谷歌的AlphaGo与柯杰的大战已经结束数日,而DeepMind承诺的50分棋谱也已经公布,而作为当前最先进的计算机“技术”,有限元方法有没有与机器学习(人工智能)进一步结合并碰发出绚丽的“火花”呢??答案是肯定的!!! 什么是人工智能 人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。 人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。 机器学习是人工智能的一个分支,简单地说,就是通过算法,使机器能从大量历史数据中学习规律,从而对新的样本做智能识别或对未来进行预测。 常见的机器学习算法如: ✔神经网络(Neural Network) ✔支持向量机(Support Vector Machines, SVM)Boosting ✔决策树(Decision Tree) ✔随机森林(Random Forest) ✔贝叶斯模型(Bayesian Model)等。 早期的机器学习算法由于受到理论模型和计算资源的限制,一般只能进行浅层学习,只在搜索排序系统、垃圾邮件过滤系统、内容推荐系统等地方有所应用。 而之后发生的几件事,掀起了深度学习的浪潮。一件是2006年,加拿大多伦多大学教授Hinton和他的学生Salakhutdinov在Science上发表了一篇文章,揭示了具有多个隐层的神经网络(即深度神经网络)优异的学习性能,并提出可以通过“逐层初始化”技术,来降低深度学习网络训练的难度; 第二件事是在2012年 底,Geoff Hinton 的博士生 Alex Krizhevsky、Ilya Sutskever利用卷积神经网络(Convolutional Neural Network, CNN)在图片分类的竞赛 ImageNet 上,击败了拥有众多人才资源和计算资源的Google,拿到了第一名。 如今机器学习已深入到包括语音识别,图像识别,数据挖掘等诸多领域并取得了瞩目的成绩。 有限元法的发展简史 有限元方法(FEA)即有限单元法,它是一种数值分析(计算数学)工具,但不是唯一的数值分析工具。在工程领域还有其它的数值方法,如:有限差分法、边界元方法、有限体积法。 有限单元法已成为一种强有力的数值解法来解决工程中遇到的大量问题,其应用范围从固体到流体,从静力到动力,从力学问题到非力学问题。事实上,有限单元法已经成为在已知边界条件和初始条件下求解偏微分方程组的一般数值方法。 有限单元法在工程上的应用属于计算力学的范畴,而计算力学是根据力学中的理论,利用现代电子计算机和各种数值方法,解决力学中的实际问题的一门新兴学科。它横贯力学的各个分支,不断扩大各个领域中力学的研究和应用范围,同时也在逐渐发展自己的理论和方法。 神经网络与力学 其实,在深度学习浪潮掀起之前,力学和工程领域早已开始在计算力学研究中结合神经网络模型,开发出更优的算法,一个典型的例子便是有限元神经网络模型。 由于在实际工程问题中存在大量的非线性力学现象,如在结构优化问题中,需要根据需求设计并优化构件结构,是一类反问题,这些非线性问题难以用常规的方法求解,而神经网络恰好具有良好的非线性映射能力, 因而可得到比一般方法更精确的解。 将有限元与神经网络结合的方法有很多,比如针对复杂非线性结构动力学系统建模问题,可以将线性部分用有限元进行建模,非线性构件用神经网络描述(如输入非线性部件状态变量,输出其恢复力),再通过边界条件和连接条件将有限元模型部分和神经网络部分结合,得到杂交模型。 另一种方法是首先通过有限元建立多种不同的模型,再将模态特性(即最终需要达到的设计要求)作为输入变量,将对应的模型结构参数作为输入变量,训练神经网络,利用神经网络的泛化特性,得到设计参数的修正值。 结合Monter Carlo方法,进行多组有限元分析,将数据输入神经网络中进行训练,可以用来分析结构的可靠度。 已有研究成果 [1]余凯,贾磊,陈雨强,徐伟. 深度学习的昨天、今天和明天[J]. 计算机研究与发展,2013,09:1799-1804. [2]周春桂,张希农,胡杰,谢石林. 基于有限元和神经网络的杂交建模[J]. 振动工程学报,2012,01:43-48. [3]费庆国,张令弥. 基于径向基神经网络的有限元模型修正研究[J]. 南京航空航天大学学报,2004,06:748-752. [4]许永江,邢兵,吴进良. 基于有限元-神经网络-Monte-Carlo的结构可靠度计算方法[J]. 重庆交通大学学报(自然科学版),2008,02:188-190+216. 未来的一些方向 1、图形显示方面(有限元与AR&VR) 随着有限元计算涉及的领域以及计算的规模不断增大,计算结果的高效、高质量的前后处理也随之成为了一个问题。 AR&VR在图形化数据展示方面,将我们从显示屏解放出来,可以以一种更加直观的方式查看计算分析数据,未来在分析结果VR展示方面,会有较大的突破。 国内也有学者已经展开了相关方面的研究,比如《虚拟现实环境中有限元前后处理功能实现》等论文,有限元虚拟处理技术(FEMVR)也开始逐步进入相关软件领域,例如:ANSYS COMSOL可以和MATLAB做交互,新版MATLAB内置了一些人工智能算法。 2、有限元与大数据、云计算 计算规模增大,伴随着计算机能力的提升,随之而来的云计算,解脱了对于计算机硬件的束缚,对于可以放开规模与数量的分析计算,有限元与大数据以及云计算的碰撞,对于未来问题的解决,将有一个质的飞跃,量变到质变的直观体现,在有限元与大数据中会有一个绚丽的展示。 3、有限元与人工智能 人工智能作为全球热的技术,与“古老”的有限元之间,相信可以在老树上发新芽,而我们可以欣喜的看到,相关的研究也已经开展,期待未来对于现实问题的解决,能有更好的更优的方案。 4、CAD数据与CAE数据的无缝对接 目前等几何分析(Isogeometric Analysis, IGA)的发展热度来看,将CAD中用于表达几何模型的NURBS基函数作为形函数,克服FEA中模型精度损失的问题,实现CAD和CAE的无缝结合,是一个很有前途和潜力的发展方向。 5、CAE与MBD的深度融合 未来CAEFEM可能会与多体动力学仿真(MBS)软件深度整合起来。实际系统中某些运动部件的弹性无法忽略,甚至是主要动力学行为的来源,所以就产生了柔性多体动力学仿真这个需求,这样只需要定义相关部件的受力和边界条件,其余的都是内部作用,仿真即节省工作量又较为真实可信。而且现在的确有很多MBS软件里面可以把部件建成弹性体,如LMS Virtual Lab,Simpack等等,但过程没有那么傻瓜;除了简单的梁、轴等零件,复杂形状的零件要依赖FEM软件事先生成的数据文件。 6、网格工作的智能化,傻瓜化 将来对弹性体建模可能更加傻瓜,先把刚性多体系统模型建起来,然后在建模环境(前处理)中直接make body flexible,系统可以根据这个部件的形状、材料、边界条件等选择合适的网格类型,并把运动和力的作用点couple到对应的节点(组)上。比如说汽车悬挂系统仿真,在一个工作环境下就能把某个部件的应力校核给做了,而不需要说搞多体建模的人要把边界力生成一个load case再发给专门的FEM工程师去做。 (部分来自知乎) 如何追上有限元的发展 任何技术的进步,都要在实践中展示技术的威力,有限元的发展,会随着技术的进步,特别是计算机技术的进步,在未来无论是应用软件的研究还是智能程序的开发,都将有无限的机会与可能。 积极学习新技术,新方法,在应用领域,关注有限元相关软件的新功能。 1、了解热点、跟踪前沿 2、结合实际拓展应用 3、掌握自动化相关技术 想要更多,点击此处
、计算方法不同1、前馈神经网络:一种最简单的神经网络,各神经元分层排列AI爱发猫 。每个神经元只与前一层的神经元相连。接收前一层的输出,并输出给下一层.各层间没有反馈。2、BP神经网络:是一种按照误差逆向传播算法训练的多层前馈神经网络。3、卷积神经网络:包含卷积计算且具有深度结构的前馈神经网络。二、用途不同1、前馈神经网络:主要应用包括感知器网络、BP网络和RBF网络。2、BP神经网络:(1)函数逼近:用输入向量和相应的输出向量训练一个网络逼近一个函数;(2)模式识别:用一个待定的输出向量将它与输入向量联系起来;(3)分类:把输入向量所定义的合适方式进行分类;(4)数据压缩:减少输出向量维数以便于传输或存储。3、卷积神经网络:可应用于图像识别、物体识别等计算机视觉、自然语言处理、物理学和遥感科学等领域。联系:BP神经网络和卷积神经网络都属于前馈神经网络,三者都属于人工神经网络。因此,三者原理和结构相同。三、作用不同1、前馈神经网络:结构简单,应用广泛,能够以任意精度逼近任意连续函数及平方可积函数.而且可以精确实现任意有限训练样本集。2、BP神经网络:具有很强的非线性映射能力和柔性的网络结构。网络的中间层数、各层的神经元个数可根据具体情况任意设定,并且随着结构的差异其性能也有所不同。3、卷积神经网络:具有表征学习能力,能够按其阶层结构对输入信息进行平移不变分类。扩展资料:1、BP神经网络优劣势BP神经网络无论在网络理论还是在性能方面已比较成熟。其突出优点就是具有很强的非线性映射能力和柔性的网络结构。网络的中间层数、各层的神经元个数可根据具体情况任意设定,并且随着结构的差异其性能也有所不同。但是BP神经网络也存在以下的一些主要缺陷。①学习速度慢,即使是一个简单的问题,一般也需要几百次甚至上千次的学习才能收敛。②容易陷入局部极小值。③网络层数、神经元个数的选择没有相应的理论指导。④网络推广能力有限。2、人工神经网络的特点和优越性,主要表现在以下三个方面①具有自学习功能。例如实现图像识别时,只在先把许多不同的图像样板和对应的应识别的结果输入人工神经网络,网络就会通过自学习功能,慢慢学会识别类似的图像。自学习功能对于预测有特别重要的意义。预期未来的人工神经网络计算机将为人类提供经济预测、效益预测,其应用前途是很远大的。②具有联想存储功能。用人工神经网络的反馈网络就可以实现这种联想。③具有高速寻找优化解的能力。寻找一个复杂问题的优化解,往往需要很大的计算量,利用一个针对某问题而设计的反馈型人工神经网络,发挥计算机的高速运算能力,可能很快找到优化解。参考资料:百度百科—前馈神经网络百度百科—BP神经网络百度百科—卷积神经网络百度百科—人工神经网络。卷积神经网络处理规格不同的图片用卷积神经网络处理 “图” 结构数据应该怎么办。卷积神经网络有以下几种应用可供研究:1、基于卷积网络的形状识别物体的形状是人的视觉系统分析和识别物体的基础,几何形状是物体的本质特征的表现,并具有平移、缩放和旋转不变等特点,所以在模式识别领域,对于形状的分析和识别具有十分重要的意义,而二维图像作为三维图像的特例以及组成部分,因此二维图像的识别是三维图像识别的基础。2、基于卷积网络的人脸检测卷积神经网络与传统的人脸检测方法不同,它是通过直接作用于输入样本,用样本来训练网络并最终实现检测任务的。它是非参数型的人脸检测方法,可以省去传统方法中建模、参数估计以及参数检验、重建模型等的一系列复杂过程。本文针对图像中任意大小、位置、姿势、方向、肤色、面部表情和光照条件的人脸。3、文字识别系统在经典的模式识别中,一般是事先提取特征。提取诸多特征后,要对这些特征进行相关性分析,找到最能代表字符的特征,去掉对分类无关和自相关的特征。然而,这些特征的提取太过依赖人的经验和主观意识,提取到的特征的不同对分类性能影响很大,甚至提取的特征的顺序也会影响最后的分类性能。同时,图像预处理的好坏也会影响到提取的特征。卷积神经网络为什么最后接一个全连接层在常见的卷积神经网络的最后往往会出现一两层全连接层,全连接一般会把卷积输出的二维特征图(featuremap)转化成(N*1)一维的一个向量全连接的目的是什么呢?因为传统的端到到的卷积神经网络的输出都是分类(一般都是一个概率值),也就是几个类别的概率甚至就是一个数--类别号,那么全连接层就是高度提纯的特征了,方便交给最后的分类器或者回归。但是全连接的参数实在是太多了,你想这张图里就有20*12*12*100个参数,前面随便一层卷积,假设卷积核是7*7的,厚度是64,那也才7*7*64,所以现在的趋势是尽量避免全连接,目前主流的一个方法是全局平均值。也就是最后那一层的featuremap(最后一层卷积的输出结果),直接求平均值。有多少种分类就训练多少层,这十个数字就是对应的概率或者叫置信度。卷积神经网络是如何反向调整参数的?卷积神经网络的模型问题? 50。怎么又是你.....网络自然是搭建起来的啊,比如CNN,一层一层地建,如果你是用别人已经建好的网络,比如最简单的LeNet-5,那么Tensorflow中会直接提供你一个Net;但是如果你是自定义网络类型,那么需要继承nn.Nodules,然后重新定义网络结构,封装成一个Net,总结起来,模型是很多数学公式搭在一起,然鹅,数学公式是封装好的,可以相互交流哈。 打开CSDN,阅读体验更佳卷积神经网络的缺点是什么?_土豆西瓜大芝麻的博客_卷积神经...平移不变性 当我们说平移不变性时,我们意思是,稍微改变同一物体的朝向或位置,可能并不会激活那些识别该物体的神经元。 正如上图所示,假如一个神经元是用来识别一只猫的,其参数会随着猫的位置和转动的变化而变化。虽然数据扩增(data aug...卷积神经网络存在的问题,卷积神经网络的卷积层_普通网友的博客-CSDN博 ...对于无法完美解决的梯度消失问题,一个可能部分解决梯度消失问题的办法是使用ReLU(RectifiedLinearUnit)激活函数,ReLU在卷积神经网络CNN中得到了广泛的应用,在CNN中梯度消失似乎不再是问题。 那么它是什么样子呢?其实很简单,比我们前面提到的...最新发布 影响深度卷积神经网络算法的关键参数是网络结构局部连接的概念参考局部感受域,即某个视神经元仅考虑某一个小区域的视觉输入,因此相比普通神经网络的全连接层(下一层的某一个神经元需要与前一层的所有节点连接),卷积网络的某一个卷积层的所有节点只负责前层输入的某一个区域(比如某个3*3的方块)。卷积神经网络的连接性:卷积神经网络中卷积层间的连接被称为稀疏连接(sparse connection),即相比于前馈神经网络中的全连接,卷积层中的神经元仅与其相邻层的部分,而非全部神经元相连。权重共享和稀疏连接一样,减少了卷积神经网络的参数总量,并具有正则化的效果。继续访问卷积神经网络难点梳理目录1 基本概念及原理1.1 基本概念1.2 基本原理2 卷积是怎么“卷”的2.1 数学中的卷积2.2 CNN中的卷积3 损失函数是怎样当好指挥官的4 梯度下降、反向传播和显卡参考内容 1 基本概念及原理 1.1 基本概念 概念名称 目的 操作 示意图 卷积(Convolution) 提取特征 将图像矩阵遍历乘以卷积核矩阵并输出 池化(Pooling) 降低数据量 对小块矩阵中的所有数取平均(平均池化)或者取最大(最大池化)并只输出一个值,再遍历 激活(Activation) 对继续访问卷积神经网络的缺点_辽宁大学的博客_卷积神经网络的优缺点1.做卷积神经网络需要将数据集归一化。不同的尺寸混合在一起难以训练。2.卷积神经网络没有记忆功能。3.对图像处理很友善,对视频语音自然语言处理能力差...关于CNN卷积神经网络的问题_麦格芬230的博客将卷积神经网络CNN应用到文本分类任务,利用多个不同大小的卷积核来提取句子中的关键信息(类似于多窗口大小的N-gram),从而能够更好地捕捉局部相关性。 4.在情感分析任务中,TextCNN的卷积核,卷积的是哪些向量呢?卷积卷的是这些向量的什么...深入浅出——搞懂卷积神经网络的过拟合、梯度弥散、batchsize的影响的问题(二)过拟合 梯度弥散 batchsize 不平衡数据集继续访问cnn卷积神经网络反向传播,卷积神经网络维度变化深度学习框架,尤其是基于人工神经网络的框架可以追溯到1980年福岛邦彦提出的新认知机[2],而人工神经网络的历史更为久远。1989年,燕乐存(YannLeCun)等人开始将1974年提出的标准反向传播算法[3]应用于深度神经网络,这一网络被用于手写邮政编码识别。尽管算法可以成功执行,但计算代价非常巨大,神经网路的训练时间达到了3天,因而无法投入实际使用[4]。...继续访问卷积神经网络CNN特点功能及其缺陷_一只不出息的程序员的博客...卷积:简单地说,图像经过平移,相应的特征图上的表达也是平移的。 下图只是一个为了说明这个问题的例子。输入图像的左下角有一个人脸,经过卷积,人脸的特征(眼睛,鼻子)也位于特征图的左下角。 在神经网络中,卷积被定义为不同位置的特征...记录 训练卷积神经网络时遇到的问题_后知后觉w的博客记录 训练卷积神经网络时遇到的问题 问题1、softmax分类的loss最后会停在0.6931这个值 原因分析:在分类层使用了keras.layers.Lambda,导致分类器没有可训练的参数,因此没有分类能力,即,无论是否为object,softmax的输出都是0.5,根据loss...都说卷积神经网络是个好东西,但它有什么弊端呢?图片来源:Mathworks翻译 | 王赫编辑 | Donna2012年,三位深度学习的“巨人”Alex Krizhevsky, Ilya Sutskever 和 Geoffrey Hinton,联合发表了题为 “ImageNet Classification with Deep Convolutional Networks” 的论文。自此,卷积神经网络( CNNs )就成了一个万人追捧的工具,并继续访问卷积神经网络—全连接层卷积神经网络—全连接层 全连接层 全连接层与卷积层 全连接层与GAP(全局平均池化层) [1] [2] [3] https://www.zhihu.com/question/410379...继续访问五、卷积神经网络CNN5(卷积相关问题2)_满满myno的博客输出深度(通道)与卷积核(过滤器)的个数相等。 激活函数通常放在卷积神经网络的那个操作之后 通常放在卷积层之后。 如何理解最大池化层有几分缩小 池化层:对输入的特征图进行压缩,一方面使特征图变小,简化网络计算复杂度;一方面 ...卷积神经网络的缺点(1)效果好是因为仿生学,缺点是无法扩展到平面视觉以外的地方吧。 (2)缺点一:实现比较复杂。缺点二:训练所需时间比较久。 (3)不是单一算法,不同的任务需要单独训练 (4)世界(物理空间、解空间等)是连续且局部平坦的+规律/特征具有时空局部平移不变性,即世界存在局部平移不变的统计规律 举个例子:在地球表面某局部画三角形,发现内角和总是等于180,并且随便跑到地球的哪里都是如此,但是如果你继续访问神经网络 卷积神经网络,卷积神经网络常见问题卷积神经网络(ConvolutionalNeuralNetwork,CNN)是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理有出色表现。[1] 它包括卷积层(alternatingconvolutionallayer)和池层(poolinglayer)。卷积神经网络是近年发展起来,并引起广泛重视的一种高效识别方法。...继续访问卷积神经网络(CNN)入门常见问题解答目录 什么是神经元? 激活函数的作用? 什么是神经网络? CNN怎么进行识别? 计算机如何识别图像? CNN如何更准确人性化的对比图像? 什么是卷积操作? 感谢作者: CNN笔记:通俗理解卷积神经网络_v_JULY_v的博客-CSDN博客_卷积神经网络通俗理解 什么是神经元? 神经网络由大量的神经元相互连接而成。每个神经元接受线性组合的输入后,最开始只是简单的线性加权,后来给每个神经元加上了非线性的激活函数,从而进行非线性变换后输出。每两个神经元之间的连接代表加权值,称...继续访问卷积神经网络——解决参数太多问题一、全连接网路的局限性 图像变大导致色彩书变多,不好解决 不便处理高维数据 对于比较复杂的高维数据,如果按照全连接的方法,则只能通过增加节点、增加层数的方式来解决。增加节点会引起参数过多的问题。由于隐藏层神经网络使用的是sigmod或tanh激活函数,其反向传播的有效成层数只能在4~6层左右。 二、理解卷积神经网络 三、网络结构 卷积神经网络的结构与全连接网络相比复杂很多。它的网络结构主要包括卷积层、池化层。细节又可以分为滤波器、步长、卷积操作、池化操作。 1.网络结构描述 对于一般的图片会使用多个卷积继续访问人工智能深度学习卷积神经网络入门"java大数据人工智能培训学校全套教材"系列课程由1000集视频构成,基本就 是1)时下流行的java培训学校主流内部教材,2)和市面上培训学校的通 行的课程体系几乎一样。所以这套课程都能自己学下来,等于上了培训学校一次,完全可以找个java工程师的工作了。
通过学习卷积神经网络概述,为什么引入神经网络来做识别,判断,预测,训练模型,激活函数,sigmoid激活函数,导数和切线,sigmoid激活函数如何求导,链式法则,梯度,梯度下降法与delta法则,BP(back propagation)误差逆传播神经网络,卷积到底有什么作用?如何做到特征提取,池化的名字由来,dropout,Anaconda Prompt的用法,Jupyter notebook的用法,Spyder的用法,建立安装Tensorflow所需的Anaconda虚拟环境,如何在Anaconda虚拟环境安装Tensorflow与Keras概念等让大家对人工智能,卷积神经网络快速入门。
课程特色:专业细致,偏案例,理论强。
课程软件使用:Anaconda,Spyder,Jupyter notebook
重要声明:
1) 如果感觉噪音大,可以选择不用耳机,加音箱或用电脑原声
2) 既然我们的名字叫人工智能深度学习卷积神经网络入门,这个课程的特点就在于成本最低的, 让你最快速的,最容易的入门。人工智能深度学习卷积神经网络入门的最大的难点在于入门入不了,从而最终放弃。俗话说师傅领进门,修行在个人。只要入了门了,后面的事都好办。选课前,务必注意本章的学习目标和内容。想学更多,注意后边的课程。继续访问python卷积神经网络回归预测_回归[keras]的一维卷积神经网络,做在上一篇博客里我介绍了如何利用keras对一个给定的数据集来完成多分类任务。100%的分类准确度验证了分类模型的可行性和数据集的准确度。在这篇博客当中我将利用一个稍加修改的数据集来完成线性回归任务。相比较以往的线性回归处理方式,我认为使用神经网络实现线性回归要简单和准确得多。数据集大小仍然是247*900,不同的是数据集的第247位变成了湿度特征的真实湿度值。不同于分类算法得到的决策面,回归算法得...继续访问卷积神经网络之全连接层大多数内容来源于 :卷积神经网络中的全连接层 全连接层的作用是: 连接所有的特征,将输出值送给分类器 (如softmax分类器),其将卷积输出的二维特征图转化成 (N * 1)一维的一个向量。 最后的两列小圆球就是两个全连接层,在最后一层卷积结束后,又进行了一次池化操作,输出了20个 12*12 的图像(20指最后一层的厚度),然后通过了一个全连接层变成了 1*100 的向量(第一个全连接层神...继续访问人工神经网络的功能特点,神经网络的优缺点此时,网络学习了过多的样本细节,而不能反映样本内含的规律由于BP算法本质上为梯度下降法,而它所要优化的目标函数又非常复杂,因此,必然会出现“锯齿形现象”,这使得BP算法低效;多层前向BP网络的问题:从数学角度看,BP算法为一种局部搜索的优化方法,但它要解决的问题为求解复杂非线性函数的全局极值,因此,算法很有可能陷入局部极值,使训练失败;例如实现图像识别时,只在先把许多不同的图像样板和对应的应识别的结果输入人工神经网络,网络就会通过自学习功能,慢慢学会识别类似的图像。第三,具有高速寻找优化解的能力。...继续访问【Keras】卷积神经网络数据回归预测实战基于卷积神经网络的数据回归预测继续访问热门推荐 反向传播算法(过程及公式推导)反向传播算法(Backpropagation)是目前用来训练人工神经网络(Artificial Neural Network,ANN)的最常用且最有效的算法。继续访问深度学习---卷积神经网络解决分类与回归问题一、CNN神经网络的发展史: Lenet,1986年 Alexnet,2012年 2012年,Imagenet比赛冠军的model——Alexnet [2](以第一作者alex命名),AlexNet 是一种典型的 convolutional neural network,它由5层 convolutional layer,2层 fully connected layer,和最后一层 label layer (1000个node, 每个node代表ImageNet中的一个类别) 组成 GoogleNet继续访问深度学习之卷积神经网络CNN详细计算机视觉、自然语言处理等领域(图像分类、图像分割、图像检测、文本继续访问一文让你彻底了解卷积神经网络目录 卷积层 直观理解卷积 卷积计算流程 计算过程: 思考: 池化层(PoolingLayer) 卷积神经网络的组成 前向传播与反向传播 卷积神经网络(Convolutional Neural Network,CNN)是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理有出
153 浏览 4 回答
267 浏览 5 回答
291 浏览 3 回答
267 浏览 3 回答
204 浏览 3 回答
333 浏览 2 回答
307 浏览 2 回答
138 浏览 5 回答
330 浏览 5 回答
127 浏览 4 回答
97 浏览 7 回答
146 浏览 3 回答
318 浏览 5 回答
83 浏览 7 回答
169 浏览 3 回答