取,每个滑动窗口位置生成9个候选窗口(不同尺度、不同宽高),提取对应9个候选窗口(anchor)的特征,用于目标分类和边框回归,与FastRCNN类似。anchor的生成规则有两个:调整宽高比和放大。如下图所示,假设base_size为16,按照1:2,1:1,2:1三种比例进行变换生成下图上部分三种anchor;第二种是将宽高进行三种倍数放大,2^3=8,2^4=16,2^5=32倍的放大,如16x16的区域变成(16*8)*(16*8)=128*128的区域,(16*16)*(16*16)=256*256的区域,(16*32)*(16*32)=512*512的区域。训练过程中,涉及到的候选框选取,选取依据如下: 从模型训练的角度来看,通过使用共享特征交替训练的方式,达到接近实时的性能,交替训练方式为: Faster R-CNN实现了端到端的检测,并且几乎达到了效果上的最优,有些基于Faster R-CNN的变种准确度已经刷到了87%以上。速度方面还有优化的余地,比如Yolo系列(Yolo v1/v2/v3/v4)。对于目标检测,仍处于一个探索和高度发展的阶段,还不断有更优的模型产生。

目标检测rcnn论文详解

论文: Sparse R-CNN: End-to-End Object Detection with Learnable Proposals

论文认为,目前的目标检测算法可以按预设框的多少分为两种:

上述两种方法都会预测大量的结果,需要进行NMS后处理,而在训练的时候会存在many-to-one的问题,并且anchor的设置对性能的影响很大。   于是,很多研究开始探讨稀疏(sparse)检测,比如近期的DETR算法。该算法不需要预设anchor,并且预测的结果可直接输出,不需要后处理。但论文认为DETR并不是真正的稀疏检测,因为DETR在各位置提取特征时,需要与全图的上下文进行交互,而真正的稀疏检测应该满足sparse boxes和sparse features,即较少的初始框设定以及框之间不需要过多的特征互动。   为此,论文提出了Sparse R-CNN,如图1c所示,仅需设定少量anchor即可进行检测,而且能够进行set prediction,免去NMS等后处理,其核心主要包含以下几点:

Sparse R-CNN的推理流程如图3所示,输入图片、可学习的proposal boxes以及可学习的proposal features,根据proposal boxes提取对应的RoIAlign特征,dynamic head将proposal features转换为卷积核参数,对RoIAlign特征进一步提取特征,再进行后续的分类和回归。整体的思想和Fast RCNN很像,将selective search替换为proposal boxes,再增加其它更强的模块。

论文采用FPN-ResNet作为主干网络,输出多层特征,每层特征的维度都是256。采用更复杂的主干网络可以获得更好的性能,但论文与Faster R-CNN对齐,采用标准的实现。

Sparse R-CNN的核心是采用数目固定的小批量可学习proposal boxes( )作为region proposal,而非RPN。每个box为4-d参数,在0~1范围内,值为归一化的中心点坐标、宽度和高度。这些参数在训练过程中通过反向传播进行更新,包含了训练集目标位置的统计信息,可用于推理时的初步目标位置猜测。

尽管4维的proposal box能够直观地表示目标的定位,但缺少了目标的信息,比如目标的姿态和形状,所以论文引入proposal feature( )进行补充。proposal features是高维的可学习向量,与proposal boxes一一对应,用于丰富目标的RoIAlign特征。

Dynamic instance interactive head的结构如图4所示,每个proposal box都有一个专属的预测head。给定 个proposal boxes和 个proposal features,先通过RoIAlign提取每个box的 维特征,Dynamic instance interactive head将其对应的 维proposal feature转换为卷积参数,使用这个卷积参数对RoIAlign特征进行提取,得到目标的 维特征,最后经过简单的3层感知机进行分类与回归。   Dynamic instance interactive head也可以使用类似Cascade R-CNN那样的级联模式进一步的提升性能,将输出的新回归框和 维特征作为下一次迭代的proposal box和proposal feature即可。

Sparse R-CNN的训练采用set prediction的形式,将固定数量的预测结果与GT之间进行二分图最优的匹配,然后计算损失值,完整的损失函数为:

各模块对比实验。

性能与收敛性。

在COCO上进行对比。

Sparse R-CNN贯彻了稀疏的思想,只提供少量初始框,可进行Set prediction,颠覆了当前密集预测的检测思路,整体框架十分简洁,跟Fast RCNN有点像,十分值得大家阅读。

paper: Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks Tensorflow-faster r-cnn github: Tensorflow Faster RCNN for Object Detection faster rcnn是何凯明等大神在2015年提出目标检测算法,该算法在2015年的ILSVRV和COCO竞赛中获得多项第一。该算法在fast rcnn基础上提出了RPN候选框生成算法,使得目标检测速度大大提高。 (1)image input; (2)利用selective search 算法在图像中从上到下提取2000个左右的Region Proposal; (3)将每个Region Proposal缩放(warp)成227*227的大小并输入到CNN,将CNN的fc7层的输出作为特征; (4)将每个Region Proposal提取的CNN特征输入到SVM进行分类; (5)对于SVM分好类的Region Proposal做边框回归,用Bounding box回归值校正原来的建议窗口,生成预测窗口坐标. 缺陷: (1) 训练分为多个阶段,步骤繁琐:微调网络+训练SVM+训练边框回归器; (2) 训练耗时,占用磁盘空间大;5000张图像产生几百G的特征文件; (3) 速度慢:使用GPU,VGG16模型处理一张图像需要47s; (4) 测试速度慢:每个候选区域需要运行整个前向CNN计算; (5) SVM和回归是事后操作,在SVM和回归过程中CNN特征没有被学习更新. (1)image input; (2)利用selective search 算法在图像中从上到下提取2000个左右的建议窗口(Region Proposal); (3)将整张图片输入CNN,进行特征提取; (4)把建议窗口映射到CNN的最后一层卷积feature map上; (5)通过RoI pooling层使每个建议窗口生成固定尺寸的feature map; (6)利用Softmax Loss(探测分类概率) 和Smooth L1 Loss(探测边框回归)对分类概率和边框回归(Bounding box regression)联合训练. 相比R-CNN,主要两处不同: (1)最后一层卷积层后加了一个ROI pooling layer; (2)损失函数使用了多任务损失函数(multi-task loss),将边框回归直接加入到CNN网络中训练 改进: (1) 测试时速度慢:R-CNN把一张图像分解成大量的建议框,每个建议框拉伸形成的图像都会单独通过CNN提取特征.实际上这些建议框之间大量重叠,特征值之间完全可以共享,造成了运算能力的浪费. FAST-RCNN将整张图像归一化后直接送入CNN,在最后的卷积层输出的feature map上,加入建议框信息,使得在此之前的CNN运算得以共享. (2) 训练时速度慢:R-CNN在训练时,是在采用SVM分类之前,把通过CNN提取的特征存储在硬盘上.这种方法造成了训练性能低下,因为在硬盘上大量的读写数据会造成训练速度缓慢. FAST-RCNN在训练时,只需要将一张图像送入网络,每张图像一次性地提取CNN特征和建议区域,训练数据在GPU内存里直接进Loss层,这样候选区域的前几层特征不需要再重复计算且不再需要把大量数据存储在硬盘上. (3) 训练所需空间大:R-CNN中独立的SVM分类器和回归器需要大量特征作为训练样本,需要大量的硬盘空间.FAST-RCNN把类别判断和位置回归统一用深度网络实现,不再需要额外存储. (4) 由于ROI pooling的提出,不需要再input进行Corp和wrap操作,避免像素的损失,巧妙解决了尺度缩放的问题. (1)输入测试图像; (2)将整张图片输入CNN,进行特征提取; (3)用RPN先生成一堆Anchor box,对其进行裁剪过滤后通过softmax判断anchors属于前景(foreground)或者后景(background),即是物体or不是物体,所以这是一个二分类;同时,另一分支bounding box regression修正anchor box,形成较精确的proposal(注:这里的较精确是相对于后面全连接层的再一次box regression而言) (4)把建议窗口映射到CNN的最后一层卷积feature map上; (5)通过RoI pooling层使每个RoI生成固定尺寸的feature map; (6)利用Softmax Loss(探测分类概率) 和Smooth L1 Loss(探测边框回归)对分类概率和边框回归(Bounding box regression)联合训练. 相比FASTER-RCNN,主要两处不同: (1)使用RPN(Region Proposal Network)代替原来的Selective Search方法产生建议窗口; (2)产生建议窗口的CNN和目标检测的CNN共享 改进: (1) 如何高效快速产生建议框? FASTER-RCNN创造性地采用卷积网络自行产生建议框,并且和目标检测网络共享卷积网络,使得建议框数目从原有的约2000个减少为300个,且建议框的质量也有本质的提高. 从上面的三张图可以看出,Faster R CNN由下面几部分组成: 1.数据集,image input 2.卷积层CNN等基础网络,提取特征得到feature map 层,再在经过卷积层提取到的feature map上用一个3x3的slide window,去遍历整个feature map,在遍历过程中每个window中心按rate,scale(1:2,1:1,2:1)生成9个anchors,然后再利用全连接对每个anchors做二分类(是前景还是背景)和初步bbox regression,最后输出比较精确的300个ROIs。 3-2.把经过卷积层feature map用ROI pooling固定全连接层的输入维度。 4.然后把经过RPN输出的rois映射到ROIpooling的feature map上进行bbox回归和分类。 SPP-Net是出自论文《Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition》 由于一般的网络结构中都伴随全连接层,全连接层的参数就和输入图像大小有关,因为它要把输入的所有像素点连接起来,需要指定输入层神经元个数和输出层神经元个数,所以需要规定输入的feature的大小。而SPP-NET正好解决了这个问题。 如果原图输入是224x224,对于conv5出来后的输出,是13x13x256的,可以理解成有256个这样的filter,每个filter对应一张13x13的activation map.如果像上图那样将activation map pooling成4x4 2x2 1x1三张子图,做max pooling后,出来的特征就是固定长度的(16+4+1)x256那么多的维度了.如果原图的输入不是224x224,出来的特征依然是(16+4+1)x256;直觉地说,可以理解成将原来固定大小为(3x3)窗口的pool5改成了自适应窗口大小,窗口的大小和activation map成比例,保证了经过pooling后出来的feature的长度是一致的. 总结而言,当网络输入的是一张任意大小的图片,这个时候我们可以一直进行卷积、池化,直到网络的倒数几层的时候,也就是我们即将与全连接层连接的时候,就要使用金字塔池化,使得任意大小的特征图都能够转换成固定大小的特征向量,这就是空间金字塔池化的意义(多尺度特征提取出固定大小的特征向量)。 ROI pooling layer实际上是SPP-NET的一个精简版,SPP-NET对每个proposal使用了不同大小的金字塔映射,而ROI pooling layer只需要下采样到一个7x7的特征图.对于VGG16网络conv5_3有512个特征图,这样所有region proposal对应了一个7*7*512维度的特征向量作为全连接层的输入. 为什么要pooling成7×7的尺度?是为了能够共享权重。Faster RCNN除了用到VGG前几层的卷积之外,最后的全连接层也可以继续利用。当所有的RoIs都被pooling成(512\×7\×7)的feature map后,将它reshape 成一个一维的向量,就可以利用VGG16预训练的权重,初始化前两层全连接. 那么经过何种变换才能从图11中的窗口P变为窗口呢?比较简单的思路就是: 注意:只有当Proposal和Ground Truth比较接近时(线性问题),我们才能将其作为训练样本训练我们的线性回归模型,否则会导致训练的回归模型不work(当Proposal跟GT离得较远,就是复杂的非线性问题了,此时用线性回归建模显然不合理).这个也是G-CNN: an Iterative Grid Based Object Detector多次迭代实现目标准确定位的关键. 线性回归就是给定输入的特征向量X,学习一组参数W,使得经过线性回归后的值跟真实值Y(Ground Truth)非常接近.即.那么Bounding-box中我们的输入以及输出分别是什么呢?如上图中标识: ① rpn_cls:60*40*512-d ⊕ 1*1*512*18 > 60*40*92 逐像素对其9个Anchor box进行二分类 ② rpn_bbox:60*40*512-d ⊕ 1*1*512*36>60*40*9*4 逐像素得到其9个Anchor box四个坐标信息 逐像素对Anchors分类标记 ① 去除掉超过1000*600这原图的边界的anchor box ② 如果anchor box与ground truth的IoU值最大,标记为正样本,label=1 ③ 如果anchor box与ground truth的IoU>,标记为正样本,label=1 ④ 如果anchor box与ground truth的IoU<,标记为负样本,label=0 剩下的既不是正样本也不是负样本,不用于最终训练,label=-1 逐像素Bbox回归纠正 除了对anchor box进行标记外,另一件事情就是计算anchor box与ground truth之间的偏移量 令:ground truth:标定的框也对应一个中心点位置坐标x ,y 和宽高w ,h anchor box: 中心点位置坐标x_a,y_a和宽高w_a,h_a 所以,偏移量: △x=(x -x_a)/w_a △y=(y -y_a)/h_a △w=log(w /w_a) △h=log(h /h_a) 通过ground truth box与预测的anchor box之间的差异来进行学习,从而是RPN网络中的权重能够学习到预测box的能力 接着进一步对Anchors进行越界剔除和使用nms非最大值抑制,剔除掉重叠的框;比如,设定IoU为的阈值,即仅保留覆盖率不超过的局部最大分数的box(粗筛)。最后留下大约2000个anchor,然后再取前N个box(比如300个);这样,进入到下一层ROI Pooling时region proposal大约只有300个。 参考文献:

rcnn论文文献下载

原文: Ren S, He K, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]// International Conference on Neural Information Processing Systems. MIT Press, 2015:91-99.

译文参考: Faster R-CNN论文翻译——中英文对照

目标检测网络依赖于Region Proposal算法假设目标位置,通过引入Region Proposal(网络RPN),与检测网络共享全图像卷积特征,使得Region Proposals的成本近乎为零。

如下图所示,图a采用的是图像金子塔(Pyramids Of Images)方法;图b采用的是滤波器金字塔(Pyramids Of Filters)方法;图c引入“锚”盒("Anchor" Boxes)这一概念作为多尺度和长宽比的参考,其可看作回归参考金字塔(Pyramids Of Regression References)方法,该方法可避免枚举图像、多尺度滤波器和长宽比。

为了将RPN与Fast R-CNN相结合,本文提出了一种新的训练策略:在region proposal任务和目标检测任务之间交替进行微调,同时保持proposals的固定。该方案能够快速收敛,两个任务之间并共享具有卷积特征的统一网络。

Faster R-CNN由两个模块组成:

RPN以任意大小的图像作为输入,输出一组矩形的目标proposals,每个proposals都有一个目标得分。在实验中,假设两个网络(RPN和Fast R-CNN)共享一组共同的卷积层,并研究了具有5个共享卷积层的 Zeiler和Fergus模型(ZF) ,以及具有13个共享卷积层的 Simonyan和Zisserman模型(VGG-16) 。

为了生成region proposals,对最后的共享卷积层输出的卷积特征图谱使用一个小网络。该网络以卷积特征图谱的 空间窗口作为输入,且每个滑动窗口映射到一个低维特征,所有空间位置共享全连接层。

该低维特征作为两个子全连接层———边界框回归层(box-regression layer, reg)和边界框分类层(box-classification layer, cls)的输入,其卷积核均为 大小。

对于每个滑动窗口位置,可同时预测多个region proposals,最大region proposals数为 。因此,reg层具有 个输出,用于编码k个边界框的坐标;cls层具有 个得分,用于估计每个proposal是目标或不是目标的概率。

Anchors:k个proposals相对于 个参考框是参数化形式。

anchor位于滑动窗口的中心,并与尺度和长宽比相关。默认情况,使用3个尺度和3个长宽比,在每个滑动位置产生 个anchors。对于大小为 的卷积特征图谱,共产生 个anchors。

基于anchor的方法建立在anchors金字塔(pyramid of anchors)上,参考多尺度和长宽比的anchor盒来分类和回归边界框,用于解决多尺度和多长宽比问题。

为了训练RPN,为每个anchor分配一个二值标签。

正标签:

负标签:IoU值低于。

对Fast R-CNN中的多任务损失进行最小化。图像的损失函数为:

其中, 是mini-batch数据中anchor的索引, 是第i个anchor作为目标的预测概率。若anchor为正标签,真值 ;反之, 。 是表示预测边界框4个参数化坐标的向量, 是正真值框的向量。分类损失 为两个类别的对数损失;回归损失 ,其中 为在 Fast R-CNN 一文中定义的鲁棒损失函数(平滑 )。 表示回归损失仅对正anchor激活,否则被禁用( )。cls和rge层的输出分别由 和 组成。该两项使用 和 进行标准化,并使用平衡参数 加权处理。等式中cls项根据mini-batch的大小进行归一化,而reg项根据anchor位置的数据进行归一化。默认情况下, 从而使得cls和reg项的权重大致相等。

对于边界框回归,采用 Rich feature hierarchies for accurate object detection and semantic segmentation 一文中的4个坐标参数化方法:

其中, 和 表示边界框的中心坐标及其宽和高。变量 和 分别表示预测边界框、anchor和真值框。

采样策略:以图像为中心。

在图像中随机采样256个anchors,用于mini-batch数据中损失函数的计算,正负样本的比例为 。

从标准差为的零均值高斯分布中提取权重来随机初始化所有的新网络层,而共享卷积层通过预训练ImageNet分类模型来初始化。同时,调整ZF网络的所有网络层,以及VGG网络的conv3_1之上的网络,用于节省内存的使用。对于60k的mini-batch数据,学习率为;对于PASCAL VOC数据集中的20k的mini-bacth数据,学习率为。随机梯度下降算法的动量设置为,重量衰减率为。

训练具有共享特征网络的三个方法:

版权印版权标识

对于目标检测方向并不是特别熟悉,本文记录一下RCNN, fast-RCNN, faster-RCNN, mask-RCNN这4篇有关目标检测的论文笔记和学习心得。

R-CNN的意思就是Region based,主要思路就是根据一张图像,提取多个region,再将每个Region输入CNN来进行特征的提取。因此RCNN就可以分为 Region proposals , Feature extraction 两个主要部分,提取的特征就可以输入任意一个分类器来进行分类。 模型的流程图如下:

在训练的时候,首先使用的是已经训练好的CNN网络作为特征提取器,但是由于预训练是在分类数据集上,因此在应用到检测之前要做finetune。也就是说,为了将用ImageNet数据集训练的网络应用到新的任务(检测),新的数据集(region)上,作者将原来的CNN最后的1000类的fc层,更改为了 层, 代表待检测的物体的类别数。然后,对于所有的region,如果它和ground truth的重叠率大于,就认为是正类。 对于分类器的训练,作者发现选择多大的IoU来区分正类和负类非常关键。并且,对于每一类,都会训练一个分类器。

框的回归非常重要,在对每一个region proposal使用分类器进行打分评价之后,作者使用一个回归器来预测一个新的框作为结果。这个回归器使用的特征是从CNN中提取的特征。回归器的训练中,输入是 region proposal 的 和ground truth的 ,目标是学习一种变换,使得region proposal通过该变换能够接近ground truth。同时,希望这种变换拥有尺度不变性,也就是说尺度变化的话,变换不会改变。 如下图所示,每一个regressor会学习一组参数,特征输入是pool 5的特征输出,拟合的目标是 。

Fast-RCNN 主要解决的问题是在RCNN中对于每一个region proposal都进行特征提取,会产生非常多的冗余计算,因此可以先对一张图像进行特征提取,再根据region proposal在相应的特征上进行划分得到对应region的特征(映射关系)。 这样便可以实现共享计算提高速度,但是与SPPnets不同,SPPnets在一副图像得到对应的特征后,从这张图像的特征上proposal对应的部分,采用空间金字塔池化,如下图:

RoI pooling的方法很简单,类似于空间金字塔pooling,它将proposal部分对应卷积层输出的特征(称之为RoI,因为用于做pooling的特征是 region of interest,也就是我们感兴趣的区域)划分成 块,然后对每一块求最大值,最终得到了一个 的特征图。可以看出,它只是空间金字塔pooling的一部分。 但是SPP-nets的空间金字塔也是可以求导的,那么它到底不好在哪里呢?因为当每一个RoI都可能来源于不同的图像的时候(R-CNN和SPPnets的训练策略是从一个batch的不同图像中,分别挑选一个proposal region),SPPNets的训练非常地低效,这种低效来源于在SPPnets的训练中,每个RoI的感受野都非常地大,很可能对应了原图的整个图像,因此,得到的特征也几乎对应了整张图像,所以输入的图像也就很大。 为了提高效率,Fast-RCNN首先选取 个图像,再从每个图像上选择 个RoI,这样的效率就比从每个图像提取一个RoI提高了 倍。

为了将分类和框回归结合起来,作者采用了多任务的loss,来进行联合的训练。具体来说就是将分类的loss和框回归的loss结合起来。网络的设计上非常直接,就是将RoI得到的特征接几个FC层后,分别接不同的输出层。对应于分类部分,特征会接一个softmax输出,用于分类,对于框回归部分,会接一个输出4维特征的输出层,然后分别计算loss,用于反向传播。loss的公式如下:

回归的target可以参考前面的R-CNN部分。

notes

为什么比fast还fast呢?主要原因是在这篇论文中提出了一个新的层:RPN(region proposal networks)用于替代之前的selective search。这个层还可以在GPU上运算来提高速度。 RPN的目的:

为了能够进行region proposal,作者使用了一个小的网络,在基础的卷积层输出的特征上进行滑动,这个网络输入大小为 ,输入后会映射(用 的卷积)为一个固定长度的特征向量,然后接两个并联的fc层(用 的卷积层代替),这两个fc层,一个为box-regressoin,一个为box-classification。如下图:

在每一个滑动窗口(可以参考 ),为了考虑到尽可能多的框的情况,作者设计了anchors来作为region proposal。anchors就是对于每一个滑动窗口的中心位置,在该位置对应的原图位置的基础上,按照不同的尺度,长宽比例框出 个不同的区域。然后根据这些anchors对应的原始图像位置以及区域,和ground truth,就可以给每一个滑动窗口的每一个anchor进行标记,也就是赋予label,满足一定条件标记为正类(比如和ground truth重叠大于一个值),一定条件为负类。对于正类,就可以根据ground truth和该anchor对应的原图的区域之间的变换关系(参考前面的R-CNN的框回归),得到回归器中的目标,用于训练。也就是论文中的loss function部分:

自然地,也就要求RPN的两个并联的FC层一个输出2k个值用于表示这k个anchor对应的区域的正类,负类的概率,另一个输出4k个值,用于表示框回归的变换的预测值。

对于整个网络的训练,作者采用了一种叫做 4-step Alternating Training 的方法。具体可以参考论文。

与之前的检测任务稍有不同,mask r-cnn的任务是做instance segmentation。因此,它需要对每一个像素点进行分类。 与Faster R-CNN不同,Faster R-CNN对每一个候选框产生两个输出,一个是类别,一个是bounding box的offset。Mask R-CNN新增加了一个输出,作为物体的mask。这个mask类似于ps中的蒙版。

与Faster R-CNN类似的是,Mask R-CNN同样采用RPN来进行Region Proposal。但是在之后,对于每一个RoI,mask r-cnn还输出了一个二值化的mask。

不像类别,框回归,输出都可以是一个向量,mask必须保持一定的空间信息。因此,作者采用FCN来从每个RoI中预测一个 的mask。

由于属于像素级别的预测问题,就需要RoI能够在进行特征提取的时候保持住空间信息,至少在像素级别上能够对应起来。因此,传统的取最大值的方法就显得不合适。 RoI Pooling,经历了两个量化的过程: 第一个:从roi proposal到feature map的映射过程。 第二个:从feature map划分成7*7的bin,每个bin使用max pooling。

为此,作者使用了RoIAlign。如下图

为了避免上面提到的量化过程

可以参考

作者使用ResNet作为基础的特征提取的网络。 对于预测类别,回归框,mask的网络使用如下图结构:

整体看完这几篇大佬的论文,虽说没有弄清楚每一个实现细节,但是大体上了解了算法的思路。可以看出,出发点都源于深度神经网络在特征提取上的卓越能力,因此一众大神试图将这种能力应用在检测问题中。从R-CNN中简单地用于特征提取,到为了提高速度减少计算的Fast R-CNN,再到为了将region proposal集成进入整个模型中,并且利用GPU加速的RPN,也就是Faster R-CNN。再到为了应用于instance segmentation任务中,设计的RoIAlign和mask。包括bounding box regression,pooling层的设计,训练方法的选择,loss的设计等等细节,无一不体现了大师们的思考和创造力。 可能在我们这些“拿来”者的眼中,这些方法都显得“理所应当”和巧妙,好用,但是,它们背后隐藏的选择和这些选择的思考却更值得我们学习。 以及,对待每一个问题,如何设计出合理的解决方案,以及方案的效率,通用性,更是应该我们努力的方向。

erp题目论文题目

我国企业内部控制存在的问题及对策-----以*****企业为 这个好些 有具体也可以写 找一个熟悉的小企业 要一份他们的资料和会计资料 仔细看一下 小企业的账面满是问题 然后就是你大发神威 找出所有错误 让世界恢复和平 注意 资料要丰满 论证时要援引资料 现在网络太发达 你没有自己的独特性会被反剽窃的

题目的话~你去(国际会计前沿)期刊里面去了解参考下呗~看看别人的论文是怎么定题目的,也许会给你灵感吧~

多看看会计领域的期刊发表过的有关论文,然后结合自己工作内容拟题。也可以看看:会计系本科生怎么发论文

试试会计业务在ERP或SAP的系统结合

课题题目和论文题目

在我看来,这和为了哄孩童入睡而编撰睡前故事无异,只不过科研写作并非随意编撰,而是多了独特而严谨的科学内涵,经得起逻辑和历史的层层推敲。创造性是科学家所具备的基本素质,如此看来,科学写作似乎很适合科学研究者,因为创造性和批判性思维是一个科学家成功的关键。遗憾的是,许多科学家并不认为自己是合格的作家,他们发现写作这一任务既令人生畏又费时费力。科学家尚且如此,对于刚刚入门的本科或者硕士同学来说,写作更是一项「无法逾越的鸿沟」。

因此,许多同学纷纷发问:一个好的论文标题到底多重要?如何通过拟一个好的标题来提高自己文章发表的成功率?我的建议是:「四要素标准」可以作为指导标准:

1. 尽量缩短标题长度。如果标题太长,通常表明有太多不必要的词汇。避免使用诸如「一项针对 xx 的研究」或「对xx 研究的结果讨论」之类的语言。这些词语即是显而易见的,又是多余的,除非它们必须出现在标题中以点明你的研究内容,否则尽量不要使用。

2. 标题太短通常意味着使用了太宽范的词汇,这不能告诉读者你正在研究什么。例如,标题为「人工智能」「中国经济」「生命科学」等的论文就显得太不具体。好的标题不能模棱两可,应该提供有关你的研究重点和/或范国的有效信息。

3. 好的标题应该限制在 5-15个词。

4. 避免使用不会帮助读者/审稿人理解论文目的词汇。

5. 学术写作是一项认真且须深思熟虑思考的工作。因此应避免使用搞笑、夸大或抖机灵般的措辞。在标题中避免使用「独一无二的研究」「超级新颖的研究」「世界首次研究」等词句,这样的标题只会降低你研究的严肃性和权威性,起到适得其反的效果。

6. 论文写作不同于常规的文章创作,正如我前面所述,在过去的 350年里,科学期刊已经发展出一种独特的风格、结构和组织,因此,在撰写科学论文标题时,也不必严格遵循语法结构或文体标准。

7. 除非众所周知,否则应很少使用缩写词或首字母缩写词。

上述介绍的这些科学论文标题的撰写方法,这其中有需要遵循的规则,也有应该避免的操作。希望你在阅读时能根据自身学科和所期望投稿期刊进行综合考虑,取本文精华反哺己身。

问题一:课题研究与论文有什么关系 课题与论文的区别一言蔽之 随着大家对专业化发展的认识,越来越多的老师认识了作课题的必要了。但是一些老师对课题的认识还不到位的。下面是几位老师的真实话语。 “我就按照写论文的形式写就可以了吧?” “从中学时就开始写论文了,怎么又冒出一个‘课题’来,玩概念游戏。” “我不做,但我要交。” “课题不就是论文吗?怎么又冒出个‘变量’来?” 我不是做课题的专家,说句实话,当初我也有同样的困惑。也听了一些专家的报告,“从选题,到查资料,再到假设,再到实验论证”等等,一大堆,到头来还是一头雾水。 所以,很多老师向我提出以上的问题,我是能够理解的。 为了帮助老师尽快区别课题与论文,我一言蔽之:“课题是实验证明一个命题是否是真理。论文是使用真理。” 当然,我这种理解是不全面的,也不算科学,但按照“劝学(先要知识让位,然后再让知识归位)”的观点,有利于老师们初步理解课题。 至于对“变量”的理解,理科的老师可能没有多大的困难,文科的老师就有点困难了。为了便于理解,我举一个例: 张三在家养金鱼,总养不了几天就死,又养又死,再养再死。(现状,即问题背景) 于是他想:“如何使金鱼健康成长呢?”(他选题了,《金鱼健康成长的研究》) 于是他想:“金鱼的成长离不开‘水’、‘温度’、‘阳光’、‘食物’等因素”。(他找到了四个变量:‘水’、‘温度’、‘阳光’、‘食物’) 于是张三又想:“多少‘水’、多少‘温度’、多少‘阳光’、多少‘食物’,最适合金鱼的成长呢?”于是他做了尝试。(他对变量进行控制性实验) 通过了多次实验,他发现“X量的水、Y量的温度、Z量的阳光、R量的食物”最适合金鱼的成长。(他的研究出成果了) 他以后就按这个方式养金鱼,他也把他的经验告诉其他人。后来,很多人按他的方式养金鱼,金鱼都不死,都能健康成长。(他推广了他的研究成果) 问题二:课题和专著区别 课题:指要研究、解决的问题,所以课题背景就是指该问题是在什么情况或条件下产生的,课题研究有什么意义,等等。课题包括:市级课题、省级课题、国家级课题等。 专著:根据学术论文的长短,又可以分为单篇学术论文、系列学术论文和学术专著三种。一般而言,超过4―5万字的,可以称为学术专著。 因此,课题是正在进行的内容,没有一个明确的结论,专著是通常有了一定结论,把研究的过程、结果写出来。 问题三:教科研论文与课题报告有什么不同 文段在内容上:以中心、意思相联系(思想感情)来答 在结构上:总分总 文段在开头:总起全文 文段在中间:承上启下 文段在结尾:总结全文或照应主题或首尾呼应。 问题四:毕业论文选题报告中的课题的目的和意义是什么意思 首先纲领性把握两者区别: 目的――重在阐述论要解决的问题。即为什么选这样一个题目进行论述,要论述出什么东西。 意义――重在表明论文选题对理论研究有哪些贡献,或对实践具有哪些帮助和指导。 在明确两部分的区别之后可以对选题的相关领域进行搜索,明确当下该选题有哪些研究成果,还有哪些部分是你的选题需要补充和完善的。对选题的价值有一个综合性的判断。 问题五:论文主题和论文题目有什么区别 一个论文主题下可以有N个论文题目,就像是课题下的子课题一样,比如:以下的20个论文题目都隶属于国际贸易理论与政策问题的论文主题 1、当代国际分工与贸易格局的分析 2、国际贸易中的“碳”不平等交换理论与实证分析 3、产业内贸易问题研究【可以分国别或者地区】 4、当代国际贸易【包括服务贸易】的发展特征与趋势研究 5、世界市场价格的变化和趋势 6、对外贸易依存度及其应用研究 7、贸易条件及相关问题的研究与分析 8、比较利益说的现代分析 9、国家竞争优势理论的分析与评价 10、新贸易理论的分析与评价 11、战略性贸易政策及其适用性研究 12、幼稚工业保护与发展中国家工业化问题研究 13、贸易自由化与世界贸易体制研究 14、贸易保护政策选择的理论分析 15、关于日美贸易摩擦中汇率问题的思考 16、动态比较优势理论对服务贸易竞争力提升的启示及策略 17、制度差异视角下的国际贸易摩擦分析 18、服务贸易竞争力内生性因素的实证研究 19、WTO争端解决机制研究【包括案例分析】 20、战后GATT/WTO与IMF对国际贸易的影响 问题六:BT的下载速度很慢怎么办? 1、你的带宽不够。 2、线路不好。 3、BT下载软件没设置好。 4、你处在内网,一般这类情况比较多,内网的IP通常是:.*.*,你可去下载一个“比特精灵(167bt/)”,或者想办法将你的电脑处于外网,即享有一个公网IP。 5、打开你的路由器管理页面,启用“DZM主机”指想你电脑所属的内网IP地址。 OVER

怎么确定课题论文选题?

一个好的论文题目,能够提前对文章做出基本的估计,因为提出一个尚待解决的问题也不是一件容易的事。只有提出的问题有价值,写出来的文章才会更有价值。

选题可以规划文章的方向、角度和规模。在研究参考资料的过程中,随着知识的积累,思考的深入,会有各种各样的想法,但它们都是处于分散状态的,所以我们要对它们进行选择、鉴别、归拢、集中。分析中寻找彼此间的差异和联系,形成自己的观点,并使其确定下来。

选题有利于提高研究能力。选题是研究实践的第一步,选题前,要学会收集、整理、查阅资料等,这也是科研工作者必须掌握的基础方法。选题中,要对已学的专业知识反复认真地思考,归纳演绎、分析综合、判断推理、联想发挥等,也正是因为有这样的过程,我们的思维能力和研究能力得以锻炼和提高。

首先,论文的选题要小。宋代学者程颐有云:“君子教人有序,先传以小者、近者,而后教以大者、远者。非先传以近小,而后不教以远大也。”教学是这样,写作也是这样。以小见大,循序渐进,可谓学术通义。

其实选题是不怕小的,总能够“小题大做”。所谓“小”,是指切入点要小,尽量地将问题缩小到你可以把握的范围。所谓“大”,是指视野要大,从小问题讲出大道理。你的眼界有多宽,你的问题就有多大。

对于所写的题目,自己要确实想清楚了,或者至少知道,自己确实能够研究清楚。最好是写之前一直感兴趣或者深有体会的问题。如果你对这个问题长期抱有兴趣,一直有所追踪,有所积累和思考,那么做起研究来就可以驾轻就熟,得心应手。

要“想清楚再写”,就要在选题阶段多投入一点时间。选题阶段花的时间越多,思考得越充分,后面就越少走弯路,越快做出成果。每选题之前,要静下心来,做充分的文献检索,尽量搜集和查阅已有的研究。

选题要有新意。“新”,既可以是新材料、新问题,也可以是新方法、新视角。其中,提出新问题最难,运用新方法和新视角次之。

总之,现在论文写作常见的问题就是“过大、过生、过旧”,根源都在于没有做好前期的选题工作,涵盖的范围太大,不了解已有的研究成果,缺乏新颖的材料和视角。

依照“小清新”这三个选题原则,可以先是“题中选新”,从众多题目中最“新”的问题开始。

继而“新中选清”,研究新颖领域中更为熟悉清楚的问题。最后是“清中选小”,选择足以驾驭的问题,做到以小见大、察微知著。

每当临近毕业季,即将毕业的同学们就需要考虑自己的毕业论文情况,想要书写毕业论文,首先就需要确定课题论文的选题,但是大家对论文基本都是一窍不通,选题也就会出现很多问题。

根据学长学姐的经验,如果同学们自己确定选题,很容易把选题变得非常大,从而导致论文变为空谈,因此选题最好多加参考,并且让导师指导确定:

网络时代的到来,让我们可以在网路上查看非常多的资料,因此当我们无法确定自己的选题时,可以直接到网络上搜索自己专业相关的论文,看看别人的选题是什么,从而进行参考和模仿。

在找到适合自己的选题类型后,可以看看对方论文的书写大纲,从而让自己论文的书写具有一定的思路。

除了在网络上查找专业相关的论文,我们还可以请教学长学姐,看看学长学姐的论文选题是什么,这是比较好的方法,因为学长学姐的论文,往往都已经经过导师的修改和调整,因此选题和内容都更加符合学校的要求。

另外一点,学长学姐的论文格式往往都是设置好的,对于不会设置格式的同学来说,能够拿到学长学姐论文的最终文件,可以节约大量的时间。

在参考大量相关论文后,我们可以拟定出一些选题,但是一定不要过于相信自己,一定要把这些选题,给自己的课题论文导师看一看,导师会帮助我们修改并确定一个选题。

导师在帮我们确定选题的时候,一般也会选择自己比较擅长的选题,从而可以在论文书写过程中,给予我们更多的帮助和指导。

确定课题论文选题,是写论文最开始的任务。万事开头难,在确定选题的时候,一定要多下功夫,这样在写论文的时候,就可以水到渠成!

相关百科

热门百科

首页
发表服务