模糊数学又称Fuzzy 数学,研究和处理模糊性现象的一种数学理论和方法。模糊数学法采用模糊数学模型,须先进行单项指标的评价,然后分别对各单项指标给予透当的权重,最后应用模糊矩阵复合运算的方法得出综合评价的结果。这一方法在地下水环境质量评价中已得到广泛的应用。
模糊数学为一门新兴学科,它已初步应用于模糊控制、模糊识别、模糊聚类分析、模糊决策、模糊评判、系统理论、信息检索、医学、生物学等各个方面。在气象、结构力学、控制、心理学等方面已有具体的研究成果。然而模糊数学最重要的应用领域是计算机智能,不少人认为它与新一代计算机的研制有密切的联系。
扩展资料
1965年,美国控制论专家扎德Zadeh(Lotfi A.Zadeh)教授在Information and Control杂志上发表了题为Fuzzy Sets的论文,提出用“隶属函数”来描述现象差异的中间过渡,从而突破了经典集合论中属于或不属于的绝对关系。
Zadeh教授这一开创性的工作,标志着数学的一个新分支——模糊数学的诞生。
模糊数学的基本思想就是:用精确的数学手段对现实世界中大量存在的模糊概念和模糊现象进行描述、建模,以达到对其进行恰当处理的目的。
模糊数学为以不确定性的事物为其研究对象的。模糊集合的出现为数学适应描述复杂事物的需要,Zadeh的功绩在于用模糊集合的理论将模糊性对象加以确切化,从而使研究确定性对象的数学与不确定性对象的数学沟通起来,过去精确数学、随机数学描述感到不足之处,就能得到弥补。
参考资料来源:百度百科-模糊数学法
参考资料来源:百度百科-模糊数学