只利用尺规作图,能否把任意角三等分? 不能.用于尺规作图的直尺,没有刻度,只能用来画平面内经过两点的直线;圆规只能用来画给定圆心和半径的圆和弧.在第一册《几何》教科书中已指出,利用尺规可以作一条线段等于已知线段,本册《几何》教科书在本章第三大节中又指出了利用尺规可以进行另外四种基本作图.利用尺规,还可以画出其他一些几何图形,但偏偏不能三等分任意角.1882年,数学家们终于证明了只用尺规三等分任意角是不可能的.可是直到现在,还有一些中学生和其他人声称他们解决了用尺规三等分任意角的问题,这只说明他们不懂得什么是数学,什么是一定的数学体系和数学证明.事实上,只要放宽尺规作图的限制条件,那么三等分任意就是可以的. 网上资料,仅供参考 三等分角问题(trisection of an angle)是二千四百年前,古希腊人提出的几何三大作图问题之一,即 用圆规与直尺把一任意角三等分.问题的难处在于作图使用工具的限制.古希腊人要求几何作图只许使用直尺 (没有刻度,只能作直线的尺)和圆规.这问题曾吸引着许多人去研究,但都无一成功.1837年凡齐尔( 1814-1848)运用代数方法证明了,这是一个标尺作图的不可能问题. 在研究「三等分角」的过程中发现了如蚌线、心脏线、圆锥曲线等特殊曲线.人们还发现,只要放弃「尺 规作图」的戒律,三等分角并不是一个很难的问题.古希腊数学家阿基米得(前287-前212)发现只要 在直尺上固定一点,问题就可解决了.现简介其法如下:在直尺边缘上添加一点P,命尺端为O.设所要三等分的角是∠ACB,以C为圆心,OP为半径作半圆交角边于A,B;使O点在CA延在线移 动,P点在圆周上移动,当尺通过B时,连OPB(见图).由于OP=PC=CB,所以∠COB=∠AC B/3.这里使用的工具已不限于标尺,而且作图方法也与公设不合. 另有一机械作图的方法可以三等分角,简介如下: 如右图:ABCD为一正方形,设AB均匀向CD平行移动,AD以D为中心依顺时针方向转到DC,若AB抵达DC时DA也恰好抵达DC,则他们交点的轨迹AO即曲线称为三分线. 令A是AC弧上的任一点,我们要三等分 ADC,设DA与三分线AO交于R,过R作AB之并行线交AD、BC于A、B,令T、U是AD之三等分点,过T、U作AB之并行线交三分线AO于V、W,则DV、DW必将 ADC三等分.