高斯过于谨慎,未公开非欧几何学的发现
建立在公理基础上的欧几里得几何学,雄视科学界两千年,没有人能动摇它的权威。但后来人们对第五公理表示怀疑,第五公理是:“通过不在直线上的一个点,不能引多于一条的直线,平行于原来的直线。”有什么根据说不能引多于一条的平行线呢?能不能把它从公理中删掉?能不能从其余的公理中把它证明出来,使之由公理变为定理呢?
这一问题从5世纪以来就有人进行研究,到18世纪时,一些著名的数学家兰贝尔特(1728—1777)、勒让德(1752—1833)、拉格朗日(1736—1813)等人,都在这个问题上花费了大量的精力,然而他们都没有成功。这个问题像无底深渊一样,无情地吞噬着数学家们的智慧,而不付给他们任何报酬。
俄国数学家罗巴切夫斯基(1792—1856)于1815开始研究平行线问题,一开始他也想走证明第五公里的老路,到1823年时,他认识到以前所有的证明都是错误的。1826年,他发表论文声明第五公理不可证明,并且采用了相反的公理:“通过不在直线上的一点,至少可以引两条直线平行于已知直线”。从这个新公理和其余的公理出发,他终于建立了一种崭新的非欧几何学。这一新学科在天文学和宇宙论中得到了应用。
在试证第五公理的浪潮中,大数学家高斯也卷在其中。他总结了1000多年来试证失败的教训,改变了原来的论题,即由“欧氏第五公里可证”改为“欧氏第五公理不可证”,结果证明后一结论是正确的。他从中发现了一门新的几何学——非欧几何学。就是说,高斯与罗巴切夫斯基等人各自独立地、几乎又是同时创立了非欧几何学,高斯甚至比罗巴切夫斯基更早些。但是,高斯把自己的发现隐藏起来了,没有公诸于世,他怕引起庸人的叫喊和讥笑,结果至死未敢公开发表这一研究成果。
胆怯是缺乏自信心的表现,过于谨慎就会优柔寡断,丧失良机。对待世俗同样需要有一种勇气,要大胆地走自己的路,让别人去嚼舌吧。