一粒种子肯定不叫一堆,两粒也不是,三粒也不是……另一方面,所有的人都同意,一亿粒种子肯定叫一堆。那么,适当的界限在哪里?我们能不能说,123585粒种子不叫一堆,而123586粒就构成一堆同样的,高与短、美与丑、清洁与污染、有矿与无矿、甚至像人与猿、脊椎动物与无脊椎动物、生物与非生物等等这样一些对立的概念之间,都没有绝对分明的界限。
这就是模糊现象,指客观事物之间难以用分明的界限加以区分的状态,它产生于人们对客观事物的识别和分类之时,并反映在概念之中。外延分明的概念,称为分明概念,它反映分明现象。外延不分明的概念,称为模糊概念,它反映模糊现象。
对模糊性的讨论,可以追溯到很早。20世纪的大哲学家罗素在1923年一篇题为《含糊性》的论文里专门论述过我们今天称之为“模糊性”的问题,并且明确指出:“认为模糊知识必定是靠不住的,这种看法是大错特错的。”尽管罗素声名显赫,但这篇发表在南半球哲学杂志的文章并未引起当时学术界对模糊性或含糊性的很大兴趣。这并非是问题不重要,也不是因为文章写得不深刻,而是“时候未到”。长期以来,人们一直把模糊看成贬义词,只对精密与严格充满敬意。20世纪初期社会的发展,特别是科学技术的发展,还未对模糊性的研究有所要求。事实上,模糊性理论是电子计算机时代的产物。正是这种十分精密的机器的发明与广泛应用,使人们更深刻地理解了精密性的局限,促进了人们对其对立面或者说它的“另一半”——模糊性的研究。
精确的概念可以用通常的集合来描述。模糊概念应该用相应的模糊集合来描述。美国控制论专家扎德抓住这一点,首先在模糊集的定量描述上取得突破,奠定了模糊性理论及其应用的基础。1965年扎德发表了名为《模糊集合》的论文,首先提出了模糊集合的概念,他指出:“在人类知识领域里,非模糊概念起主要作用的惟一部门只是古典数学”,“如果深入研究人类的认识过程,我们将发现人类能运用模糊概念是一个巨大的财富而不是包袱。这一点,是理解人类智能和机器智能之间深奥区别的关键。”
集合是现代数学的基础,模糊集合一提出,“模糊”观念也渗透到许多数学分支。模糊数学的发展速度也是相当快的。从发表的论文看,几乎是指数般的增长。它涉及纯粹数学、应用数学、自然科学、人文科学和管理科学等方面。在图像识别、人工智能、自动控制、信息处理、经济学、心理学、社会学、生态学、语言学、管理科学、医疗诊断、哲学研究等领域中,都得到广泛应用。把模糊数学理论应用于决策研究,形成了模糊决策技术。只要经过仔细深入研究就会发现,在多数情况下,决策目标与约束条件均带有一定的模糊性,对复杂大系统的决策过程尤其是如此。在这种情况下,运用模糊决策技术,会显得更加自然,也将会获得更加良好的效果。