连续信号(通常称作“模拟信号”)与离散信号(通常称作“数字信号”)之间的一个基本桥梁。它确定了信号带宽的上限,或能捕获连续信号的所有信息的离散采样信号所允许的采样频率的下限。
严格地说,定理仅适用于具有傅里叶变换的一类数学函数,即频率在有限区域以外为零。离散时间傅里叶变换(泊松求和公式的一种形式)提供了实际信号的解析延拓,但只能近似该条件。
直观上我们希望,当把连续函数化为采样值(叫做“样本”)的离散序列并插值到连续函数中,结果的保真度取决于原始采样的密度(或采样率)。
采样定理介绍了对带宽限制的函数类型来说保真度足够完整的采样率的概念;在采样过程中"信息"实际没有损失。定理用函数的带宽来表示采样率。定理也导出了一个数学上理想的原连续信号的重构公式。
该定理没有排除一些并不满足采样率准则的特殊情况下完整重构的可能性。(参见下文非基带信号采样,以及压缩感知。)
非均匀采样
香农的采样定理可以延伸到非均匀采样,也就是采样的时间间隔非一定值。非均匀采样的采样定理指出针对band-limited的信号,只要平均采样频率满足奈奎斯特条件,就可以从采样信号完整重建原始信号。因此虽然均匀采样在信号重建的算法上比较简单,但这不是完整重建的必要条件。
非基带及非均匀采样的泛用理论是在1967年由亨利·蓝道提出。简单的说,蓝道证明了平均采样率至少需要是信号占据带宽的二倍,但前提是已知信号的频谱及其占据的带宽。
在1990年代末期,此研究已延伸到信号占据带宽的数量已知,但实际在频谱上位置未知的情形。在2000年代已利用压缩感知发展了一个完整的理论。此理论用信号处理的语言写成,在2009年的论文中发表。
论文中证明,若频率的位置未知,则采样率需至少为奈奎斯特准则的二倍。换句话说,因为不知道光学频谱的位置,需要将采样率乘二为代价。注意此最小采样率的要求不一定保证其数值稳定性。