数据是国家基础性战略资源,是数字经济的基石,对生产、流通、分配和消费产生深远影响。2020年,《数据安全法(征求意见稿)》[也正式发布,将数据安全纳入国家安全观,更体现了数据安全日趋重要的发展趋势。数据是工业互联网的“血液”,加强工业互联网数据安全防护对于工业互联网的健康发展至关重要。
2 国内外对于数据安全防护的工作进展面对日益严峻的数据安全威胁,世界主要国家持续加强数据安全立法和监管。据统计,全球已有120多个国家和地区制定了专门的数据安全和个人信息保护相关法律法规及标准。从国际标准组织和欧美国家在数据安全所做的工作来看,国际电信联盟电信标准局(ITU-T)制定了《大数据服务安全指南》、《移动互联网服务中大数据分析的安全需求与框架》、《大数据基础设施及平台的安全指南》、《电信大数据生命周期管理安全指南》等多项标准。从国内已制定的数据安全相关标准来看,主要有《信息安全技术 大数据安全管理指南》、《信息安全技术 健康医疗数据安全指南》、《信息安全技术 大数据服务安全能力要求》、《信息安全技术 数据安全能力成熟度模型》等。《信息安全技术 大数据安全管理指南》为大数据安全管理提供指导,提出了大数据安全管理基本原则、基本概念和大数据安全风险管理过程,明确了大数据安全管理角色与责任。《信息安全技术 数据安全能力成熟度模型》提出了对组织机构的数据安全能力成熟度的分级评估方法,用来衡量组织机构的数据安全能力,促进组织机构了解并提升自身的数据安全水平。《信息安全技术 健康医疗数据安全指南》提出了健康医疗领域的信息安全框架,并给出健康医疗信息控制者在保护健康医疗信息时可采取的管理和技术措施。《信息安全技术 大数据服务安全能力要求》、《信息安全技术 数据交易服务安全要求》分别针对大数据服务、数据交易的情景提出了安全要求。2020年,由国家工业信息安全发展研究中心牵头申报的《工业互联网数据安全防护指南》被列为全国信息安全标准化技术委员会(TC260)标准重点研究项目。3 工业互联网数据安全防护难点随着云计算、物联网、移动通信等新一代信息技术的广泛应用,泛在互联、平台汇聚、智能发展等制造业新特征日益凸显。工业互联网数据常态化呈现规模化产生、海量集中、频繁流动交互等特点,工业互联网数据已成为提升企业生产力、竞争力、创新力的关键要素,保障工业互联网数据安全的重要性愈发突出。工业互联网数据具有很高的商业价值,关系企业的生产经营,一旦遭到泄露或篡改,将可能影响生产经营安全、国计民生甚至国家安全。然而,工业企业类型多样,工业互联网数据更是海量多态,给数据安全防护带来了困难和挑战。(1)传输阶段监测溯源难。工业互联网场景涉及云计算、大数据、人工智能等多种技术的应用,且工业互联网数据在工厂外流动更加复杂多元。大流量、虚拟化等环境下难以有效捕捉追溯敏感数据和安全威胁;(2)存储阶段分类分级难。存储阶段极易形成数据的汇聚,需要根据数据的类别和等级采用划分区域、设置访问权限、加密存储等多种手段。然而工业互联网数据形态多样、格式复杂,使得数据分类分级管理与防护难度大;(3)使用阶段可信共享难。对工业互联网数据进行分析利用是发展工业互联网数据作为生产要素的重要途径,然而数据权责难定、安全可信赋能难等阻碍数据有序安全共享。
4 工业互联网数据安全防护的解决方法根据工业互联网数据安全防护需求,天锐绿盾数据安全一体化,能够给出相应的解决方案,在工业数据传输阶段和使用阶段可以使用天锐绿盾DLP数据泄露防护系统,通过智能内容识别的的技术如关键字和关键字对的检测,ocr图像的识别、文件属性的检测、向量机分类检测等方式来捕捉传输阶段的敏感数据从而保证工业互联的传输安全,在数据使用阶段可以使用天锐绿盘为解决企业文档管理分散的问题,系统采用集中存储的模式,将分散存储在各部门、各分公司用户计算机上的重要数据集中存储到统一平台上,实现对工业数据文档的统一管理,同时降低文档管理成本。系统建立了完善的权限控制机制,保证不同用户基于不同权限访问和使用文档,有效保障了文档加密的安全性。多种检索模式,支持全文关键词检索、高级检索、扩展属性搜索等高效毫秒级检索方式,有效帮助用户精确的从海量文档中快速定位所需文档。文档在协作完成过程中,会产生不同的版本。系统支持自动保存文档的历史版本,当用户需要恢复旧版本时,可一键下载。 为了实现海量数据的集中存储,系统采用分布式存储服务,以便企业未来可按需进行存储性能扩展。
在数字经济时代,企业纷纷加快数字化转型,工业互联网快速发展,给后疫情时代带来新的经济增长活力。数据是工业互联网的“血液”,数据安全对于工业互联网发展至关重要。在设备安全、系统安全之上加强工业互联网数据安全防护,是我们天锐绿盾应尽的责任和义务。