计量经济学论文可以研究的问题有多种,期中比较简单的就是根据数据,建立方程,研究变量之间的关系,主要运用的工具就是计量经济学的初等知识和Eviews软件,思路、要求和注意事项我觉得这么说对你的帮助不大,所以给你一篇我的论文做参考,也许对你有帮助,如果你觉得看的不是很明白的话,可以再留言给我,我把什么思路等告诉你。计量经济学期末实验报告实验名称:大中城市城镇居民人均消费支出与其影响因素的分析姓 名:学 号:班 级: ()级统计学系()班指导教师:时 间:(上面是论文封皮)23个城市城镇居民人均消费支出与其影响因素的分析(题目)一、 经济理论背景近几年来,中国经济保持了快速发展势头,投资、出口、消费形成了拉动经济发展的“三架马车”,这已为各界所取得共识。通过建立计量模型,运用计量分析方法对影响城镇居民人均消费支出的各因素进行相关分析,找出其中关键影响因素,以为政策制定者提供一定参考,最终促使消费需求这架“马车”能成为引领中国经济健康、快速、持续发展的基石。二、 有关人均消费支出及其影响因素的理论我们主要从以下几个方面分析我国居民消费支出的影响因素:①、居民未来支出预期上升,影响了居民即期消费的增长居民的被动储蓄直接导致购买力的巨大分流, 从而减弱对消费品的即期需求,严重地影响了居民即期消费的增长,进而导致有效需求的不足,最终导致经济增长的乏力。90年代末期以来,我国的医疗、养老、失业保险、教育等一系列改革措施集中出台,原有的体制被打破,而新的体制尚未建立健全,因此目前的医疗、养老、失业保险、教育体制对居民个人支出的压力较大,而且基本上都是硬性支出,支出的不确定性也很大,导致居民目前对未来支出预期的上升。②、商品供求结构性矛盾依然突出从消费结构上看,我国消费品市场已发生了新的根本性变化:居民低层次消费已近饱和,而更高水平的消费又未达到。改革开放20多年来,城乡居民经过了一个中档耐用消费品的普及阶段后,目前老百姓的收入消费还不足以形成一个新的、以高档产品为内容的主导性消费热点,如轿车、住房等还远不能纳入大多数人的消费主流,居民现有的购买力不能形成推动主导消费品升级的动力。③、物价总水平持续在低水平运行,通货紧缩的压力较大,不利于消费的增长加入WTO之后,随着关税的降低和进口规模的扩大,国外产品对我国市场的冲击将进一步加大,国际价格紧缩对国内价格变化将产生负面影响。物价的持续下降,不利于居民的消费增长。因为从居民的消费心理上看,买涨不买降是居民购物的习惯心理。由于居民对物价有进一步下降的预期,因此往往推迟消费,不利于居民消费的增长。另外,从统计上分析,由于物价的下降,名义消费增长往往低于实际消费的增长,这在一定程度上也不利于消费增长幅度的提高。④、我国现阶段没有形成大的消费热点,难以带动消费的快速增长经过近几年的培育和发展,我国目前已经形成了住房消费、居民汽车消费、通信及电子产品的消费、节假日消费及旅游消费等一些消费亮点,可以促进消费的稳定增长,但始终未能形成大的消费热点,因此不能带动消费的高速增长。三、 相关数据收集相关数据均来源于2006年《中国统计年鉴》:23个大中城市城镇居民家庭基本情况(表格)地区 平均每户就业人口(人) 平均每一就业者负担人数(人) 平均每人实际月收入(元) 人均可支配收入(元) 人均消费支出(元)北京 1.6 1.8 1865.1 1633.2 1187.9天津 1.4 2.0 2010.6 1889.8 939.8石家庄 1.4 2.0 1061.3 1010.0 722.9太原 1.3 2.2 1256.9 1159.9 789.5呼和浩特 1.5 1.9 1354.2 1279.8 772.7沈阳 1.3 2.1 1148.5 1048.7 812.1大连 1.6 1.8 1269.8 1133.1 946.5长春 1.8 1.7 1156.1 1016.1 690.2哈尔滨 1.4 2.0 992.8 942.5 727.4上海 1.6 1.9 1884.0 1686.1 1505.3南京 1.4 2.0 1536.4 1394.0 920.6杭州 1.5 1.9 1695.0 1464.9 1264.2宁波 1.5 1.8 1759.4 1543.2 1271.4合肥 1.6 1.8 1042.5 950.1 686.9福州 1.7 1.9 1172.5 1059.4 942.8厦门 1.5 1.9 1631.7 1394.3 998.7南昌 1.4 1.8 1405.0 1321.1 665.4济南 1.7 1.7 1491.3 1356.8 1071.4青岛 1.6 1.8 1495.6 1378.5 1020.7郑州 1.4 2.1 1012.2 954.2 750.3武汉 1.5 2.0 1052.5 972.2 853.1长沙 1.4 2.1 1256.9 1148.9 986.8广州 1.7 1.8 1898.6 1591.1 1215.1四、 模型的建立根据数据,我们建立多元线性回归方程的一般模型为:其中:——人均消费支出——常数项——回归方程的参数——平均每户就业人口数——平均每一就业者负担人口数——平均每人实际月收入——人均可支配收入——随即误差项五、实验过程(一)回归模型参数估计根据数据建立多元线性回归方程:首先利用Eviews软件对模型进行OLS估计,得样本回归方程。利用Eviews输出结果如下:Dependent Variable: YMethod: Least SquaresDate: 12/11/07 Time: 16:08Sample: 1 23Included observations: 23Variable Coefficient Std. Error t-Statistic Prob.C -1682.180 1311.506 -1.282633 0.2159X1 564.3490 395.2332 1.427889 0.1704X2 569.1209 379.7866 1.498528 0.1513X3 1.552510 0.629371 2.466766 0.0239X4 -1.180652 0.742107 -1.590947 0.1290R-squared 0.721234 Mean dependent var 945.2913Adjusted R-squared 0.659286 S.D. dependent var 224.1711S.E. of regression 130.8502 Akaike info criterion 12.77564Sum squared resid 308191.9 Schwarz criterion 13.02249Log likelihood -141.9199 F-statistic 11.64259Durbin-Watson stat 2.047936 Prob(F-statistic) 0.000076根据多元线性回归关于Eviews输出结果可以得到参数的估计值为: , , , ,从而初步得到的回归方程为:Se= (1311.506) (395.2332) (379.7866) (0.629371) (0.742107)T= (-1.282633) (1.427889) (1.498528) (2.466766) (-1.590947)F=11.64259 df=18模型检验:由于在 的水平下,解释变量 、 、 的检验的P值都大于0.05,所以变量不显著,说明模型中可能存在多重共线性等问题,进而对模型进行修正。(二)处理多重共线性我们采用逐步回归法对模型的多重共线性进行检验和处理:X1:Dependent Variable: YMethod: Least SquaresDate: 12/11/07 Time: 16:28Sample: 1 23Included observations: 23Variable Coefficient Std. Error t-Statistic Prob.C 153.8238 518.6688 0.296574 0.7697X1 523.0964 341.4840 1.531833 0.1405R-squared 0.100508 Mean dependent var 945.2913Adjusted R-squared 0.057675 S.D. dependent var 224.1711S.E. of regression 217.6105 Akaike info criterion 13.68623Sum squared resid 994441.2 Schwarz criterion 13.78497Log likelihood -155.3917 F-statistic 2.346511Durbin-Watson stat 1.770750 Prob(F-statistic) 0.140491X2:Dependent Variable: YMethod: Least SquaresDate: 12/11/07 Time: 16:29Sample: 1 23Included observations: 23Variable Coefficient Std. Error t-Statistic Prob.C 1756.641 667.2658 2.632596 0.0156X2 -424.1146 347.9597 -1.218861 0.2364R-squared 0.066070 Mean dependent var 945.2913Adjusted R-squared 0.021597 S.D. dependent var 224.1711S.E. of regression 221.7371 Akaike info criterion 13.72380Sum squared resid 1032515. Schwarz criterion 13.82254Log likelihood -155.8237 F-statistic 1.485623Durbin-Watson stat 1.887292 Prob(F-statistic) 0.236412X3:Dependent Variable: YMethod: Least SquaresDate: 12/11/07 Time: 16:29Sample: 1 23Included observations: 23Variable Coefficient Std. Error t-Statistic Prob.C 182.8827 137.8342 1.326831 0.1988X3 0.540400 0.095343 5.667960 0.0000R-squared 0.604712 Mean dependent var 945.2913Adjusted R-squared 0.585888 S.D. dependent var 224.1711S.E. of regression 144.2575 Akaike info criterion 12.86402Sum squared resid 437014.5 Schwarz criterion 12.96276Log likelihood -145.9362 F-statistic 32.12577Durbin-Watson stat 2.064743 Prob(F-statistic) 0.000013X4:Dependent Variable: YMethod: Least SquaresDate: 12/11/07 Time: 16:30Sample: 1 23Included observations: 23Variable Coefficient Std. Error t-Statistic Prob.C 184.7094 161.8178 1.141465 0.2665X4 0.596476 0.124231 4.801338 0.0001R-squared 0.523300 Mean dependent var 945.2913Adjusted R-squared 0.500600 S.D. dependent var 224.1711S.E. of regression 158.4178 Akaike info criterion 13.05129Sum squared resid 527020.1 Schwarz criterion 13.15003Log likelihood -148.0898 F-statistic 23.05284Durbin-Watson stat 2.037087 Prob(F-statistic) 0.000096由得出的数据可以看出, 的调整的判定系数最大,因此首先把 引入调整的方程中,然后在分别引入变量 、 、 进行OLS得:X1、X3Dependent Variable: YMethod: Least SquaresDate: 12/11/07 Time: 16:32Sample: 1 23Included observations: 23Variable Coefficient Std. Error t-Statistic Prob.C -222.8991 345.9081 -0.644388 0.5266X1 289.8101 227.2070 1.275533 0.2167X3 0.517213 0.095693 5.404899 0.0000R-squared 0.634449 Mean dependent var 945.2913Adjusted R-squared 0.597894 S.D. dependent var 224.1711S.E. of regression 142.1510 Akaike info criterion 12.87276Sum squared resid 404138.2 Schwarz criterion 13.02087Log likelihood -145.0368 F-statistic 17.35596Durbin-Watson stat 2.032110 Prob(F-statistic) 0.000043X2、X3Dependent Variable: YMethod: Least SquaresDate: 12/11/07 Time: 16:33Sample: 1 23Included observations: 23Variable Coefficient Std. Error t-Statistic Prob.C 239.5536 531.1435 0.451015 0.6568X2 -27.00981 244.0392 -0.110678 0.9130X3 0.536856 0.102783 5.223221 0.0000R-squared 0.604954 Mean dependent var 945.2913Adjusted R-squared 0.565449 S.D. dependent var 224.1711S.E. of regression 147.7747 Akaike info criterion 12.95036Sum squared resid 436747.0 Schwarz criterion 13.09847Log likelihood -145.9292 F-statistic 15.31348Durbin-Watson stat 2.063247 Prob(F-statistic) 0.000093X3、X4Dependent Variable: YMethod: Least SquaresDate: 12/11/07 Time: 16:34Sample: 1 23Included observations: 23Variable Coefficient Std. Error t-Statistic Prob.C 331.7015 142.5882 2.326290 0.0306X3 1.766892 0.553402 3.192782 0.0046X4 -1.473721 0.656624 -2.244390 0.0363R-squared 0.684240 Mean dependent var 945.2913Adjusted R-squared 0.652664 S.D. dependent var 224.1711S.E. of regression 132.1157 Akaike info criterion 12.72634Sum squared resid 349091.0 Schwarz criterion 12.87445Log likelihood -143.3529 F-statistic 21.66965Durbin-Watson stat 2.111635 Prob(F-statistic) 0.000010由数据结果可以看出,引入X4时方程的调整判定系数最大,且解释变量均通过了显著性检验,再分别引入X1、X2进行分析。X1、X3、X4Dependent Variable: YMethod: Least SquaresDate: 12/11/07 Time: 16:37Sample: 1 23Included observations: 23Variable Coefficient Std. Error t-Statistic Prob.C 193.6693 403.8464 0.479562 0.6370X1 89.29944 243.6512 0.366505 0.7180X3 1.652622 0.646003 2.558228 0.0192X4 -1.345001 0.757634 -1.775265 0.0919R-squared 0.686457 Mean dependent var 945.2913Adjusted R-squared 0.636950 S.D. dependent var 224.1711S.E. of regression 135.0712 Akaike info criterion 12.80625Sum squared resid 346640.3 Schwarz criterion 13.00373Log likelihood -143.2719 F-statistic 13.86591Durbin-Watson stat 2.082104 Prob(F-statistic) 0.000050X2、X3、X4Dependent Variable: YMethod: Least SquaresDate: 12/11/07 Time: 16:38Sample: 1 23Included observations: 23Variable Coefficient Std. Error t-Statistic Prob.C 62.60939 489.2088 0.127981 0.8995X2 134.1557 232.9303 0.575948 0.5714X3 1.886588 0.600027 3.144175 0.0053X4 -1.596394 0.701018 -2.277251 0.0345R-squared 0.689658 Mean dependent var 945.2913Adjusted R-squared 0.640657 S.D. dependent var 224.1711S.E. of regression 134.3798 Akaike info criterion 12.79599Sum squared resid 343100.8 Schwarz criterion 12.99347Log likelihood -143.1539 F-statistic 14.07429Durbin-Watson stat 2.143110 Prob(F-statistic) 0.000046由输出结果可以看出,在 的水平下,解释变量 、 的检验的P值都大于0.05,解释变量不能通过显著性检验,因此可以得出结论模型中只能引入X3、X4两个变量。则调整后的多元线性回归方程为:Se= (142.5882) (0.553402) (0.656624)T= (2.326290) (3.192782) (-2.244390)F=21.66965 df=20(三).异方差性的检验对模型 进行怀特检验:White Heteroskedasticity Test:F-statistic 1.071659 Probability 0.399378Obs*R-squared 4.423847 Probability 0.351673Test Equation:Dependent Variable: RESID^2Method: Least SquaresDate: 12/11/07 Time: 16:53Sample: 1 23Included observations: 23Variable Coefficient Std. Error t-Statistic Prob.C 34247.50 128527.9 0.266460 0.7929X3 247.9623 628.1924 0.394723 0.6977X3^2 -0.071268 0.187278 -0.380548 0.7080X4 -333.6779 714.3390 -0.467114 0.6460X4^2 0.121138 0.229933 0.526841 0.6047R-squared 0.192341 Mean dependent var 15177.87Adjusted R-squared 0.012861 S.D. dependent var 23242.54S.E. of regression 23092.59 Akaike info criterion 23.12207Sum squared resid 9.60E+09 Schwarz criterion 23.36892Log likelihood -260.9038 F-statistic 1.071659Durbin-Watson stat 1.968939 Prob(F-statistic) 0.399378由检验结果可知, ,由White检验知,在 时,查 分布表,得临界值 (20)=30.1435,因为 < (5)= 30.1435,所以模型中不存在异方差。(四).自相关的检验由模型的输出结果可知,估计结果都比较满意,无论是回归方程检验,还是参数显著性检验的检验概率,都显著小于0.05,D-W值为2.111635,显著性水平 =0.05下查Durbin-Watson表,其中n=23,解释变量的个数为2,得到下限临界值 ,上限临界值 , =1.543