贴近生活,化繁为简 -----将数学问题转化到实际生活中来教学的成功与否在很大程度上表现在是否培养了学生的数学能力,而数学能力的强弱在很大程度上又表现在学生能否运用所学知识去解决实际问题。因此,在数学教学中,如何使学生“领悟”出数学知识源于生活,又服务于生活,能用数学眼光去观察生活实际,培养解决实际问题的能力,应成为每位数学教师重视的问题。新编数学教材从概念的形成、方法的归纳、知识的运用等方面已为这方面的教学创造了很好的条件。但如何运用这些条件,创造性地发挥教师的主观能动性,使数学教学更贴近生活实际,培养学生解决实际问题的能力,是要我们不断实践和探索的。下面就谈谈这方面的体会。一、从生活实际中抽象出数学知识数学研究的是客观世界的数量关系和空间形式,它来源于客观世界的实际事物。在小学数学教学中,从生活实际出发,把教材内容与“数学现实”有机结合起来,符合小学生的认知特点,可以消除学生对数学知识的陌生感,同时也使他们受到辩证唯物主义的启蒙教育。1.从实际问题中抽象出数学概念、计算法则小学数学中的许多概念都可以在现实生活中找到相应的实例。例如:在常见的数量关系“工作时间?工作效率=工作总量”中的“工作效率”,学生不易理解。为此,我在教学前,在班里举行了一次缝纽扣比赛。教学新课时,联系缝纽扣的活动,学生就容易理解工作效率,就是指单位时间内所作的工作量。又如,“小括号”的教学可以这样进行:先出示“8 6?”与“6? 8”两道算式,让学生复习运算顺序。然后出示应用题:工人老师傅上午工作3小时,下午工作4小时,每小时做12个零件,他一天共做几个零件?(要求列综合算式)学生列式计算如下:12? 4=12?=84(个),教师设疑:先做加法,再做乘法,好像不对吧?揭示新旧知识之间的矛盾,在学生束手无策时,适时引出小括号。这样,通过问题的设计,矛盾的解决,使学生了解引进括号的原因和用途,懂得了先算括号里的数的道理。2.从贴近学生实际水平的现实出发,一步步地引出概念例如,“面积单位”可以这样教学:先出示大小差别比较明显的两个三角形,让学生比较它们面积的大小,得出:面积的大小可以用眼睛看出来;再出示两个等宽不等长、面积差不多的长方形让学生比较大小,得出:面积的大小可以用重叠的方法比较出来;然后出示不等长也不等宽、面积差不多的一个长方形和一个正方形让学生比较大小,学生深思后得出:可以画方格,再通过比较方格数的多少来比较面积的大小;最后出示两个方格数相等,但面积明显不等的图形,引导学生讨论,方格数相等为什么面积不相等?从这个现实问题中得出,方格的大小必须有统一的标准。这时引出“面积单位”,已是“水到渠成”了。这样组织教学,学生不仅掌握了面积单位的概念,而且了解了面积单位产生于解决实际问题的过程,受到了辩证唯物主义的启蒙教育。二、运用数学知识解决实际问题学习是为了应用。因此,教师应联系实际培养学生运用数学知识解决实际问题的意识和能力。1.联系实际,增强学生的数学意识数学知识在**常生活中有着广泛的应用,生活中处处有数学。学了三角形的稳定性后,可以让学生观察生活中哪些地方运用了三角形的稳定性;学习了圆的知识,让学生从数学的角度说明为什么车轮的形状是圆的,三角形的行不行?为什么?还可以让学生想办法找出面盆底、锅盖等的圆心在哪里。通过了解数学知识在实际中的广泛运用,培养学生用数学眼光看问题,用数学头脑想问题,增强学生用数学知识解决实际问题的意识。2.创设情境,培养学生解决实际问题的能力学生掌握了某项数学知识后,可以有意识地创设一些把所学知识运用到生活实际的环境。例如,学了“按比例分配”的知识后,让学生帮助算一算本住宅楼每户应付的电费;学了“利息”的知识后,算一算自己在“新星小银行”存储的钱到期后可以拿到多少本息等。在学了百分比的知识后,我和学生做了一个游戏,方法是:在一个布袋里放6个同样的小球,分别标上1~6六个数字,老师和学生轮流每次从袋中摸出2个小球,如果球上两数相加和为偶数,学生赢,加起来和为奇数,教师赢。比赛结果教师赢的次数多,然后引导学生讨论,并把各种情况一一列出,得知,和为偶数的有6种情况,和为奇数的有9种情况,老师赢的可能性占60%,学生赢的可能性占40%,所以老师赢的次数多。最后还指出,街头巷尾的有些赌博活动,“坐庄”者使的就是这种术,不要轻易上当。3.加强操作,培养能力要把课堂上所学数学知识应用于生活实际,往往被错综复杂的生活现实所难住。这就要加强实践操作,培养把所学知识运用于生活实际的能力。例如,教了“比和比例”后,我有意把学生带到操场上,要学生测量计算操场边的水杉树高。水杉高参天,如何测量?多数同学摇头,少数几个窃窃私语,提出爬上去量,但是两手抱树怎么量?有人提议拿绳子,先用绳子量树,下树后再量绳子。这可是个好办法,可又无枝可攀,如何上去?教师适时取来一根长2米的竹竿,笔直插在操场上。这时正阳光灿烂,马上出现了竹竿的影子,量得这影子长1米。启发学生思考:从竿长是影子的2倍,你能想出测树高的办法吗?学生想出:树高也是它的影长的2倍。(教师补充“在同一时间内”。)这个想法得到肯定后,学生们很快从测量树影的长,算出了树高。接着,教师又说:“你们能用比例写出一个求树高公式吗?于是得出:竿长:竿影长=树高:树影长;或:树高:竿长=树影长:竿影长。在这个活动中,学生增长了知识,锻炼了能力。