Neural Collaborative Filtering vs. Matrix Factorization Revisited
这是一篇引起轰动的论文,motivation就是NCF[2]在推荐系统的引用量太高了(2427+),作者通过实验与分析,说明 dot product在推荐系统的计算相似度任务里效果比MLP更好 ,大家别被带偏了。
Dot Product就是矩阵分解,
; 与 可以理解成user与item的embedding。
MLP是用神经网络计算,先随机初始化user与item的embedding,然后concat起来经过DNN学习得到偏好得分,
GMF是[2]提出的 与 的element-wise的加权Dot product,是矩阵分解的泛化版本。
NeuMF把embedding的一部分用来做MLP,一部分用来做GMF。
作者经过试验证明,经过调参的Dot product效果远好于MLP以及NCF提出的NeuMF(MLP+GMF)。
作者分析了,GMF引入了权重参数 ,如果L2正则化不加上 ,实际上学习没有任何效果;引入更多的参数,实际上需要更多数据来学习。
作者构造了一些Dot Prodcut的数据,用MLP去学习。
从实验结果中可以看出,MLP的学习误差非常大,RMSE大于0.02;说明如果问题的归纳偏置(induction bias,即问题的假设)是Dot Product的,MLP是不能很好地学习出来的。
作者举了几个例子,虽然MLP是万能模拟器,但是在很多领域是不能取代特定的归纳偏置的,比如CNN里的卷积、池化;RNN的参数共享;transformer结构等。在推荐系统里,可能归纳偏置就是Dot Product。 也可以看出,大部分情况下是从MLP往特定结构走,而不是往回走(再搞一个大新闻)。
思考: (1)看论文不可尽信,要有自己的思考,更要动手去实践。 (2)不要总想搞一个大新闻,要多思考问题的本质。
[1] Rendle, Steffen, et al. "Neural collaborative filtering vs. matrix factorization revisited." Fourteenth ACM Conference on Recommender Systems. 2020.
[2] He, X., Liao, L., Zhang, H., Nie, L., Hu, X., and Chua, T.-S. Neural collaborative filtering. In Proceedings of the 26th International Conference on World Wide Web (Republic and Canton of Geneva, Switzerland, 2017), WWW ’17, International World Wide Web Conferences Steering Commit- tee, pp. 173–182.