首页

> 期刊论文知识库

首页 期刊论文知识库 问题

氢原子电离能研究的论文

发布时间:

氢原子电离能研究的论文

第一电离能元素的第一电离能具有周期性。就是说它在周期表中的变化具有一定的重复性。举例来说,从 Li 到 Ne 的第一电离能变化和从Na 到 Ar 的第一电离能变化之间存在着相似性。通过应用原子的电子排布知识,我们可以对第一电离能的所有变化进行解释。电离能是某特定电子摆脱原子核引力所需的能量。电离能高表明原子核和电子间的吸引力强。原子核的质子越多,其所带的电荷就越多,对电子的吸引就越强。随着距离加大,吸引力会迅速减小。比起离原子核稍远的电子,紧靠原子核的电子所受到的吸引要强烈的多。举例来说,钠原子的电子排列是2,8,1。(在这里用这个标记法更方便一些!)钠的外层能级电子往原子核的方向看, 并不能看清原子核。因为在它和原子核之间存在第一和第二能级的电子。内层能级的10个电子对外层能级的电子有排斥作用,这种排斥作用与原子核11个质子对外层电子的吸引作用共存。两相抵消后,外层电子能感觉到来自原子核的约 1+ 左右的净吸引力。内层电子的这种抵消被称为内层电子对外层电子的屏蔽(screening) 。警告! 电子当然不可能 看见 东西! 只是为了有助于大家理解,我才这样说。在考试中千万不要像我这样说! 这种不严谨用词会让阅卷人感到为难。被电离的电子同一p轨域中的两个电子间存在一定的排斥作用,这种排斥作用有利于电子脱离原子;所以同一p轨域中的配对电子比单个电子更容易被电离。氢(H)的电子排布为 1s1。氢原子很小,氢原子唯一的一个电子紧靠原子核,并被原子核强烈地吸引着。而且电子和原子核之间没有屏蔽,所以氢原子的电离能比较高 (1310 kJ mol-1) 。氦(He)的电子排布为 1s2。氦的电子所在的轨域与氢原子相同。电子离原子核近且没有屏蔽。氦的电离能 (2370 kJ mol-1) 比氢高得多,这是由于氦原子有2个质子吸引电子,而氢原子只有一个。锂(Li) 1s2 2s1 。的外层电子位于第二能级,离原子核更远。如果有人辩解锂原子核多出的一个质子会抵消距离所带来的吸引力减小, 那么他一定是忘了 1s2 电子的屏蔽作用:外层电子实际上不能充分感受到来自原子核的吸引。

电离(Ionization),或称电离作用、离子化,是指在(物理性的)能量作用下,原子、分子形成离子的过程。是指原子或分子获得一个负或正电荷的获得或失去电子形成离子,通常与其他化学变化的结合。电离导致的电子的损失后的亚原子粒子碰撞,碰撞与其他原子,分子和离子,或通过与光的相互作用。异裂和杂原子取代反应可导致离子对的形成。电离能发生放射性衰变的内部转换过程,并将其能量激发原子核的内层电子使其喷出。

氢能发电研究报告论文

新能源又称非常规能源。是指传统能源之外的各种能源形式。指刚开始开发利用或正在积极研究、有待推广的能源,如太阳能、地热能、风能、海洋能、生物质能和核聚变能等。能源世界有最全面的资料免费下载参考资料[编辑本段]分类新能源的各种形式都是直接或者间接地来自于太阳或地球内部伸出所产生的热能。包括了太阳能、风能、生物质能、地热能、水能和海洋能以及由可再生能源衍生出来的生物燃料和氢所产生的能量。也可以说,新能源包括各种可再生能源和核能。相对于传统能源,新能源普遍具有污染少、储量大的特点,对于解决当今世界严重的环境污染问题和资源(特别是化石能源)枯竭问题具有重要意义。同时,由于很多新能源分布均匀,对于解决由能源引发的战争也有着重要意义。据世界断言,石油,煤矿等资源将加速减少。核能、太阳能即将成为主要能源。联合国开发计划署(UNDP)把新能源分为以下三大类:大中型水电;新可再生能源,包括小水电、太阳能、风能、现代生物质能、地热能、海洋能(潮汐能);穿透生物质能。一般地说,常规能源是指技术上比较成熟且已被大规模利用的能源,而新能源通常是指尚未大规模利用、正在积极研究开发的能源。因此,煤、石油、天然气以及大中型水电都被看作常规能源,而把太阳能、风能、现代生物质能、地热能、海洋能以及核能、氢能等作为新能源。随着技术的进步和可持续发展观念的树立,过去一直被是做垃圾的工业与生活有机废弃物被重新认识,作为一种能源资源化利用的物质而受到深入的研究和开发利用,因此,废弃物的资源化利用也可看作是新能源技术的一种形式。新近才被人类开发利用、有待于进一步研究发展的能量资源称为新能源,相对于常规能源而言,在不同的历史时期和科技水平情况下,新能源有不同的内容。当今社会,新能源通常指核能、太阳能、风能、地热能、氢气等。按类别可分为:太阳能 风力发电 生物质能 生物柴油 燃料乙醇 新能源汽车 燃料电池 氢能 垃圾发电 建筑节能 地热能 二甲醚 可燃冰等[编辑本段]新能源概况据估算,每年辐射到地球上的太阳能为亿千瓦,其中可开发利用500~1000亿度。但因其分布很分散,目前能利用的甚微。地热能资源指陆地下5000米深度内的岩石和水体的总含热量。其中全球陆地部分3公里深度内、150℃以上的高温地热能资源为140万吨标准煤,目前一些国家已着手商业开发利用。世界风能的潜力约3500亿千瓦,因风力断续分散,难以经济地利用,今后输能储能技术如有重大改进,风力利用将会增加。海洋能包括潮汐能、波浪能、海水温差能等,理论储量十分可观。限于技术水平,现尚处于小规模研究阶段。当前由于新能源的利用技术尚不成熟,故只占世界所需总能量的很小部分,今后有很大发展前途。[编辑本段]常见新能源形式概述(具体内容详见各能源形式所对应的词条)太阳能太阳能一般指太阳光的辐射能量。太阳能的主要利用形式有太阳能的光热转换、光电转换以及光化学转换三种主要方式广义上的太阳能是地球上许多能量的来源,如风能,化学能,水的势能等由太阳能导致或转化成的能量形式。利用太阳能的方法主要有:太阳电能池,通过光电转换把太阳光中包含的能量转化为电能;太阳能热水器,利用太阳光的热量加热水,并利用热水发电等。太阳能可分为2种:1.太阳能光伏 光伏板组件是一种暴露在阳光下便会产生直流电的发电装置,由几乎全部以半导体物料(例如硅)制成的薄身固体光伏电池组成。由于没有活动的部分,故可以长时间操作而不会导致任何损耗。简单的光伏电池可为手表及计算机提供能源,较复杂的光伏系统可为房屋照明,并为电网供电。 光伏板组件可以制成不同形状,而组件又可连接,以产生更多电力。近年,天台及建筑物表面均会使用光伏板组件,甚至被用作窗户、天窗或遮蔽装置的一部分,这些光伏设施通常被称为附设于建筑物的光伏系统。2.太阳热能 现代的太阳热能科技将阳光聚合,并运用其能量产生热水、蒸气和电力。除了运用适当的科技来收集太阳能外,建筑物亦可利用太阳的光和热能,方法是在设计时加入合适的装备,例如巨型的向南窗户或使用能吸收及慢慢释放太阳热力的建筑材料。核能核能是通过转化其质量从原子核释放的能量,符合阿尔伯特·爱因斯坦的方程E=mc^2;,其中E=能量,m=质量,c=光速常量。核能的释放主要有三种形式:A.核裂变能所谓核裂变能是通过一些重原子核(如铀-235、铀-238、钚-239等)的裂变释放出的能量B.核聚变能由两个或两个以上氢原子核(如氢的同位素—氘和氚)结合成一个较重的原子核,同时发生质量亏损释放出巨大能量的反应叫做核聚变反应,其释放出的能量称为核聚变能。C.核衰变核衰变是一种自然的慢得多的裂变形式,因其能量释放缓慢而难以加以利用核能的利用存在的主要问题:(1)资源利用率低(2)反应后产生的核废料成为危害生物圈的潜在因素,其最终处理技术尚未完全解决(3)反应堆的安全问题尚需不断监控及改进(4)核不扩散要求的约束,即核电站反应堆中生成的钚-239受控制(5)核电建设投资费用仍然比常规能源发电高,投资风险较大海洋能海洋能指蕴藏于海水中的各种可再生能源,包括潮汐能、波浪能、海流能、海水温差能、海水盐度差能等。这些能源都具有可再生性和不污染环境等优点,是一项亟待开发利用的具有战略意义的新能源。波浪发电,据科学家推算,地球上波浪蕴藏的电能高达90万亿度。目前,海上导航浮标和灯塔已经用上了波浪发电机发出的电来照明。大型波浪发电机组也已问世。我国在也对波浪发电进行研究和试验,并制成了供航标灯使用的发电装置。潮汐发电,据世界动力会议估计,到2020年,全世界潮汐发电量将达到1000-3000亿千瓦。世界上最大的潮汐发电站是法国北部英吉利海峡上的朗斯河口电站,发电能力24万千瓦,已经工作了30多年。我国在浙江省建造了江厦潮汐电站,总容量达到3000千瓦。风能风能是太阳辐射下流动所形成的。风能与其他能源相比,具有明显的优势,它蕴藏量大,是水能的10倍,分布广泛,永不枯竭,对交通不便、远离主干电网的岛屿及边远地区尤为重要。风力发电,是当代人利用风能最常见的形式,自19世纪末,丹麦研制成风力发电机以来,人们认识到石油等能源会枯竭,才重视风能的发展,利用风来做其它的事情。1977年,联邦德国在著名的风谷--石勒苏益格-荷尔斯泰因州的布隆坡特尔建造了一个世界上最大的发电风车。该风车高150米,每个浆叶长40米,重18吨,用玻璃钢制成。到1994年,全世界的风力发电机装机容量已达到300万千瓦左右,每年发电约50亿千瓦时。生物质能生物质能来源于生物质,也是太阳能以化学能形式贮存于生物中的一种能量形式,它直接或间接地来源于植物的光合作用。生物质能是贮存的太阳能,更是一种唯一可再生的碳源,可转化成常规的固态、液态或气态的燃料。地球上的生物质能资源较为丰富,而且是一种无害的能源。地球每年经光合作用产生的物质有1730亿吨,其中蕴含的能量相当于全世界能源消耗总量的10-20倍,但目前的利用率不到3%。地热能地球内部热源可来自重力分异、潮汐摩擦、化学反应和放射性元素衰变释放的能量等。放射性热能是地球主要热源。我国地热资源丰富,分布广泛,已有5500处地热点,地热田45个,地热资源总量约320万兆瓦。氢能在众多新能源中,氢能以其重量轻、无污染、热值高、应用面广等独特优点脱颖而出,将成为21世纪的理想能源。氢能可以作飞机、汽车的燃料,可以用作推动火箭动力。海洋渗透能能源世界有最全面的资料免费下载参考资料如果有两种盐溶液,一种溶液中盐的浓度高,一种溶液的浓度低,那么把两种溶液放在一起并用一种渗透膜隔离后,会产生渗透压,水会从浓度低的溶液流向浓度高的溶液。江河里流动的是淡水,而海洋中存在的是咸水,两者也存在一定的浓度差。在江河的入海口,淡水的水压比海水的水压高,如果在入海口放置一个涡轮发电机,淡水和海水之间的渗透压就可以推动涡轮机来发电。海洋渗透能是一种十分环保的绿色能源,它既不产生垃圾,也没有二氧化碳的排放,更不依赖天气的状况,可以说是取之不尽,用之不竭。而在盐分浓度更大的水域里,渗透发电厂的发电效能会更好,比如地中海、死海、我国盐城市的大盐湖、美国的大盐湖。当然发电厂附近必须有淡水的供给。据挪威能源集团的负责人巴德·米克尔森估计,利用海洋渗透能发电,全球范围内年度发电量可以达到16000亿度。水能水能是一种可再生能源,是清洁能源,是指水体的动能、势能和压力能等能量资源。广义的水能资源包括河流水能、潮汐水能、波浪能、海流能等能量资源;狭义的水能资源指河流的水能资源。是常规能源,一次能源。水不仅可以直接被人类利用,它还是能量的载体。太阳能驱动地球上水循环,使之持续进行。地表水的流动是重要的一环,在落差大、流量大的地区,水能资源丰富。随着矿物燃料的日渐减少,水能是非常重要且前景广阔的替代资源。目前世界上水力发电还处于起步阶段。河流、潮汐、波浪以及涌浪等水运动均可以用来发电。[编辑本段]新能源的发展现状和趋势部分可再生能源利用技术已经取得了长足的发展,并在世界各地形成了一定的规模。目前,生物质能、太阳能、风能以及水力发电、地热能等的利用技术已经得到了应用。国际能源署(IEA)对2000~2030年国际电力的需求进行了研究,研究表明,来自可再生能源的发电总量年平均增长速度将最快。IEA的研究认为,在未来30年内非水利的可再生能源发电将比其他任何燃料的发电都要增长得快,年增长速度近6%在2000~2030年间其总发电量将增加5倍,到2030年,它将提供世界总电力的,其中生物质能将占其中的80%。目前可再生能源在一次能源中的比例总体上偏低,一方面是与不同国家的重视程度与政策有关,另一方面与可再生能源技术的成本偏高有关,尤其是技术含量较高的太阳能、生物质能、风能等据IEA的预测研究,在未来30年可再生能源发电的成本将大幅度下降,从而增加它的竞争力。可再生能源利用的成本与多种因素有关,因而成本预测的结果具有一定的不确定性。但这些预测结果表明了可再生能源利用技术成本将呈不断下降的趋势。我国政府高度重视可再生能源的研究与开发。国家经贸委制定了新能源和可再生能源产业发展的“十五”规划,并制定颁布了《中华人民共和国可再生能源法》,重点发展太阳能光热利用、风力发电、生物质能高效利用和地热能的利用。近年来在国家的大力扶持下,我国在风力发电、海洋能潮汐发电以及太阳能利用等领域已经取得了很大的进展。新能源(或称可再生能源更贴切)主要有:太阳能、风能、地热能、生物质能等。生物质能在经过了几十年的探索后,国内外许多专家都表示这种能源方式不能大力发展,它不但会抢夺人类赖以生存的土地资源,更将会导致社会不健康发展;地热能的开发和空调的使用具有同样特性,如大规模开发必将导致区域地面表层土壤环境遭到破坏,必将引起再一次生态环境变化;而风能和太阳能对于地球来讲是取之不尽、用之不竭的健康能源,他们必将成为今后替代能源主流。太阳能发电具有布置简便以及维护方便等特点,应用面较广,现在全球装机总容量已经开始追赶传统风力发电,在德国甚至接近全国发电总量的5%-8%,随之而来的问题令我们意想不到,太阳能发电的时间局限性导致了对电网的冲击,如何解决这一问题成为能源界的一大困惑。风力发电在19世纪末就开始登上历史的舞台,在一百多年的发展中,一直是新能源领域的独孤求败,由于它造价相对低廉,成了各个国家争相发展的新能源首选,然而,随着大型风电场的不断增多,占用的土地也日益扩大,产生的社会矛盾日益突出,如何解决这一难题,成了我们又一困惑。早在2001年,MUCE就为了开拓稳定的海岛通信电源而开展一项研究,经过六年多研究和实践,终于将一种成熟的新型应用方式MUCE风光互补系统向社会推广,这种系统采用了我国自主研制的新型垂直轴风力发电机(H型)和太阳能发电进行10:3地结合,形成了相对稳定的电力输出。在建筑上、野外、通信基站、路灯、海岛均进行了实际应用,获得了大量可靠的使用数据。这一系统的研究成果将为我国乃至世界的新能源发展带来了新的动力。新型垂直轴风力发电机(H型)突破了传统的水平轴风力发电机启动风速高、噪音大、抗风能力差、受风向影响等缺点,采取了完全不同的设计理论,采用了新型结构和材料,达到微风启动、无噪音、抗12级以上台风、不受风向影响等性能,可大量用于别墅、多层及高层建筑、路灯等中小型应用场合。以它为主建立的风光互补发电系统,具有电力输出稳定、经济性高、对环境影响小等优点,也解决了太阳能发展中对电网冲击等影响。随着能源危机日益临近,新能源已经成为今后世界上的主要能源之一。其中太阳能已经逐渐走入我们寻常的生活,风力发电偶尔可以看到或听到,可是它们作为新能源如何在实际中去应用?新能源的发展究竟会是怎样的格局?这些问题将是我们在今后很长时间里需要探索的。[编辑本段]新能源的环境意义和能源安全战略意义我国能源需求的急剧增长打破了我国长期以来自给自足的能源供应格局,自1993年起我国成为石油净进口国,且石油进口量逐年增加,使得我国接入世界能源市场的竞争。由于我国化石能源尤其是石油和天然气生产量的相对不足,未来我国能源供给对国际市场的依赖程度将越来越高。国际贸易存在着很多的不确定因素,国际能源价格有可能随着国际和平环境的改善而趋于稳定,但也有可能随着国际局势的动荡而波动。今后国际石油市场的不稳定以及油价波动都将严重影响我国的石油供给,对经济社会造成很大的冲击。大力发展可再生能源可相对减少我国能源需求中化石能源的比例和对进口能源的以来程度,提高我国能源、经济安全。此外,可再生能源与化石能源相比最直接的好处就是其环境污染少。新的能源是什么1新能源,包括太阳能、风能、地热能、海洋能、生物质能和其他可再生能源。合理的开发利用新能源,可以改善和优化能源结构,保护环境,提高人民生活质量,促进国民经济和社会可持续发展。新能源开发利用主要包括新能源技术和产品的科研、实验、推广、应用及其生产、经营活动。新能源的开发利用,应当与经济发展相结合,遵循因地制宜、多能互补、综合利用、讲求效益和开发与节约并举的原则,宣传群众,典型示范,效益引导,实现能源效益、环境效益、经济效益和社会效益的统一。2随着科学技术和社会生产力的不断发展,能源的问题显得越来越重要。目前,全世界的能源仍以煤、石油和天然气等化石燃料为主。这些化石燃料储量有限,同时它们又是极其宝贵的化工原料,可以从中提炼和加工出各种化学纤维、塑料、橡胶和化肥等化工产品。将这样重要的化工原料作为能源来使用实在可惜。随着社会生产力的发展和人类生活水平的提高,世界能源的消耗量愈来愈大。据估计,全世界石油、天然气和煤的储量最多只能供给人类使用一、二百年。因此,摆在人类面前的一项紧迫的战略任务就是探索新能源。目前研究开发的新能源主要有以下几种:1.地热能与潮汐能可利用的地热资源是地下热水、地热蒸气和热岩层。地下热水层一般在地下两千多米深处,温度80℃左右。将地下热水降低压力使之变成蒸气(在 kPa时水80℃沸腾),可推动汽轮发电机发电。潮汐能利用的是海水涨落造成的水位差。此种能量可以作为动力来推动水轮机发电。地球上潮汐涨落中蕴藏的能量是巨大的,但建造大规模的潮汐电站技术上有很多困难,成本也较高。2.太阳能太阳每年辐射到地球表面的能量约为5×10^22J,相当于目前世界能量消耗的万倍,可以说太阳能是取之不尽用之不竭的无污染的理想能源。因此,太阳能的收集利用是当代科学家十分感兴趣的问题。目前太阳能利用主要有三种形式。一种是直接利用太阳辐射热,建成太阳灶、太阳能热水器,太阳房(用于采暖)和塑料大棚等,或利用太阳能来发电。太阳能电站是利用集热器吸收太阳辐射的热量,其蓄热材料(液态金属)温度可高达1000℃左右。所吸收的热量通过热交换器将水变成水蒸气推动汽轮机发电。这种转换方式称之为光-热转换。第二种是光-电转换,即利用太阳能电池将太阳能直接转换成电能。太阳能电池种类较多,主要有单晶硅电池、砷化镓电池、磷化铟电池和多晶硅电池等。目前太阳能电池效率还比较低,成本也比较高。它主要用于人造卫星等宇宙飞行器作为各种仪器设备的动力。第三种是光-化学转换,即将太阳辐射直接转换成化学能。绿色植物的光合作用就是光-化学转换,但它还不能完全受人控制。因此,研究各种完全可控的光-化学转换方法也是当今世界重大的研究课题之一。近年来发现,太阳能辐射到某一光化学反应体系后,能形成动力学上稳定的光产物,使光能转化为化学能而储存起来。另外,在催化剂存在时,由太阳光直接分解水而制得氢和氧的方法也是太阳能利用较有发展前途的一条途径。发展氢能具有独特的优越性。首先,氢的原料是水,资源丰富。另外氢燃烧后的热值较高,1g 氢燃烧后可放出143 kJ的热量,而1g煤燃烧只有31~32kJ,1g汽油燃烧也只有48kJ。还有氢燃烧生成水,它来源于水又还原于水,是顺应自然的一种循环,不会打乱自然界的平衡。又因燃烧产物无烟尘以及其它污染物,所以氢能又是无污染的清洁能源。虽然,地球接受太阳的总能量很大,但是由于其能量密度很低,取得单位能量的一次投资大,能量转换效率有待提高。3.核能原子核裂变和聚变时都放出巨大的能量。原子核能是一种比较理想的能源。(1)核裂变能裂变是较重的原子核在足够能量的中子轰击下分裂成较轻原子核的过程。当235U原子核发生裂变时,分裂成两个不相等的碎片和若干个中子。裂变过程相当复杂,已经发现裂变产物有35种元素,放射性核素有200种以上。下面是235U裂变中的一种方式:[编辑本段]未来的几种新能源波能:即海洋波浪能。这是一种取之不尽,用之不竭的无污染可再生能源。据推测,地球上海洋波浪蕴藏的电能高达9×104TW。近年来,在各国的新能源开发计划中,波能的利用已占有一席之地。尽管波能发电成本较高,需要进一步完善,但目前的进展已表明了这种新能源潜在的商业价值。日本的一座海洋波能发电厂已运行8年,电厂的发电成本虽高于其它发电方式,但对于边远岛屿来说,可节省电力传输等投资费用。目前,美、英、印度等国家已建成几十座波能发电站,且均运行良好。可燃冰:这是一种与水结合在一起的固体化合物,它的外型与冰相似,故称“可燃冰”。可燃冰在低温高压下呈稳定状态,冰融化所释放的可燃气体相当于原来固体化合物体积的100倍。据测算,可燃冰的蕴藏量比地球上的煤、石油和天然气的总和还多。煤层气:煤在形成过程中由于温度及压力增加,在产生变质作用的同时也释放出可燃性气体。从泥炭到褐煤,每吨煤产生68m3气;从泥炭到肥煤,每吨煤产生130m3气;从泥炭到无烟煤每吨煤产生400m3气。科学家估计,地球上煤层气可达2000Tm3。微生物:世界上有不少国家盛产甘蔗、甜菜、木薯等,利用微生物发酵,可制成酒精,酒精具有燃烧完全、效率高、无污染等特点,用其稀释汽油可得到“乙醇汽油”,而且制作酒精的原料丰富,成本低廉。据报道,巴西已改装“乙醇汽油”或酒精为燃料的汽车达几十万辆,减轻了大气污染。此外,利用微生物可制取氢气,以开辟能源的新途径。能源世界有最全面的资料免费下载参考资料

1前言 石油和天然气两种处于自然状态的烃类化合物能源具有不可再生性,随着化石燃料耗量的日益增加,终将要枯竭,这就迫切需要寻找一种不依赖化石燃料、储量丰富的新的能源。氢能 就是这种能源,且氢能的研究同时还迎合了工业化国家日趋严格的环保政策,因而各国对氢能的研究变的日益活跃起来。 氢原子序数为1,常温常压呈气态,超低温、高压下又可成为液态。作为能源, 氢有以下特点: 1)氢是构成了宇宙质量的75%,存储量大。 2)氢的发热值高,是汽油发热值的3倍。 3)氢燃烧性好,点燃快,3%-97%范围内均可燃。 4)氢循环使用性好,燃烧反应生成的水可用来制备氢,循环使用。 5)氢利用形式多,可以产生热能、可用于燃料电池,或转换成固态氢作结构材料。 美国著名石油专家埃克诺米迪斯博士预测:主宰未来世界的能源将是氢能。 2氢能的主要应用领域 二航天 早在M战期间,氢即用作A-2火箭液体推进剂。1970年美国”阿波罗”登月飞船使用的起飞火箭也是用液氢作燃料。 目前科学家们正研究一种”固态氢”宇宙飞船。固态氢既作为飞船的结构材料,又作为飞船的动力燃料,在飞行期间,飞船上所有的非重要零部件都可作为能源消耗掉,飞船就能飞行更长的时间。 交通 在超声速飞机和远程洲际客机上以氢作动力燃料的研究已进行多年,目前已进人样机和试飞阶段。据欧洲空客公司预测,到2004年,欧洲生产的飞机将部分采用液氢为燃料。德国戴姆勒一奔驰航空航天公司以及俄罗斯航天公司从1996年开始试验,其进展证实,在配备有双发动机的喷气机中使用液态氢,其安全性有足够保证。 美、德、法等国采用氢化金属贮氢,而日本则采用液氢作燃料组装的燃料电池示范汽车,已进行了上百万公里的道路运行试验,其经济性、适应性和安全性均较好。美国和加拿大计划从加拿大西部到东部的大铁路上采用液氢和液氧为燃料的机车。 :民用 除了在汽车行业外,燃料电池发电系统在民用方面的应用也很广泛。氢能发电、氢介质储能与输送,以及氢能空调、氢能冰箱等,有的已经实现,有的正在开发,有的尚在探索中。燃料电池发电系统的开发目前也开发的如火如茶:以PEMFC为能量转换装置的小型电站系统和以SOFC为主的大型电站等均在开发中。 :其它 以氢能为原料的燃料电池系统除了在汽车、民用发电等方面的应用外,在军事方面的应用也显得尤为重要,德国、美国均已开发出了以PEMFC为动力系统的核潜艇,该类型潜艇具有续航能力强,隐蔽性好,无噪声等优点,受到各国的青睐。 3 氢能应用的主要问题 :氢气制备 氢气能否广泛使用,制氢工艺是基础,目前主要的制氢工艺主要包括: 1)采用矿物燃料、核能、太阳能、水能、风能及潮汐能等方式电解水制备氢气是目前的主要研究方向,其中以利用太阳能制氢的研究最多也最有前途; 2)热化学循环分解水制氢方法是在水反应系统中加人中间物,经历不同的反应阶段,最终将水分解为氢和氧,且中间物不消耗; 3)光化学制氢是在有光照催化剂作用下,促使水解制得氢气; 4)矿物燃料制氢是利用化学方法将矿物中的氢元素提取出来的方法,如煤的焦化、煤的气化等; 5)生物质制氢是在将生物体中的氢元素通过裂解或者气化的方法提取出来的方法; 6)各种化工过程副产品氢气的回收,如氯碱工业、冶金工业等。水电解制氢、生物质制氢等制氢方法,现已形成规模,其中,低价电解水制氢方法在今后仍将是氢能规模制备的主要方法,目前应用中尚需要降低电耗。 :氢气一运输 工业实际应用中大致有五种贮氢方法,即: (1)常压贮存,如湿式气柜、地下储仓; (2)高压容器,如钢制压力容器和钢瓶; (3)液氢贮存:采用液氢贮存,就必须先制备液氢,生产液氢一般可采用三种液化循环,其中带膨胀机的循环效率最高,在大型氢液化装置上被广泛采用;节流循环,效率不高,但流程简单,运行可靠,所以在小型氢液化装置中应用较多。氦制冷氢液化循环消除了高压氢的危险,运转安全可靠,但氦制冷系统设备复杂,故在氢液化中应用不多。 (4)金属氢化物:当用贮氢合金制成的容器冷却和压人氢时,氢即被储存;加热这一贮存系统或降低其内部压力,氢就会释放出来。 目前金属氢化物合金体系主要有:l)LaNi5系合金;2)MnNi5系合金等;3)TiMn系合金;4)TiMn系合金(ABZ);5)镁系合金;6)纳米碳等。 (5)除管道输送外,高压容器和液氢槽车也是目前工业上常规应用的氢气输送方法。 金属氢化物贮氢装置的开发 在氢的制备和贮存、输送问题解决后,下一步的研究就是氢化物贮氢装置的开发,目前主要包括以下两类: 固定式贮氢装置 固定式贮氢器其服务场合多种多样,容量则以大中型为主。美国开发的以合金为基体中型固定式贮氢器;日本则用贮氢合金开发了叠式固定装置;德国用TiMn2型多元合金开发的贮罐是由32个独立贮罐并联而成,容量为目前世界上最大的;我国浙江大学分别用(MmCaCu)(NiA1)5增压型贮氢合金、MINi4. 5 Mn0. 5合金分别开发了两种固定式装置。 移动式贮氢装置 移动式贮氢器除了携带运输氢气外,还可用于燃料电池氢燃料的存储。作为移动式装置要兼顾贮存与输送,因此要求重量轻、贮氢量大等问题。其中金属氢化物贮氢器不需附加设备(如裂解及净化系统),安全性高,适于车船方面应用;用常温型合金,质量贮能密度与 15 M Pa高压钢瓶基本相同,但体积可小得多。如德国海军的混合推进系统在潜艇,氧以液氧形式贮存,氢则以TIFe合金贮存。 目前工作的方向 在PEMFC已有技术基础上,除继续加强大功率PEMFC的关键技术研究外,还应注意PEMFC系统工程关键技术开发和系统技术集成,这是PEMFC发电系统走向实用化过程的关键。 在航空领域则要是解决氢能的贮存和生产成本问题,目前的一个研究趋势是开始将传统的机翼设计成为可以容纳更多液态氢的新型构造。 在汽车领域的问题主要是存在贮氢密度小和成本高两大障碍:以储氢合金贮氢为动力的汽车连续行驶的路程受限制,而以液氢为动力的主要是由于液氢供应系统费用过高而受到限制。 氢在航天动力方面已广泛应用,例如大容量镍氢电池等,但氢能的大规模的应用还有待解决以下关键问题:l)廉价的制氢技术;2)安全可靠的贮氢和输氢方法。 4 未来氢能经济社会的特色 随着科学技术的进步和氢能系统技术的全面进展,氢能应用范围必将不断扩大,氢能将深人到人类活动的各个方面,因而我们可以勾勒出未来氢能经济社会的一副大致图画: l)、化石能源(石油、煤炭、天然气)封存,留作化工原料; 2)、建立居家小型电站,取消远距离高压输电,通过管道网,送氢气至千家万户。 3)、各种类型空气一氢燃料电池成为普遍采用的发电工具。 4)、取缔内燃机动力,汽车、火车、飞机改用燃料电池,消灭了一切能源污染隐患和内燃机车噪音源。 5)、每个城市和家庭有能源供应和回收的完善循环系统。 6)取消火力发电,核电站、水利发电站、风力发电站、潮汐发电完成正常的电力供应后,剩余电力用于电解水制氢,作为储备能源。 5 我国发展氢能的对策 氢能的研究和应用是历史不可逆转的潮流,各国政府目前均对此展开了大量的研究,我国在这方面也投入了不少的人力、物力、财力,并取得了一定的成果,但我们也应该看到目前我们与工业化国家的差距,根据我国的国情制定相应的氢能发展战略,个人认为应包括以下的几点: (1)电解水制氢是获取氢源的重要途径,目前因耗电量大、电价高导至氢气成本高,推广使用受到限制,开发新型电解水制氢工艺,降低能耗也是一个重要的议题。 (2)各种新的制氢方法如从HZS制氢、从生物质制氢及用热化学法水分解制氢以及化工产品中副产品氢气的回收等应予以重视; (3)储氢材料的研究国内进行了较多的研究,但是目前很少有实用化的报道,因而开展科技成果的转化以及新型储氢和输氢装置的研究也尤为重要; (4)氢能未来应用的主要领域还是在燃料电池方面,我国开展这方面的研究也已经有一定基础,但主要是集中在研究燃料电池组件方面,对于系统集成等研究报道不多,同时由于资金和技术方面等因素,目前与国外还是有较大的差距,因而应加大投资力度,迎头赶上。 (5)氢能开发最有前景的方式是与太阳能结合,因而对于太阳能电池系统及材料的研究也应当引起足够的重视。 6结语 就环境保护和市场需求而言,洁净和成本是两个关键参数,光有洁净而成本过高就没有市场,因而目前降低氢能的利用成本成为当务之急,各工业化国家对这方面的研究都十分重视,其中美国政府决定今后五年为开发氢能拨款 17亿美元,力争到 2040年以前使每天的石油消耗量减少 1100万桶。世界上40家重要的汽车厂商中,已有25家决定考虑采用氢能,以适应日益严格的环保政策。因而虽然目前困难重重,但在不久的将来我们可以预见氢能的利用一定能够走进我们生活的方方面面。

大型电站,无论是水电、火电或核电,都是把发出的电送往电网,由电网输送给用户。但是各种用电户的负荷不同,电网有时是高峰,有时是低谷。为了调节峰荷、电网中常需要启动快和比较灵活的发电站,氢能发电就最适合抢演这个角色。更新的氢能发电方式是氢燃料电池。这是利用氢和氧(成空气)直接经过电化学反应而产生电能的装置。换言之,也是水电解槽产生氢和氧的逆反应。70年代以来,日美等国加紧研究各种燃料电池,现已进入商业性开发,日本已建立万千瓦级燃料电池发电站,美国有30多家厂商在开发燃料电池.德、英、法、荷、丹、意和奥地利等国也有20多家公司投入了燃料电池的研究,这种新型的发电方式已引起世界的关注。燃料电池的简单原最巧是将燃料的化学能直接转换为电能,不需要进行燃烧,能源转换效率可达60%—80%,而且污染少,噪声小,装置可大可小,非常灵活。最早,这种发电装置很小,造价很高,主要用于宇航作电源。现在已大幅度降价,逐步转向地面应用。目前,燃料电池的 种类很多。

氢能的研究及应用论文

氢是重要工业原料,如生产合成氨和甲醇,也用来提炼石油,氢化有机物质作为收缩气体,用在氧氢焰熔接器和火箭燃料中。在高温下用氢将金属氧化物还原以制取金属较之其他方法,产品的性质更易控制,同时金属的纯度也高。广泛用于钨、钼、钴、铁等金属粉末和锗、硅的生产。 由于氢气很轻,人们利用它来制作氢气球。(注意:目前出于安全考虑,一般用氦气作为原料制造氢气球。)氢气与氧气化合时,放出大量的热,被利用来进行切割金属。 利用氢的同位素氘和氚的原子核聚变时产生的能量能生产杀伤和破坏性极强的氢弹,其威力比原子弹大得多。 现在,氢气还作为一种可替代性的未来的清洁能源,用于汽车等的燃料。为此,美国于2002年还提出了“国家氢动力计划”。但是由于技术还不成熟,还没有进行大批的工业化应用。2003年科学家发现,使用氢燃料会使大气层中的氢增加约4~8倍。认为可能会让同温层的上端更冷、云层更多,还会加剧臭氧洞的扩大。但是一些因素也可抵销这种影响,如使用氯氟甲烷的减少、土壤的吸收、以及燃料电池的新技术的开发等。 氢是元素周期表中的第一号元素,元素名来源于希腊文,原意是“水素”。氢是由英国化学家卡文迪许在1766年发现,称之为可燃空气,并证明它在空气中燃烧生成水。1787年法国化学家拉瓦锡证明氢是一种单质并命名。氢在地壳中的丰度很高,按原子组成占,但重量仅占1%。在宇宙中,氢是最丰富的元素。在地球上氢主要以化和态存在于水和有机物中。有7种同位素:氕、氘、氚等。 氢在通常条件下为无色、无味的气体;气体分子由双原子组成;熔点℃,沸点℃,临界温度,临界压力大气压,气体密度克/升;水溶解度厘米³/千克水(0℃),稍溶于有机溶剂。 在常温下,氢比较不活泼,但可用合适的催化剂使之活化。在高温下,氢是高度活泼的。除稀有气体元素外,几乎所有的元素都能与氢生成化合物。非金属元素的氢化物通常称为某化氢,如卤化氢、硫化氢等;金属元素的氢化物称为金属氢化物,如氢化锂、氢化钙等。 氢是重要的工业原料,又是未来的能源,也是最清洁的燃料.满意的话就采纳吧~~~~

氢能是最清洁的能源,它燃烧只产生二氧化碳和水。所以氢可以做汽车的燃料等

大量应用氢能的困难是置换成本高

新能源汽车专业毕业论文参考文献

列出论文参考文献的目的是让读者了解论文研究命题的来龙去脉,便于查找,同时也是尊重前人劳动,对自己的工作有准确的定位。因此这里既有技术问题,也有科学道德问题。如下是我为大家收集的新能源汽车专业毕业论文参考文献,欢迎阅读!

[1]徐枭,王巧凤,周荣,新能源汽车发展主要障碍及其解决方案[J],上海汽车,2009,(5):7—10

[2]杨婕,消费者对电动汽车购买意愿实证研究—基于政府产业政策理论[J],特区经济,2012,(2):302—304

[3]李光,影响我国电动汽车产业发展的关键因素研究[J],武汉理工大学学报,2011,(6):14—18

[4]霍风利,我国发展电动汽车产业的'可行性及对策研究[D],中国海洋大学硕士学位论文,2010:23—27

[5]田萍,新能源汽车是新的经济增长点[J],资源与人居环境,2009,(9):74—76

[6]方海洲,胡研,促进新能源汽车快速发展的税收优惠政策影响分析[J],汽车科技,2009,(3):7—10

[7]国家863电动汽车重大科技专项办公室,全球氢能研发及相关政策调查报告[R],2004

[8]德勤全球制造组,电动车现状与消费者期望之比较[J],全球视角,2011,(1)

[9]曾耀明,史忠良,中外新能源汽车产业政策对比分析[J],企业经济,2011,(2):107—109

[10]李东卫,我国新能源汽车产业的挑战及对策[J],广东经济,2011,(2)

[11]迈克尔·波特,竞争优势[M],北京:华夏出版社,1997:280—317

[12]李大元,低碳经济背景下我国新能源汽车产业发展的对策研究[J],经济纵横,2011

[13]罗少文,我国新能源汽车产业发展战略研究[D],复旦大学硕士学位论文,2008

[14]杨海霞,新能源汽车技术路线落定,中国投资[J],2012,(11)

[15]张海波,我国新能源汽车产业技术路线图研究[D],武汉理工大学硕士学位论文,2012

[16]刘浩华,程杨,中国新能源汽车需求风险关键因素研究[J],科技管理研究,2014,(19)

[17]章荣武,“钻石模型”及其应用:中国船舶工业产业竞争优势分析[D],厦门大学硕士学位,2006

[18]赵亮,BYD公司新能源汽车发展战略研究[D],山东大学硕士学位论文,2013

[19]张坤,安徽汽车产业国际竞争力分析[D],安徽大学硕士学位论文,2011

[20]赵斌,比亚迪新能源汽车消费的影响因素分析[D],中南大学硕士学位论文,2010

[21]顾瑞兰,促进我国新能源汽车产业发展的财税政策研究[D],财政部财政科学研究所博士学位论文,2013

[22]王慧,促进我国新能源汽车产业发展的财税政策研究[D],江西财经大学硕士学位论文,2010

[23]温岳中,基于产业生命周期理论的新能源汽车产业支持政策研究[D],北京交通大学硕士学位论文,2012

[24]方玲,基于成本—效益分析视角的我国新能源汽车产业发展策略研究[D],中南大学商学院硕士学位论文,2013

[25]文凯,借鉴国际经验发展我国新能源汽车产业研究[D],东北财经大学硕士学位论文,2010

[26]陈柳钦,美日欧新能源汽车产业发展的政策支持[J],汽车工程师,2010,(10):22—25

[27]孙浩然,日本新能源汽车产业发展分析[D],吉林大学硕士学位论文,2011

[28]金永花,日本新能源汽车市场推广策略对我国的借鉴[J],东北亚论坛,2012,(3):105—112

[29]高飞,我国电动汽车研发战略联盟模式选择研究[D],河北师范大学硕士学位论文,2012

[30]韩怀玉,我国新能源汽车产业发展的国际比较研究[D],陕西师范大学硕士学位论文,2012

关于锂离子蓄电池的研究论文

近两年,废电池对环境的影响成为国内媒体热门话题之一。有的报道称电池对环境污染很严重,一节电池可以污染数十万立方米的水。有的甚至说废电池随生活垃圾处理可以引起诸如日本水俣病之类的危害,这些报道在社会上引起了很大反响,有很多热爱环保的人士和团体开展或参加了回收废电池的活动。 然而,国家环保总局有关人士却认为,废电池不用集中回收,以前有关废电池危害环境的报道缺乏科学依据,在某种程度上对群众造成了误导。那么,废电池怎样处理才科学呢?本文拟就此问题作以简要介绍,以期帮助大家更科学地认识废电池处理问题,更好的保护我们的环境。 废电池里面到底有哪些污染物 清华大学环境科学与工程系的博士生导师聂永丰教授,带领课题组专门对废电池的危害和处理做过研究。他介绍说,近年来关于废旧电池给环境带来危害的报道的确很多,但是遗憾的是,这些报道未向读者或观众说明支持其结论的科研内容,没有向读者介绍其分析推理过程,也没有列举因干电池造成污染的实际案例,只有“污染严重”的结论。 废电池中含有哪些有害物质,这些物质通过什么样的机理释放到环境中,会对环境造成多大程度的损害,国内外有无废干电池引起严重污染的案例,发达国家是怎样解决这个问题的?带着疑问,课题组作了全面深入的调查,得出的结论与一些新闻报道相去甚远,这些报道确有不切合实际和偏激之处。 聂教授介绍说,电池产品可分一次干电池(普通干电池)、二次干电池(可充电电池,主要用于移动电话、计算机)、铅酸蓄电池(主要用于汽车)三大类。用量最大、群众最关心,报道最多的是普通干电池。下面所说的电池均指普通干电池。 电池主要含铁、锌、锰等,此外还含有微量的汞,汞是有毒的。有报道笼统地说,电池含有汞、镉、铅、砷等物质,这是不准确的。事实上,群众日常使用的普通干电池生产过程中不需添加镉、铅、砷等物质。 废电池中的汞没有对环境构成威胁 汞的挥发温度低,是一种毒性较大的重金属。很多地方的土壤中也含有微量的汞,在汞矿开采、提炼、含汞产品加工过程中,如密闭措施不够完备,释放到空气中的汞(蒸气)对操作人员的健康影响很大。 电池中虽然含有汞,但由于是添加剂,其含量很少。即便是高汞电池,含汞量一般也在电池重量的千分之一以内。我国电池行业全年的用汞量,大体上与一个汞法聚氯乙烯,或汞法炼金,或高汞铅锌矿采选的企业年排放废水中的含汞量相当。由于电池消费区域大,含汞废电池进入生活垃圾处理系统以后,对环境的影响比前述一个化工企业排放含汞废水所造成的影响要小得多,况且电池使用了不锈钢或碳钢做外包皮,有效地防止了汞的外漏。因而废电池分散丢弃在生活垃圾中,其危害微乎其微,在客观上不可能造成水俣病之类的危害。日本的水俣病是化工企业几十年向一条河流排放大量含汞废水,下游水系中汞逐渐累积造成的。 含汞电池正在被无汞电池代替 当然,含汞废电池毕竟对环境有负面影响(哪怕是轻微的)。因此,在1997年底,国家经贸委、中国轻工总会等9部门联合发出《关于限制电池汞含量的规定》,借鉴发达国家的经验,要求国内电池制造企业逐步降低电池汞含量,2002年国内销售的电池要达到低汞水平,2006年达到无汞水平。 从实际进展来看,国内电池制造业基本按照《规定》要求在逐步削减电池汞含量。据中国电池工业协会提供的数据,我国电池年产量为180亿只,出口约100亿只,国内年消费量约80亿只,基本已达到低汞标准(汞含量小于电池重量的%)。其中约有20亿只达到无汞标准(汞含量低于电池重量的%)。 聂教授最后强调,截至目前国内外均无废电池造成严重污染的报道或科研资料,有关废电池污染环境的说法的确缺乏科学根据,对群众造成了误导。 废电池集中回收处理不当会造成污染 如果按某些报道呼吁的那样,在我国建造一个专业的、能够批量处理废电池的工厂,是否可行呢?国家环保总局污控司固体处彭德富工程师介绍说,建设一个废电池回收处理厂,需要投资1000多万元人民币,而且还要每年至少回收4000多吨废旧电池,工厂才能运转起来。而实际上要回收这样大数量的废电池十分困难。以首都北京为例,在大力宣传和鼓励下,3年才回收了200多吨。在环保模范城杭州市,废电池的回收率也只有10%。据了解,目前瑞士和日本已建好的两家可加工利用废旧电池的工厂,现在也因吃不饱经常处于停产状态。这不得不让我们慎重考虑投资建回收厂的问题。

1990年以来发表的论文(Eng.):新世纪1. Surface-modified Graphite as an improved intercalating Anode for Lithium ion Batteries,, , e l,Electrochem. & Solid State Lett. , 6 (2003).A30-A332. Possible use of ferrocyanide as a redox additive for prevention of electrolyte decomposition in overcharged nickel batteries, Electrochem. Acta, (2003)3. Temperature Effects on the Electrodeposition of Zinc, u, e l ,J. Electrochem. Soc., 150 (2003) . Hydrogen production from catalyzed hydrolysis of sodium borohydride solution using nickel boride catalyst,, e l,Int. J. Hydrogen Energy 28 (2003)10955. A Mechanistic Study of Electrocatalytic Reduction of Oxygen on Manganese Dioxides in Alkaline Aqueous Solution, Y. L. Cao, H. X. Yang*, X. P. Ai, and L .F .Xiao, J. Electroanal. Chem.,(2003) ,6. Structural and electrochemical characterization of calcium zincate mechanochemically synthesized as rechargeable anodic materials,, H. Yang, X. Ai, J. Yu and Y. Cao, J. Appl. Electrochem., 33(2003)6077. A study of calcium zincate as negative electrode materials for secondary batteries, u, l, J. Power Sources, 103 (2001) 938. Effects of Anions on the Zinc Electrodeposition onto Glassy-Carbon Electrode, u, e l,, Russ. J. Electrochemistry, 38 (2002) . Modeling and prediction for discharge lifetime of battery systems using hybrid evolutionary algorithms, , J. Yu et al., Computer and Chem., 25(2001)251上世纪10. The influences of organic additives on Zinc electrocrystallization from KCl solution, u, , , l, J. Electrochem. Soc., 146 (1999)178911. A new approach to the estimation of electrocrystallization parameters, J. Electroanal. Chem., 474 (1999)6912. Preparation and characterization of LiNiO2 synthesized from Ni(OH)2 and , , , u, i, J. Power Souces, 79(1999)25613. A study of LiMn2O4 synthesized from LiCO3 and MnCO3, u, i, , i, J. Power Sources, 74(1998)24014. The kinetic study on the electrolytic hydrogenation of nitrobenzene on the hydrogen-storage alloy electrode, S. Lu, i, u, iu, , J. Electroanal. Chem., 457(1998)14915. Initial activation of hydrogen storage alloy electrode by chemical modification, J. Rare earth metals, S. Lu, i, u, iu, u, . Rare Earths,16( 4), 307(1998)16. Effects of lanthanum and neodymium hydroxides on secondary alkaline zinc electrode, J. L. Zhou, Y. H. Zhou , H. X. Yang , J. Power sources, 69,(1997)16917. Polypyridine complexes of iron used as redox shuttles for overcharge protection of secondary lithium batteries. C. S. Cha , X. P. Ai, and H. X. Yang , J. Power Sources , 54, (1995)25518. In-situ ESR study on electrochemical lithium intercalation into petrulum coke , L. Zhuang, J. Lu, X. Ai, H. Yang , J. Electroanal. Chem. , 397, (1995)31519. Powder Microelectrodes, C. S. Cha, C. M. Li , H. X. Yang , P. F. Liu , J. Electroanal. Chem. , 368, (1994)4720. Electrochemical and structural studies of the composite MnO2 cathode doped with metal oxides , H. X. Yang, X. P. Ai , M .Lei ,S. X. Li , J. Power sources , 43-44, (1993)53321. Recent advances in experimental methods applied to lithium battery researches , J. Power Sources , C. S. Cha , H. X. Yang, J. Power sources , 43-44, (1993). Fractal structure structure of colloidal silver and its effects on SERS intensities of crystal violet , Chinese Chem. Letters, 3, (1992)91923. The observation of enhanced RAMAN scattering of gaseous molecules by Hg microdroplets, Chinese Chem. Letters, 2, (1991)54924. A novel optically transparent thin layer electrode for in situ IR spectroelectrochemistry , Chinese Chem. Letters, 2, (1991)25. Fiber optic thin-layer electrode cell for in situ transmission spectro- electrochemistry , Chinese Chem. Letters, 2, (1991)329 1990年以来发表的论文(中文):21世纪1. 联苯用作锂离子电池过充保护剂的研究, 肖利芬, 艾新平, 曹余良, 杨汉西, 电化学, 9(1), 23(2003)2. 塑料化聚合物电解质的导电性质, 艾新平,董全峰,杨汉西, 电池,32(S1), 48(2002)3. 尖晶石型ZnMn_2O_4的合成及其电化学行为, 李升宪,李保旗,杨汉西,艾新平, 电池,32, 3( 2002)4. 锌酸钙的制备与电化学性能研究, 喻敬贤,杨汉西,朱晓明,艾新平, 电池, 31(2) 65(2001)5. 圆柱型锌空气电池研究, 李升宪,周贵茂,艾新平,杨汉西, 电化学,6(3), 341(2000).6. 塑料化薄膜锂离子电池的制造技术, 艾新平,洪昕林,董全峰,李升宪,杨汉西, 电化学, 6(2), 193(2000)上世纪90年代7. LiMn2O4正极在高温下性能衰退现象的研究, 胡晓宏,杨汉西,艾新平,李升宪,洪昕林, 电化学, 5(2), 224(1999)8. 纳米光亮镀锌层的结构研究, 喻敬贤,陈永言,黄清安,杨汉西, 高等学校化学学报,20(1),107 (1999)9. 添加剂对锌结晶行为的影响及参数的演化优化, 化学学报, 57,953(1999)10. 锡基非晶态材料的化学合成及其嵌锂性能的初步研究, 刘立,杨汉西,孙聚堂,艾新平, 电化学,4(4), 362 (1998)11. 石墨负极锂嵌碳机理的研究, 周震涛,黄静,汪国杰,艾新平,杨汉西,, 华南理工大学学报(自然科学版) 1998年07期12. 贮氢合金用作有机加氢反应新型催化剂研究进展, 卢世刚,杨汉西,杨聪智, 化学通报 12, 1(1998)13. 电阻应变法用于密封电池内压变化的动态检测, 杨汉西, 胡容辉,艾新平,杨聪智,李升宪, 电化学, 4(3), 318(1998)14. 薄膜塑料锂离子电池的初步研究, 董全峰, 杨汉西, 艾新平, 胡晓宏,李升宪, 电化学, 4(1), 9(1998)15. 电化学制备Ni-Cu/Cu超晶格多层膜, 喻敬贤,陈永言,黄清安,杨汉西, 武汉大学学报(自然科学版) 1998年06期16. 氢气在贮氢合金电极上析出反应机理的研究, 卢世刚,李群,刘庆国,路春,党兵,杨汉西, 电化学,4(3),265 (1998)17. 非水介质中Zn-MnO_2的可充性研究, 李保旗,杨汉西,李升宪,杜米芳,艾新平, 电化学,3(3), 277 (1997)18. 泡沫镍的电沉积制备技术, 何细华,胡蓉晖,杨汉西,左正忠, 电化学,2(1), 66 (1996)19. 微电极定量方法评价贮氢合金的电化学性质, 胡蓉晖,杨汉西,刘金成,李升宪,查全性, 电化学,2(4), 391(1996)20. 贮氢合金电极的活化方法和作用机理研究, 胡蓉晖,杨汉西,卢世刚,李升宪,刘金城,杨聪智, 电化学,2(2), 170 (1996)21. 电沉积泡沫铜, 何细华,左正忠,杨汉西, 材料保护 1996年11期22. 无氟微酸性体系镀铅研究, 何细华,左正忠,杨汉西, 电镀与环保 1995年05期23. 贮氢合金用作硝基苯电解加氢的催化电极研究, 卢世刚,杨汉西,王长发, 电化学, 1(1), 15(1995)24. 金属氢化物-镍电池充电过程消气反应研究, 刘金城, 杨汉西, 胡蓉辉, 吴锋, 电源技术, 19(4), 1(1995)25. 超薄层红外光透电解池的设计和应用, 肖以金,杨汉西,查全性,, 分析化学 1994年02期26. 电化学石英晶体微天平对银电极氧化还原过程的研究, 陈胜利, 吴秉亮, 杨汉西, 高等学校化学学报, 15(1), 103(1994)27. 炭材料作为储锂负极的研究, 杨汉西, 雷鸣,李升宪,艾新平, 应用化学, 10(1), 113(1993)28. Li/SOCl2 电池的拉曼光谱电化学研究, 钟发平, 杨汉西, 查全性等, 高等化学学报, 14, 265(1993)29. 简易多功能光谱电化学池的设计, 肖以金, 杨汉西, 冯之刚, 伏亚萍, 光谱学与光谱分析, 13(6), 103(1993)30. 激光拉曼光谱的光纤采样技术, 钟发平, 吴国帧, 杨汉西等, 光谱学与光谱分析, 13(6), 29(1993)31. 甲基吡啶电氧化过程的表面增强RAMAN光谱研究, 钟发平, 杨汉西, 查全性, 化学学报, 51, 273(1993)32. 阴极限制型Li/SOCl2电池过放电产物的热分析, 肖以金, 杨汉西, 查全性, 应用化学, 10(3), 54(1993)33. C60 电化学还原的稳态性质研究,杨汉西, 肖以金, 朱凌等, 物理化学学报, 8, 580(1992)34. 微型拉曼电解池现场研究硫酰氯的电化学还原, 钟发平, 杨汉西, 徐知三, 查全性, 物理化学学报, 8, 266(1992)35. 锌离子在λ-MnO2中的电化学嵌入, 吴智远, 杜米芳, 杨汉西等, 应用化学, 9(2), 99(1992)36. 锂电化学嵌入尖晶石二氧化锰研究, 吴智远, 杨汉西, 石中等, 电池, 22(1), 13(1992)37. 锂离子电池炭负极研究, 杨汉西, 艾新平, 雷鸣, 李升宪, 电源技术, 5, 2(1992)38. MnO2作为二次锂电池阴极材料研究, 李升宪, 杨汉西, 吴智远, 汪振道, 电源技术, 4, 7(1991)39. AA-型Li/λ-MnO2 二次电池研究, 李升宪, 杨汉西, 吴智远等, 电池,21(5), 10(1991)40. 锂/硫酰氯电池体系的初步研究, 杨汉西,钟发平, 汪振道等, 电源技术, 2, 5(1990)41. 大功率锂/亚硫酰氯电池高效炭阴极研究, 汪振道, 杨汉西, 范玉章, 雷鸣, 电源技术, 1, 3(1990)

锂离子电池的研究进展摘要 介绍了锂离子电池的电化学反应原理、一般特性及电池正极材料、负极材料、电解质材料的研究进展,同时也介绍了目前存在的问题和发展前景。关键词 锂离子电池,研究进展,展望R&D of Li-ion secondary batterySun Chunwen(Department of Applied Chemistry,Tianjin University,300072)Abstract The fundamental principle of electrochemical reaction of Li-ion battery,its general properties and the progress of researches on materials for cathode,anode and electrolyte are introduced in this the same time its existing problems and prospects are also words Li-ion battery,research progress,prospect自从1859年Gaston Plante提出铅酸电池概念以来,化学电源界一直在研制新的高比能量、长循环寿命的二次电池。1990年日本索尼公司率先研制成功锂离子电池〔1〕。它是把锂离子嵌入碳中形成负极,取代传统锂电池的金属锂或锂合金作负极。负极材料是石墨和焦炭等碳材料。目前的正极材料主要是LiCoO2,其次是LiNiO2和LiMn2O4。电解质为LiAsF6+PC(碳酸丙烯酯)、LiAsF6+PC+EC(碳酸乙烯酯)及LiPF6+EC+DMC(碳酸二甲酯)。隔膜为PP微孔薄膜、PE微孔薄膜或两者双层。锂离子电池既保持了锂电池高电压、高容量的主要优点,又具有循环寿命长、安全性能好的显著特点,在便携式电子设备、电动汽车、空间技术、国防工业等领域展示了良好的应用前景和潜在的经济效益,是近年来受到广泛关注的研究热点。1 锂离子电池的电化学反应原理及特性这种电池的正负极均采用可供锂离子(Li+)自由嵌脱的活性物质,充电时,Li+从正极逸出,嵌入负极;放电时Li+则从负极脱出,嵌入正极。这种充放电过程,恰似一把摇椅。因此,这种电池又称为摇椅电池(Rocking Chair Batteries)。以LiCoO2为正极材料,石墨为负极材料的锂离子电池,充放电反应式为锂离子蓄电池的一般特性〔2〕:(1)体积及质量的能量密度高;(2)单电池的输出电压高,为 V;(3)自放电率小;(4)在60℃左右的高温下也可以使用;(5)不含有毒物质等。2 锂离子电池的研究进展研究锂离子蓄电池的关键技术是采用能在充放电过程嵌入和脱嵌锂离子的正、负极材料及选用合适的电解质材料。 正极材料作为正极材料的嵌锂化合物是锂离子的贮存库。为了获得较高的单体电池电压,应选择高电势的嵌锂化合物。一般而言,正极材料应满足〔3~7〕:(1)在所要求的充放电电位范围内,具有与电解质溶液的电化学相容性;(2)温和的电极过程动力学;(3)高度可逆性;(4)全锂化状态下在空气中稳定性好。目前研究的热点主要集中在层状LiMO2和尖晶石型LiM2O4结构的化合物上(M=Co、Ni、Mn、V等过渡金属离子)。能作正极活性物质的主要有LiCoO2、LiNiO2和LiMn2O4等。最早用于商品化的锂离子电池中的正极为LiCoO2,它属于α-FeO2型结构。其合成方法是将Li2CO3和CoCO3按摩尔比Li/Co=1∶1的比例混合,在空气中700℃灼烧而成〔8〕。其可逆性、放电容量、充放电效率、电压的稳定性等性能均很好。因此,目前正极材料主要采用LiCoO2,或在其中再添加Al、In等元素的复合钴酸锂。但是,由于钴材料成本较高,资源缺乏,因此,必须开发少用钴、不用钴或廉价易得的材料,如用镍或锰来取代钴,这样电池单价可大大降低。LiNiO2是继LiCoO2后研究较多的层状化合物,一般是用锂盐和镍盐混合在700~850℃经固态反应制备。镍与钴的性质相近,价格比钴低廉。LiNiO2目前的最大容量为150 mAh/g,工作电压范围为~ V,不存在过充电和过放电的限制,Ohzuku〔9〕认为它是锂离子电池中最有前途的正极材料之一。但由于LiNiO2的制备中存在许多问题,所以LiNiO2的实际应用还受到限制。例如,制备三方晶系的LiNiO2时容易产生立方晶系的LiNiO2,特别是当热处理温度大于900℃时,LiNiO2将全部以立方晶系形式存在,而在非水电解质溶液中,立方晶系的LiNiO2无电化学活性。尖晶石型的LiM2O4(M=Mn、Co、V等)中M2O4骨架是一个有利于Li+离子扩散的四面体和八面体共面的三维网络。其典型代表是LiMn2O4。因为在加热过程中易失去氧而产生电化学性能差的缺氧化合物,使高容量的LiMn2O4制备较复杂,现在常用的合成方法有多步加热固态合成法、溶液-凝胶法、沉淀法等。如何克服容量在循环时下降的问题是目前LiMn2O4研究的焦点。因此,尖晶石型特别是掺杂型LiMn2O4的制备及结构与性能的关系仍是今后锂离子电池电极材料研究的方向。 负极材料锂离子电池作为一种新型的高能电池在性能上的提高仍有很大的空间,而碳材料性能的提高是其中的主要关键。负极碳材料应具备大容量、良好的充放电特性、高度可逆的嵌入反应、热力学稳定以及对电解液稳定的性能。1973年就有人提出以碳作为嵌锂材料,但直到1990年索尼公司以石油焦炭作为负极,才使锂离子电池的研究进入实用化阶段,从而掀起了世界范围的研究热潮。用于锂离子电池的碳材料主要有以下几种,见下表。目前研究的碳负极材料主要有石墨、冶金焦炭、石油焦炭等。其中石墨具有层状结构,因此其层与层之间有可能嵌入原子或原子团,形成碳层间化合物。石墨用作锂离子蓄电池的负极,可用充电的方法在碳层之间嵌入锂离子,用放电的方法脱嵌锂离子。用嵌锂石墨作为负极时,研究的焦点主要有:不可逆容量损失的机理和抑制方法,石墨结构与电化学性能的关系等。石墨的结晶度、微观组织、堆积形式等都影响其嵌锂容量。有研究发现,部分无序排列的存在是石墨嵌锂容量小于理论容量的原因,通过调节热处理温度控制石墨的堆积形式是获得高容量的有效手段。日本本田研究与发展公司利用特殊处理方法解决了锂离子电池比容量低的问题。具体做法是将锂(分子)置于有序石墨板之间,材料经聚亚苯基(PPP)热处理后,再将高度取向的石墨经高压(5 000~6 000 MPa)热解。用该方法得到的石墨作负极,使负极达到了1 116 mAh/g的高比容量〔10〕。1991年日本NEC的Iijima用真空电弧蒸发石墨电极时,发现了具有纳米尺寸的碳多层管状物——纳米碳管。此后,引起了人们广泛的兴趣和深入的研究。纳米碳管具有尺寸小、机械强度高、比表面大、电导率高和界面效应强等特点,其顶端开口填充已用于高效催化载体、吸波材料等。近年来,已把碳管用于锂离子电池中作为负极材料,研究发现它具有高的可逆容量等优异的电极性能。目前,对碳电极材料的研究十分活跃,今后仍是锂离子电池研究的重点。 电解质材料主要采用锂盐和混合有机溶剂所组成的材料,如LiClO4/PC(碳酸丙烯酯)+DME(二甲基乙二醇)、PC+DME、PC+DME+EC(碳酸乙烯酯)、EC+DEC(碳酸二乙酯)、LiAsF6/EC+THF(四氢呋喃)等。有些专家认为,LiClO4是强氧化剂,使用很不安全。PC在蓄电池中因反应性强,易进入碳夹层,用于锂离子电池也不可取。LiPF6是适宜的用盐,1~2 mol/L LiPF6/EC+DMC是理想的电解液〔11〕。电解质的稳定性也是当前研究锂离子蓄电池的一个关键技术。另外,提高锂离子电池的容量、电极循环寿命、电池的安全性、减小自放电和实现快充仍是今后锂离子电池研究的关键技术。3 展望近年来锂离子电池作为一种新型的高能蓄电池,它的研究和开发已取得重大进展。但由于锂离子电池是一个涉及化学、物理、材料、能源、电子学等多学科的交叉领域,研制中还存在许多问题。运用传统的电化学研究方法结合现场、非现场的谱学方法等多种检测手段,对锂离子电池体系进行评价、优化设计,将会有力地推动锂离子电池的研究和应用。锂离子电池将是继镍镉、镍氢电池之后,在下世纪相当长一段时间内市场前景最好,发展最快的一种二次电池。参考文献1 Nagaura T,Tozawa Batts Sol Cells,1990(9):209~2172 李春鸿.电池,1996,26(6):286~2903 Miure K,Yamada A,et Acta,1996,41:249~2564 Gao Y,Dahn J Soc,1996,143:100~1145 Saidi M Y,Barker J,et Acta,1996,41:199~2046 Rougier A,Gravereau P,et Electrochem Soc,1996,143:1168~11757 周恒辉,慈云祥等.化学进展,1998,10(1):85~948 金属时评(日),1993(1525):29 Ohzuku T,Ueda A,et Acta,1993,38:1159~116710 任学佑.电池,1996,26(1):38~4011 Main Trends in Li-Ion Battery,Techno Japan,1994,27(3):58~60

地球,是人类共有的家园,是人类生命的摇篮;环境,是人类赖以生存的场所,是生活资料的来源。因此,保护环境的问题,显得尤为重要。在这个信息技术爆炸的时代,层出不穷的科技产品让人眼花缭乱。高科技产品逐渐普及,进入寻常百姓家。然而,在使用产品的同时,我们也在污染着我们的环境。生活中广泛使用的电池:手机、文曲星,照相机,mp3等等,造成了不可估量的环境污染就是其中的一个例子。电池中含有汞、铅、镍、锰等多种重金属,若不经过回收和妥善处理,而将其随意丢弃于自然环境之中,有毒物质便会慢慢从电池中溢出进入土壤或水体之中,再通过食物链入人体中,在人体内长期积累而难以排除,以致损害我们的神经系统,肾脏和骨骼,甚至还能致癌,而生活中,我们常常忽视废旧电池的处理环节。随着电子产品使用的日益增加,电池的消费量迅速增加,对于废旧电池的回收与处理问题自然成了突出的问题。我校在申请“绿色学校”时,专门设置了“可回收”与“不可回收”两种回收箱提醒我,我能为废旧电池回收做点什么?为此我开展了一系列调查。1、关于废旧电池回收难的原因调查。如何才能降低废旧电池对环境的污染,我认为回收废旧电池是关键。而在实际生活中有许多棘手的问题需要解决,其中最主要的是:1、市民缺乏环境意识,电池使用者过于分散,这是造成废旧电池回收难的重要原因。2、政府的宣传和执法力度不强,修理废旧电池技术有限是造成废旧电池处理难的重要原因。首先,对一则引人深思的信息的反思。我从《人民日报》中得知:一位以自费回收废旧电池而闻名的新乡市个体工商户田桂荣,于1999年,在一个偶然的机会,从报纸上发现废旧电池对环境造成的危害,这则消息对她的震动很大,她联想到自己销出的数不清的电池会破坏家乡秀美的山川,从此,回收废旧电池成了她的一项业务。刚一开始没有人主动来送,她就拿出自己做生意赚来的钱,以每节2分钱的价格自费收购,新乡市的中小学校、机关、商店等地,留下了田桂荣宣传保护环境回收废旧电池的身影。为了引起人们对废旧电池的关注,她自费制作了数千面印有“以旧换新、拯救地球”字样的绿色环保小旗以及200多个废旧电池回收箱,放在人多的公共场所。在她的不懈努力下,不少新乡市民加入到回收废旧电池的行列。两三年时间,田桂荣回收的废旧电池达60多吨。 然而让她意想不到的是,废旧电池的处理比回收更难。为了给这些固体污染物找一个理想的“归宿”,田桂荣四处奔波,先是找到当地一家电池厂,该厂技术负责人告诉她,从效益角度看,回收处理1节旧电池比生产3节新电池的成本还高,这家企业不愿干这件事。她又找到省、市环保部门,甚至专程到北京找有关部门咨询。但问来问去,得到的答复都是:“受技术条件限制,目前无法处理”。 一方面,她回收的废旧电池处理不成;但另一方面,市民们送来的废旧电池越来越多。没有办法,她只好一车一车地把废旧电池送到离市区十多公里的乡下老家。目前,她位于新乡县合河乡范岭村的老家那漂亮的两层楼房里,装有废旧电池的纺织袋从屋里堆到院子。 针对她的烦恼,记者采访了新乡市环保局副局长陈奇。这位领导认为,废旧电池中所含重金属污染严重,对此科研部门早有定论。但由于技术条件的限制,对废旧电池的回收、处理和再利用,目前还做得很不够。如果采用混凝土浇注填埋,也有一个选址、建厂的问题,还要进行防渗处理,这需要有充裕的经费支持。无独有偶,中央台在今年暑假也报道了另外一则与田桂荣情境完全相同的新闻。可见,市民缺乏环境意识,这是造成我国当前废旧电池污染问题的重要原因。而政府部门滞后的措施和缺乏应有的处理技术,是造成废旧电池污染问题的另一个重要原因。其次,对引人注目的现实的调查结果的反思。利用节假日,我对温州市区一些公共场所就 “对废旧电池的回收活动”进行调查。调查发现,尽管在温州市区的一些商场、社区和学校已经开展了对废旧电池的回收活动,但由于种种原因,成效不大,回收率仅为1%—2%。我做过以下问卷调查,内容包括年龄,职业,使用电池的态度等。此次活动共发放110份问卷,有效答卷90份。具体如下:年龄(岁) 10~20 20~30 30~40 40~45 45~55 55以上 人数 18 25 16 12 11 8 职业 学生 教育界 政府机关 企事业单位 服务业 其他 人数 38 8 2 16 14 12 使用率(平均一星期) 1~3节 3~5节 5~7节 7节以上 使用的电池(节) 83 4 2 1 购买电池的地方 超市 附近小店 路边小摊49 34 7对电池危害的认识 很大 一般 不大 不知道34 42 11 3此外,对本人居住小区附近的调查表明:有收购废旧电池习惯的有25人,对于听说过收购废旧电池活动的有15人。他们中对于开展这种活动的态度积极的有33人。这些数据表明,人们还没有完全形成回收旧电池的观念,有一部分人对于回收废旧电池的观念还不是很强,也可以说是环保意识还不强!其次,我们的政府部门也没有做好这方面的工作—对废旧电池的危害认识还不强,我们的宣传力度还不够。为了做更深入的研究,我针对消费者喜欢购买便宜电池的心态,对“便宜电池”的“便宜”亲身实验了一回:在一些商场的出租柜台或街头的小地摊上,常常会看到那些所谓的“便宜电池”,花个十元钱,你就可以随便买15、16节了。这个价格比品牌电池便宜多了,因此买得人也很多。凭着好奇心,我分别从商场买来“双鹿电池”和从地摊上买来“人人抢购”的便宜电池。在相同的时间里,分别进行放电实验。一天内,同样用于手电筒的放电,“双鹿电池”的电量还有剩余,而那个便宜电池的电量早就没了。结果表明,这些所谓的便宜货,其实并不是货真价实的。而消费者只看表面现象:便宜,不过本质:污染,人为地增加了废旧电池污染。因为:全国现在每年电池的消费量为140亿节,如果大量使用假冒伪劣的便宜电池,就会多增加两个140亿节的废旧电池!而在国家还没有妥善的办法处理之前,劣质电池购买越多,污染就会越严重。为此,我呼吁有关生产便宜电池的厂家应立即停止生产,多生产和开发出一些无污染且电量足的电池来!我提醒电池消费者:请购买无污染的电池,或者买个充电电池。调查表明:国产充电电池的价格为13元一只,进口的也只要15元一只。虽然价格高一些,但可以反复充电200次至500次,平均使用一次的价格每节只有几分钱,比便宜电池更为便宜,比普通的电池更持久,更耐用,更重要的是更有利于保护人类环境不受污染。不要为了一点“利益”而破坏环境,得不偿失啊!2、解决电池回收难的问题的几点建议:我们认为废旧电池回收问题的解决应该统筹兼顾:提高人们的环境意识是基础,制定完备的法律法规,加大有关政府部门的宣传和执法力度是保障,加速废旧电池资源再生利用技术的研究是重要条件等。具体做法如下,在公共场合,可适当粘贴一些警示语,提高人们对环境的保护,以尽量少地使用电池,还可开展一些关于回收废旧电池的公益活动,鼓励人们积极参与;政府部门应对那些制造便宜电池的厂商进行教育或者勒令他们停止生产;研制废旧电池再利用技术,通过科学技术,降低废旧电池的再生产利用的生产成本,提高经济效益,从而变废为宝。解决电池的问题,不是一朝一夕的事,更不是单单靠政府部门的努力的。这是我们大家的事!电池问题的解决,也就相当于在环保方面做出了努力。作为中学生,作为21世纪的主人,我们更应该树立环保意识,身体力行,积极加入环保行列,不做破坏环境之事,多做有益环境之事,从回收废旧电池开始,从不买劣质电池做起,为处理废旧电池努力,好好学习有关知识,争取早日研制出处理废旧电池的最佳方式乃至技术,为21世纪的地球,天蓝地绿水常清尽一份责任!最后,我想说的是,地球母亲在呼唤,世界人民在呼唤,社会大家庭在呼唤,为了你的家人,朋友,自己,保护环境,刻不容缓!关注环境,从解决废旧电池问题开始!

氢能源个股研究论文

近年来,随着氢能的能源属性日渐凸显,将氢能参照汽油等类似能源进行管理,还原其能源属性,完善标准体系和安全监管的呼声也越来越高。3月23日,业内期盼已久的氢能源属性在当日出台的《氢能产业发展中长期规划(2021 2035年)》中被明确,氢能也由此迎来了发展的风口。 熟悉氢能的人都知道,由于氢气被作为危险化学品列管,制氢和加氢装置只能建在化工园区内。化工园区通常地处偏远,不仅氢能用量有限,项目审批流程也很长,极大限制了氢能项目的布局和应用。从加氢站建设的角度来看,针对其安全距离的要求使得加氢站占地面积增加,导致土地成本飙升,这也使氢能难以大规模在城市核心区域布局。制氢和加氢的基础设施不足,直接制约了包括氢燃料电池 汽车 在内的氢能下游的推广应用,进而影响了氢能产业链的 健康 发展。 此次《规划》的出台,对氢能业而言无疑是“久旱逢甘霖”。《规划》指出“氢能是未来国家能源体系的重要组成部分”,首次明确了氢的能源属性,成为我国氢能产业发展的重要制度基础,并将对氢能产业发展发挥重要指导作用。清洁低碳氢能源的生产和使用也将成为“双碳”战略的重要实现路径。 氢能是一种来源丰富、绿色低碳、应用广泛的二次能源,正逐步成为全球能源转型发展的重要载体之一。从全球来看,以燃料电池为代表的氢能开发利用技术取得重大突破,全球氢能全产业链关键核心技术趋于成熟,一些主要发达国家和经济体已将氢能视为能源转型的重要战略选择,不断拓宽清洁氢气供应的市场份额。 从国内看,我国是世界上最大的制氢国,年制氢量约3300万吨,其中达到工业氢气质量标准的约1200万吨。我国可再生能源装机量居于世界首位,在清洁低碳氢能源供给上具有巨大潜力。我国也已初步掌握了氢能制备、储运、加注及燃料电池开发等关键技术,还在部分区域开展了燃料电池 汽车 示范应用。 为拓展石油和化工行业氢能应用场景,中国石油和化学工业联合会在2021年就专门成立了氢能专委会,旨在立足氢能源,从六个方面重点促进我国氢能产业发展。一是深入了解氢能行业发展现状和亟待解决的问题,利用联合会平台及时发声,推动行业 健康 发展。二是促进氢能全产业链、上下游协同发展。三是推动氢能关键共性技术的研发、示范和推广。四是推动氢能产业标准的完善与应用。五是反映行业重大利益诉求。六是在国际合作、技术孵化、产融服务上下功夫。这些都与此次出台的《规划》内容不谋而合。 《规划》还明确提出,要围绕氢能高质量发展重大需求,准确把握氢能产业创新发展方向,聚焦短板弱项,适度超前部署一批氢能项目,持续加强基础研究、关键技术和颠覆性技术创新。石化等相关行业要聚焦关键核心技术、聚焦创新支撑平台、聚焦专业人才队伍、聚焦国际合作机遇,建立完善更加协同高效的创新体系,不断提升氢能产业的竞争力和创新力。 相信有国家对氢能发展的顶层设计和相关行业协会的群策群力,氢能产业一定能抓住 历史 机遇,走上 健康 发展的新征程,助力“双碳”目标如期实现。 (朱良伟为中国石油和化学工业联合会国际交流和外企委员会副秘书长)

行业主要上市公司:美锦能源(000723);厚普股份(300471);中国石化(600028);卫星化学(002648);嘉化能源(600273);亿华通(688339)等

本文核心数据:氢能源板块上市公司研发费用;氢能源相关论文发表数量

全文统计口径说明:1)论文发表数量统计以“hydrogen energy”为关键词,选择“中国”、“论文”筛选。2)统计时间截至2022年8月17日。3)若有特殊统计口径会在图表下方备注。

氢能技术概况

1、氢能源的界定及分类

(1)氢能源的界定

氢能是氢在物理与化学变化过程中释放的能量。氢能是氢的化学能,氢在是宇宙中分布最广泛的物质,它构成了宇宙质量的75%,储量丰富。氢能被视为21世纪最具发展潜力的清洁能源,随着世界范围内对绿色经济发展重视程度的提升,氢能源的需求和应用领域不断扩展。

(2)氢能源的分类

按照氢气的来源,通常将氢能源分为三类,即灰氢、蓝氢和绿氢。

2、技术全景图:四大环节构成

氢能产业主要由制氢、储氢、运氢、加氢和用氢四大环节构成。为发挥氢能重要能源载体作用,需大力推动氢能产业每个环节的技术发展。其中电解水制氢、液态/固态储氢、液态有机储氢、氢燃料电池等先进技术研究对氢能产业规模化应用具有重要意义。

氢能产业技术发展历程:始于上世纪50年代

中国的氢能与燃料电池技术研究始于上世纪50年代。20世纪80年代以来,相继启动了863计划和973计划,加速以研究为基础的技术商业化项目,氢能和燃料电池均被纳入其中。“十三五”期间,氢能与燃料电池开始步入快车道。2016年以来相继发布《能源技术革命创新行动计划(2016-2030年)》、《节能与新能源汽车产业发展规划(2012-2020年)》、《中国制造2025》等顶层规划。2019年两会期间,氢能首次写入政府工作报告。2020年4月,氢能被写入《中华人民共和国能源法》(征求意见稿)。2021年,“十四五”规划指出要在氢能与储能等前沿科技和产业变革领域,组织实施未来产业孵化与加速计划,谋划布局一批未来产业。2022年发布第一个氢能源专项规划——《氢能产业发展中长期规划(2021-2035 年)》,为中国氢能源产业发展作为指引。

氢能产业技术政策背景:政策加持技术水平提升

近些年来,我国提出了一系列氢能产业技术发展相关政策,包括氢气制备、储运、应用和燃料电池等关键技术,使得氢能产业技术水平稳步提升。

氢能产业技术发展现状

1、氢能产业技术科研投入现状

(1)国家重点专项

为推进氢能技术发展及产业化,国家重点研发计划启动实施“氢能技术”重点专项。2018-2022年,“氢能技术”重点专项数量逐年增加。2018年仅9项技术专项,到2022年,“氢能技术”重点专项围绕氢能绿色制取与规模转存体系、氢能安全存储与快速输配体系、氢能便捷改质与高效动力系统及“氢能万家”综合示范4个技术方向,拟启动24项重点专项。

(2)A股上市企业研发费用

目前,中国氢能市场正处于发展初期,行业整体研发投入水平不算太高。从A股市场来看,2017-2021年,我国氢能源板块上市公司研发总费用逐年增长,2022年第一季度,氢能源板块上市公司研发总费用约亿元。

2、氢能产业技术科研创新成果

(1)论文发表数量

从氢能相关论文发表数量来看,2010年至今我国氢能相关论文发表数量呈现逐年递增的趋势,可见氢能科研热度持续走高。截至2022年8月,我国已有80825篇氢能相关论文发表。

注:统计时间截至2022年8月。

(2)技术创新热点

通过创新词云可以了解氢能产业技术领域内最热门的技术主题词,分析该技术领域内最新重点研发的主题。通过智慧芽提取该技术领域中最近5000条专利中最常见的关键词,其中,催化剂、燃料电池、制氢系统、电解水、电解槽等关键词涉及的专利数量较多,说明氢能领域近期的研发和创新重点集中于燃料电池和制氢等领域。

(3)专利聚焦领域

从氢能专利聚焦的领域看,目前氢能产业专利聚焦领域较明显,其主要聚焦于催化剂、燃料电池、制氢系统、电解水、电解槽等。

注:图中格子数量表示每家公司的专利覆盖率,每个格子代表相同数量的专利。

主要氢能产业环节技术分析

1、前端制氢环节:可再生能源电解制氢是氢源终极方案

制氢环节技术主要包括化石能源制氢和可再生能源制氢。其中,利用化石能源制氢并未摆脱能源对石油、煤炭和天然气的依赖,仍会产生大量碳排放;即使是加上CCUS捕集制备的蓝氢,一旦甲烷在制备过程中发生泄漏,对气候的影响比碳排放更大。而利用可再生能源进行电解水制氢,生产过程基本不会产生温室气体。

2、中端储运氢环节:固态储运安全性更好

储运氢气的方式主要分为气态储运、液态储运和固态储运。相比于气氢储运和液氢储运,固态储运在安全性方面优势明显。

3、后端加氢及氢燃料电池

(1)加氢:站内制氢成本优势大

加氢基础设施是氢能利用和发展的中枢环节,是氢能产业发展的核心配套设施。根据氢气来源不同,加氢站可分为外供氢加氢站和站内制氢加氢站。相较于外供氢而言,站内制氢能够大幅减小氢气的运输成本。

(2)氢燃料电池:质子交换膜燃料电池是主流发展方向

按电解质的种类不同,燃料电池可分为碱性燃料电池、质子交换膜燃料电池、硝酸型燃料电池、碳酸型燃料电池、固体氧化物燃料电池等。其中,质子交换膜燃料电池是当前燃料电池的主流技术发展方向。

氢能产业技术发展痛点及突破

1、氢能产业技术发展痛点

(1)高成本是制约氢能大规模发展的关键

当前,经济性为氢能产业发展最大的挑战因素,即使是成本相对较低的氢气($),除了转化成氨用作肥料以外,绝大多数氢能应用场景都比现有化石能源技术昂贵。解决氢能产业在绿氢制备、储运氢、加氢站建设、燃料电池电堆等关键环节的经济性问题,是未来氢能大规模发展必须要攻克的一道难题。

(2)制氢技术:先进电解技术发展不成熟

目前国内电解水制氢的成熟技术为碱性电解水制氢技术,碱性水电解槽难以响应瞬态负载,因而难以与波动大的可再生电力配合。另外,PEM电解水制氢技术也面临着匹配可再生能源电力而进行的电解槽设计、控制技术以及电源系统设计等尚不成熟的局面。

2、氢能产业技术发展突破

(1)先进电解技术:PEM电解槽设计改进突破

PEM电解槽设计改进策略方向包括更轻更稳定的端板和双极板、经济且耐腐蚀的集电器等。据Yagya N Regmi博士的研究小组研究发现,PEM电解中发生不含铂族金属催化的析氧反应在短期内是无法实现的,因此,尽可能使铱的质量活性最大化才是目前的可行策略。

(2)氢能储运:固态储氢和潜液式液氢泵突破储运氢技术瓶颈

氢能储运技术突破在于提高储氢密度和安全性,以及降低运输成本。固态储氢是利用物理或化学吸附将氢气储存在固体材料之中。固态储氢具有体积储氢密度高、安全性更好的优势,因此是一种有前景的储氢方式。因此,固态储氢得到了越来越多的研究和关注,主要工作集中在储氢材料的研发与改性等方面。以氢枫能源的镁基固态储氢为例,镁基固态储氢具有资源、性能及技术优势。

液氢泵为液氢储运的重要部件,用于对液体氢气进行传输分配。从氢能全产业链来看,氢气输配成本和初始资本支出为降本的最主要环节。潜液式液氢泵取代了外置泵,减少了氢蒸发,去掉了气氢压缩机;且用液氢的冷源省去制冷系统。此外,潜液式液氢泵大流量液氢泵直接加注,不用高压储罐,去除级联储存;最终的结果是减少初始投资和运行成本,使氢气的售价与汽油、柴油比肩。

氢能产业技术发展方向及趋势:氢能各环节技术加快突破

氢能供应体系发展路径以实现绿色经济高效便捷的氢能供应体系为目标,中国将在氢的制储运加各环节上逐渐突破。从长远看,随着用氢需求的扩大,结合可再生能源的分布式制氢加氢一体站、经济高效的集中式制氢、液氢等多种储运路径并行的方案将会是主要的发展方向。

「前瞻碳中和战略研究院」聚焦碳中和领域的政策、技术、产品等开展研究,瞄准国际科技前沿,服务国家重大战略需求,围绕“碳中和”开展有组织、有规划科研攻关,促进碳中和技术成果转化和推广应用,为企业创新找到技术突破口,为各级政府提供碳达峰、碳中和的战略路径管理咨询和技术咨询。院长徐文强博士毕业于美国加州大学伯克利分校,二十余年来一直深耕于低碳清洁能源和绿色材料领域的基础研究、产品开发和产业化,拥有55项专利、33篇论文,并已将30多种产品推向市场,创造商业价值50+亿元,专注于氢能、太阳能、储能等清洁能源研究。

以上数据参考前瞻产业研究院《氢能产业技术趋势前瞻及投资价值战略咨询报告》。

大家好,我是六爻,今天来说一说氢能源,氢能源是目前公认的清洁能源,现在的氢燃料电池处在政策推动的初期,类似于2014年那时候的锂电池发展阶段,谁可能成为下一个氢能源板块的“宁王”,今日内容很重要,大家仔细看完。重要事件推动:上头颁布氢能源在未来产业发展的长期规划中指出,到2025年我们要基本掌握核心技术和制造工艺,氢燃料电池要保有5万台,部署建设一批加氢站,还要 探索 氢能源在中大巴车,卡车,船舶等重型交通工具上的应用,到2030年要建立氢能源供应体系,到2035年要氢能源在消费终端比例要明显提升,政策方面和锂电池的发展阶段是很类似的。但是氢燃料电池和锂电池相比 ,氢能源的储存密度和储存时间更有优势。4只潜力氢能源个股解析,重要内容,记得收藏。1、亿华通公司是我国氢能源行业领军企业,在氢燃料电池研发方面成果显著。 现价: 公司总市值:亿 公司毛利率: 公司营收情况:亿 短期支撑: 短期压力:、美锦能源公司拥有从煤炭,焦化,天然气到氢燃料电池 汽车 的完整产业链体系。 现价: 公司总市值:亿 公司毛利率: 公司营收情况:亿 短期支撑: 短期压力:、宝丰能源公司开工建设的太阳能电解水制氢项目是目前国内较大的可再生能源制氢储能项目,项目主要包括新建20000标方/小时电解水制氢装置及配套公辅设施和200MWp复合型光伏电站。 现价: 公司总市值:亿 公司毛利率: 公司营收情况:亿 短期支撑: 短期压力:、冠城大通公司参股的上海舜华新能源系统有限公司,公司以推动氢能技术应用为使命,已成为国内知名的新型气态能源整体解决方案解决者。 现价: 公司总市值:亿 公司毛利率: 公司营收情况:亿 短期支撑: 短期压力:总结:我们在清洁能源的研究投入比例一年比一年大,在碳中和的大背景下市场潜力不言而喻,氢能源储存时间周期长,容量大的优势,会在未来绿色能源的推进过程中有举足轻重的地位。以上观点和个股仅供参考! 笔落惊风雨 ,点赞是祝福!祝大家股票长虹,万事如意!

相关百科

热门百科

首页
发表服务