常规叠后波阻抗反演技术建立在地震波垂直入射假设的基础上。但是,实际的地震资料并非自激自收的地震记录,反射振幅是共中心点道集叠加平均的结果,不能反映地震反射振幅随偏移距不同或入射角不同而变化的特点。因此,利用常规叠后波阻抗反演不能得到可靠的波阻抗和其他岩性信息。弹性阻抗叠前反演技术采用能反映地震反射振幅随偏移距变化的叠前地震资料(地震角道集资料能够保留和突出识别地层流体和岩性方面的AVO或AVA特征)完成反演,不仅能够克服叠后反演的缺点,还能够反映振幅随偏移距变化的信息,具有良好的保真性和多信息性。
弹性阻抗是声阻抗概念的延伸和推广,它建立在非零炮检距的基础上,是纵波速度、横波速度、密度以及入射角的函数。尽管弹性阻抗并不是一个可以进行物理测量的参量,它是一个通过推导而得出的用来解释地震数据的参量,但是,由于弹性阻抗中蕴含着丰富的AVO(或AVA)属性,因而它对岩性及流体性质的变化极为敏感,在预测有利储层方面有独特作用,能为储层预测提供更多的依据。BP公司的Connolly等人(1999)在解决北海地区第三系储层描述时提出了弹性阻抗的概念[151],详细地对弹性阻抗公式进行了推导和讨论,发表了有关弹性阻抗(elastic impedance,EI)的论文,此后掀起了弹性阻抗反演研究的热潮。弹性阻抗的概念和理论随着应用与地震技术本身的发展也在不断深入。
Connolly等人提出的扩展弹性阻抗(Extended Elastic Impedance,简称EEI)表示为:
三维三分量地震勘探
式中:θ为P波入射角,当θ=0°时,弹性阻抗变成声波阻抗,意味着偏移距为0时,弹性波阻抗为常值,因而声波阻抗是弹性波阻抗值的特例;χ为理论入射角,范围为-90°≤χ≤90°,χ=0°时的弹性阻抗为对应声波阻抗。弹性阻抗概念有效地解决了AVO反演中的子波随偏移距变化的问题。
Connolly的弹性阻抗公式的不足之处在于随着入射角的变化,其量纲变化很大,其值也随着入射角剧变,这使得弹性阻抗和声阻抗之间的对比不便。为了克服其不足,Whit-combe(2002)提出了归一化的弹性阻抗公式,可去除弹性阻抗中量纲的非统一性,使得函数更加稳定,它具有波阻抗的量纲。在同年的另一篇论文中,他又提出了扩展的弹性阻抗公式,将弹性阻抗的定义域扩展到-∞~+∞,使得弹性阻抗更加满足实际需要[152~154]。
(1)基本原理当波阻抗的变化范围在小到中等时,用波阻抗的对数值表示的反射系数
三维三分量地震勘探
是准确的。式中:Ie是弹性阻抗。由Aki-Richard关系,上式可表示为:
三维三分量地震勘探
用K表示β2/α2,重新整理可得:
三维三分量地震勘探
接下来再用Δln(x)来替换Δx/x:
三维三分量地震勘探
若将K作为常数,就可以将所有的项合并成如下形式:
三维三分量地震勘探
最后取积分并指数化(即替换掉等式两边的微分项和对数项),把积分常数设为0,可得:
三维三分量地震勘探
上式可写成如下形式:
三维三分量地震勘探
式中:
三维三分量地震勘探
与Connolly公式类似,上面推导出的公式也存在求取的弹性阻抗Ie(θ)值随角度的变化在量纲尺度上有很大变化的问题。这不利于进行不同角度的Ie(θ)值之间的对比以及与波阻抗(Ia)值的对比。在综合分析Ia与Ie时,首先要将Ie变换到Ia的量纲尺度上,这给实际工作带来了不便。为了克服这个问题,消除入射角变化对量纲尺度的影响,要对推导出的弹性阻抗公式进行标准化处理。
为了消除入射角变化对量纲尺度的影响,引入了3个参考常数λ0、μ0、ρ0并把Ie函数进行修改得到标准化的Ie(θ)值的表示形式:
三维三分量地震勘探
如果这些常数值被定为λ、μ、ρ曲线的平均值,这样求得的Ie(θ)就会在单位1附近变化。这一修改去掉了函数对量纲尺度的依赖性并使函数变得更加稳定。可用因子A进一步标定这个函数,使Ie(θ)的量纲尺度变得与Ia一样,而且Ie(θ)能够正确地计算出声阻抗在θ=0(°)时的值αρ,等同于Ia的值。
可以求出因子A的表达式为:
三维三分量地震勘探
因此,基于Gray近似的弹性阻抗公式的标准化形式可以表示为:
三维三分量地震勘探
式中:
三维三分量地震勘探
显然,由上式可以得到,当λ=λ0、μ=μ0、ρ=ρ0时,弹性阻抗为常数α0ρ0,即声阻抗值。因此,θ变化时,标准化后的EI(θ)的维数保持为常数,EI函数就不会随着θ剧变,从而实现不同的EI值间的直观对比,且对于所有的角度θ,EI值变回到常规的AI范围内,克服了不同角度弹性阻抗量纲不统一的不足。
当P波理论入射角χ=90°时,对应的弹性阻抗称为弹性阻抗梯度(Gradient Imped-ance,简称GI),该参数能反映气水关系及流体的性质,但是,在不同地区、不同岩层,反映流体性质和气水关系的弹性阻抗梯度异常特征不尽相同:有时为强烈的正值异常,有时为强烈的负值异常。要正确利用该参数,必须采用区内岩石物理、地质、测井等综合信息,建立正演地质模型并进行正演分析,以获得区内弹性阻抗梯度的含油气响应规律。
在弹性阻抗的应用方面,彭真明、李亚林等(2007)提出的利用弹性阻抗叠前地震反演技术进行流体性质判断与气水识别的思路值得借鉴[155]。具体方法如下:
1)由测井资料计算vP,vS和ρ。如果没有横波测井,可通过Castagna方程或其他的经验公式求取横波速度;
2)利用Boit—Gassmann流体替换模型(FRM)对已知井计算含水饱和度(Sw),或含气饱和度(Sg),Sg=1-Sw,计算替换后的P波曲线、S波曲线、密度、孔隙度、纵横波速度比等,从而建立含气或含水的样本模式;
3)对vP,vS和ρ进行内插和外推至整个区域,得到区域的vP,vS和ρ数据体;
4)弹性参数计算,进行交会分析;
5)计算概率密度函数(PDF),然后利用Bayesian模糊矩阵或神经网络方法进行聚类分析,确定整个研究区内目的层的气水分布。
(2)实例
本实例来自四川盆地新场3D3C工区。
图5.4.8 目的层弹性阻抗平面(左:0°,右:300°)
图5.4.8为利用四川盆地新场地区3D3C地震资料中的纵波、转换波地震资料,进行联合反演获得的不同入射角度的弹性阻抗平面。图中显示,较高弹性阻抗(红色)分布在平面图中的北部,相对低的弹性阻抗(绿色)分布在平面图的南部。对比垂直入射条件下(左图)与30°入射情况下的弹性阻抗平面(右图),两者总的变化趋势很相近,但在X851井区存在明显差异,说明弹性阻抗对天然气富集带具有一定的识别能力。
在四川盆地西部,深层密储层中的弹性阻抗不如其他高孔隙储层弹性阻抗对流体的敏感度高,说明在储层致密环境下,弹性阻抗对流体的识别能力明显下降。对流体的识别需要结合更多的岩石物理参数进行综合分析。