在英国,华罗庚参加了一个有名的数论学家的小组。这个小组包括英国数学家哈罗尔德·达凡波特、哈代、李特伍德,德国数学家埃斯特曼和汉斯·海尔勃洛嗯。华罗庚在剑桥大学的工作大部分是研究堆垒素数论。堆类素数论涉及到把整数分解成某些别的整数的和。华林问题是这个学科中最透彻的研究过的一个问题,其中特殊的数是 K 次幂。问题是这样的:对于给定的 K ,要求最小的整数 S ,称为 G ( K ),方程是: n=x1+x2+……+xs 对每个正态数 n 都是可解的。 1909 年,在华林之后一百年,希尔伯特证明了:对每一个 k ,这样的最小值 g ( k )当然是存在的。但是它的证明与其说是构造性的,毋宁说是归纳性的,所以就不必给出 g ( k )明确的上界。自希尔伯特之后许多著名的数学家都致力于计算 g ( k )的工作。例如已经知道 g ( 2 ) =4 ,就是说每一个整数能够表示为四个整数的平方和或者九个整整数的立方和,并且这四、九的个数不能太小。对于所有的 k ,要找出 g ( k )的明确表达的试图尚未成功。尽管相信,对于所有的正整数 k ,除掉有限的几个外,有 g ( k ) =ak+A-a ,此处 A 是不超过( 3/2k ) 的最大整数。因为相对小的整数有时可以由特殊的表示,它包含在某些更广泛的基本结果中。 g ( k )定义为方程( 1 )对于全体充分大的 n ,可解的最小整数 s 。在计算或估计 g ( k )方面已经作了许多努力,知道 g ( 2 ) =4 , 4<=g ( 3 ) <=g(4)=16, 达凡波特在 1942 年证明了 :g(5)<=25,g(6)<=36, 但对于 k>=s ,没有找出 g(k) 明确的值。歌德巴赫问题就是和华林问题密切联系的一个著名难题。其中 k=1,s=2 或 3,x 要求是素数。歌德巴赫问题可表达为: “ 规定任意偶数 h ,能否找到素数 x1 和 x2 ,使 n=x1+x2” ,对于 s=3 ,则为 “ 给定任意技术 n ,能否找到素 数 x1 、 x2 、 x3 ,是 n=x1+x2+x3 ? ” 华罗庚在华林问题和歌德巴赫问题上的研究结果将他欧洲同事的工作包罗殆尽。在二十年代,哈代和李特伍德公布了一系列的论文,他们用新的解析方法解决华林问题,并指出 g ( k ) =O ( n+1 ),对于方程( 1 )要求 x1>=O;……x3>=O 的整数解的个数 (rs(n)), 他们也得到一个渐近的公式。他们将 rk , s ( n )表示为 k , s 和 n 的函数。为 n→ 无穷时,加上一项( n-1+s/k ),但是他们的结果仅仅是对 s 大的知识有效的。华罗庚在华林问题最好的成果,按照海尔勃洛恩德看法是证明了哈代 -- 利特伍德公式对于所有 s>=2+1 成立。这就是华氏定理。华罗庚的这一成果,至今仍是逻辑地引导到估计 g ( k )一把有力的钥匙。达凡波特这样写道 : 华罗庚关于三角积分 (2) 的 “ 最有效 ” 的界,是他能够导出 G ( 5 )和 G ( 6 )的严格不等式。在达凡波特之前,对前一种情况的最强估计 G ( 5 ), <28 是属于华罗庚 1939 年的成果。 在剑桥大学的两年中,华罗庚就 “ 华林问题 ” 、 “ 他利问题 ” , “ 奇数的歌德巴赫问题 ” 写了十八篇论文, 先后发表在英、苏、印度、法、德等国的杂志上。其中包括 “ 论高斯的完整三角和估计问题 ” 这篇有名的论文。 按其成就,已经越过了每一条院士的要求,但在剑桥他从未正式申请过学位。