首页

职称论文知识库

首页 职称论文知识库 问题

发表防雷论文的问题搞笑

发布时间:

发表防雷论文的问题搞笑

1、职称论文的时间问题既然是用来评职称的文章,就必须早下打算提前准备,其实只要是论文发表都应该提前准备,更何况是用来晋升的论文了,那提前多久准备呢?我们需要考虑一下时间问题。比如一般评中级在6-8月份提交资料,如果需要上知网、万方、维普的期刊,需要提前半年至一年就开始准备,如果要求没那么高,像龙源、期刊网的期刊,也要至少提前3个月准备。论文要经过严格的审稿环节,杂志社下录用通知,最后到文章的见刊,这其中每一个环节都是需要时间的,而且关于评职称的论文,很多地方不是只提交杂志就可以的,还需要上网检索到才算成功。(具体要看当地政策文件的要求)2、职称论文被数据库收录的问题普刊分为三大主流网站:知网、万方、维普这种权威性数据库,出刊后1-2个月会相继上网,还有一些非主流数据库比如龙源、期刊网、超星等,虽然期刊质量一般,但是出刊上网比较快,版面费也比较低。现在很多评职称的文件中都明确要求文章需要被xx数据库收录,小刊建议大家优先选择有权威性的数据库,这样在评职称的过程中更受青睐。(当然如果没有具体要求也可以选择龙源期刊网这种性价比较高的)3、职称论文选择的期刊级别越高,评职优势越大吗?如果你发表的期刊是核心期刊、SCI或一些优质的普刊、会议,大家肯定会更认可你的学术能力。评职时肯定也是核心期刊这类的文章更受重视。但是核心期刊对论文要求很高,更严谨、审稿流程也更复杂,而且发表周期大多在一年左右,所以要花更长的时间去准备,具体还要看评职要求或者你个人的需求。核心一般具备三个投稿流程,一种是官方电话查稿,一种是官方邮箱查稿,一种是官方系统查稿,邮箱和系统需要作者去注册账号密码,这样也更具投稿的真实性,毕竟金额也比较大,作者也更放心。当然,目前很多职称文件中都有目录要求了,要求你的文章必须发表在目录名单中,针对这种情况,就要按照具体的要求目录来准备了。

随着经济发展和社会需要,高层建筑如雨后春笋般不断出现在各个城市各个地区,防雷电气技术也越来越重要了。下面是我为大家整理的建筑防雷电气技术论文,希望你们喜欢。

高层建筑电气设计中的防雷技术

【摘 要】在高层建筑电气设计中,防雷接地设计是一个重要环节。本文简单介绍了建筑物防雷的等级分类,及不同类型的建筑物应当采取的防雷措施。具体分析了高层建筑的几种防雷措施,包括接闪器、引下线、接地装置、防雷电反击措施、防高电位进入措施及基础接地体施工与设计的问题。

【关键词】高层建筑;电气设计;防雷;接闪器;引下线;接地装置

一、引言

随着经济发展和社会需要,高层建筑如雨后春笋般不断出现在各个城市各个地区,随着建筑物高度的增加,防雷问题也越来越受到重视。为了满足人们生活的需要,各种类型、各种功能的电气设备越来越多,在使用这些电气时,必然会给高层建筑物带来一定程度的安全问题。所以研究高层建筑电气设计中的防雷技术问题有很重要的意义。

二、建筑物的防雷等级及防雷措施

(一)建筑物的防雷等级

按照建筑物对防雷的要求,根据其使用性质、重要性、发生雷电次数的可能性和后果,可将建筑物防雷等级分为三个级别。

第一类防雷建筑指的是制造、使用或贮存炸药、火药、起爆药、火工品等大量爆炸物质的建筑物或具有爆炸危险,会因电火花造成爆炸,且会造成人员伤亡和巨大破坏者。

第二类防雷建筑指的是国家级重点建筑物,对国民经济意义重大且装有大量电子设备的建筑物,具有爆炸危险、电火花不易引起爆炸或不至造成人员伤亡和重大破坏者,预计雷击次数大于0.06次/a的重要办公建筑和人员密集的公共建筑物以及预计雷击次数大于0.03次/a的一般建筑物。

第三类防雷建筑指的是没有前两个级别高但是也有一定雷击危险的建筑物。

(二)建筑物的防雷措施

按《建筑物防雷设计规范》(GB 50057-2010)中的一般规定,各类建筑物均应采取防雷电波侵入和防直接雷的措施。

第一类防雷建筑物和第二类防雷建筑物中,有爆炸危险的场所,应有防雷电感应和防雷电波侵入、防直击雷的措施。第二类防雷建筑物除有爆炸危险的场所外,以及第三类防雷建筑物,应采取防雷电波侵入和防直接雷的措施。具体防雷措施参考规范第3.2.1条至3.4.10条。

据研究观测发现,屋顶的坡度能够影响建筑物容易遭受雷击的部位。

建筑物屋面很少会遭受雷击。设计时应分析屋顶的实际情况,确定最易受雷击的部位,然后根据要求在这些部位装设避雷针或避雷带或避雷网进行重点保护。

三、高层建筑物的防雷措施

(一)接闪器

接闪器是一种金属物体,专门用来接受直接雷击。接闪的金属杆称为避雷针。接闪的金属线称为避雷线,又称架空地线。接闪的金属带、金属网称为避雷带、避雷网。接闪器应该由独立避雷针,架空避雷线或架空避雷网或直接装设在建筑物上的避雷针、避雷带、避雷网中的一种或几种组成。

接闪器要通过接地引下线与接地体(接地装置)相连。

接地体用来向大地引泄雷电流,为埋入地下土壤中的各型接地极的总称。

在国内,目前除仅有的几个高级建筑(如北京长城饭店、广州花园大酒店等)采用E、F放射性避雷系统中的放射电极之外,其他高层建筑多采用避雷带或者避雷网作为接闪器,很少使用避雷针。有些建筑面积高达数万甚至数十万平方米,但宽高比一般也比较大、建筑天面面积相对较小的高层建筑 ,通常只要在天面四周及水池顶部四周明设避雷带,局部再加些避雷网即可。

(二)引下线

在高层建筑中,我国建筑工程施工时常用的方法是利用柱或剪力墙的钢筋作为避雷引下线。这种方法已经写入国标《建筑物防雷设计规范》。规范规定,引下线的截面积不应小于直径为10mm的钢筋的截面积,而高层建筑中主筋截面积在20mm以上的很常见,所以要想达到这一要求并不难。为了安全,通常施工中至少采用截面积16mm的主筋做避雷引下线,一般用两根。施工中,标明引下线位置,防止上下焊接错位。

高层建筑防侧击雷施工时,将避雷引下线与圈梁、大梁链接,再尤其引出至预埋铁件,然后由预埋铁件与金属门窗焊连。但是这道工艺工程量相当大,且存在一定困难,如何解决铝合金门窗接地,尚是防雷设计中一个值得研究和探讨的问题。若建筑物采用的是玻璃幕墙,那就方便得多了。

(三)接地装置

目前,我国的高层建筑接地装置大多是采用以建筑物的深基础作为接地极的方法。这种方法有很多优点,如接地电阻低、电位分布均匀、均压效果好、施工方便、维护工程量少、节省材料等。

高层建筑多是钢筋混凝土做基础,所以凝固后有很多的孔隙,地下水渗入其中,由于是硅酸盐混凝土,使得导电能力增强。又因为混凝土基础中,钢筋密密麻麻、纵横交错,捆绑焊接后直接与导电性硅酸盐混凝土接触,从而使得接地电阻很低。桩基接地,如同使整个建筑物在地下形成了一个大型均压网,均压效果显著。同时,利用主筋接地,节省了大量钢材。

(四)防止雷电反击

在高层建筑施工中,建筑物的结构钢筋实际上都已经跟接地装置或松或紧地连成一体了。但是为了防止雷电反击,还应将建筑物内的一切金属导管和金属构件及支架等均与接地装置相连。垂直敷设的电气线路,可在适当部位装设电压击穿保护装置。最好将各种接地装置都连接成一体。上面的几种方法都是根据等电位原理,使电位均匀,避免建筑物受到雷电反击的危害。

(五)防止高电位引入

雷电波入侵,容易造成室内高电位引入问题。为防止产生此类问题,进入建筑物的架空金属管道应在入户处与接地装置相连接。应尽量采用全电缆进线,若全电缆进线实在有困难,架空线路应在入户前50米外换接电缆进线,换接处需要装设避雷器,同时,避雷器、架空线绝缘子铁脚、电缆外皮均应接地,接地时的冲击电阻要小于等于10Ω。进入建筑物的金属管道或低压直埋电缆线路,应在入口处将电缆外皮、电缆金属进户导管等与接地装置相连接。

(六)基础接地极设计与施工

在施工过程中,高层建筑的基础桩基(不论是挖孔桩、冲孔桩、钻孔桩)都是将一根根钢筋混凝土柱子伸入地下,直达几十米深的岩层。桩基上面做建筑物的承台,把桩基连成一体。承台也是用钢筋混凝土制作的,一般有一米多厚,承台上面是建筑物的剪力墙及柱子,建筑物的地面部分就座落于承台之上。

四、结论

高层建筑的防雷问题直接影响到建筑物的使用安全,威胁到人们的生命和财产安全,所以应当引起足够的重视,由于高层建筑的高度越来越高,建筑越来越多,其防雷设计也存在一定的问题和缺陷,有待业内人士和相关人员进一步的研究和探讨。

参考文献:

[1]GB 50057-2010, 建筑物防雷设计规范[S].北京:中国计划出版社,2010.

[2]刘思亮.建筑供配电[M].北京:中国建筑工业出版社,1998.

[3]张郁芳.浅谈某高层住宅电气设计中的防雷接地设计[J].山西建筑,2008,34 (20): 189-190.

点击下页还有更多>>>建筑防雷电气技术论文

电力系统防雷技术应用研究论文

摘要: 雷击对电力系统的破坏会产生严重后果,因而电力系统内外部的防雷要求也越来越高了。因为科技进步使得防雷技术不断发展,而雷电这种自然现象对电力系统的危害还是会一直存在,故而要想让电力系统安全供电,重点还是应该做好防雷工作。文章主要通过雷电对电力系统运行的影响论述来探讨电力系统防雷技术的应用,以期为电力系统的安全运行提供有益建议。

关键词: 电力系统;防雷技术;应用

作为自然现象之一的雷电会对电力系统造成击穿、线路损害、设备失灵等不同的损坏,而且还雷电涌流还会进入系统二次设备,让相关保护装置出现失灵之类的恶性事故,由此严重威胁电力系统的安全运行。也正是因为如此,人们一直在研究雷电及相关的防雷技术,通过大量的研究来研发更为有效的雷电保护装置,为电力系统的安全运行保驾护航。

1雷电与电力系统运行

尽管雷电属于自热现象,但是却是电力系统运行中的不可抗力,雷电是因为正电极存在负电荷而产生,能够在电场周围形成强大的高压,让空气绝缘被影响,受到损坏,而雷电间各种电极不断进行大量放电,尽管放电时间短且不会超过100,不过电流强度却高达100000A。闪电在放电中产生电火,在短时间内周围空气突然膨胀后爆鸣,从而产生了自然雷电现象。电力系统很容易被雷电所袭击,电力、设备与系统都会被电磁、热力影响,造成线路、电线等出现熔毁问题。并且电雷带来的高强度电压、电磁会极大影响电路与电线的绝缘体,只要存在高强度电压,电压强度就会很大,由此出现闪络问题,而这种问题在电力设备、线路等绝缘物体上发生就会让电力系统设备与线路出现损坏。尽管雷电会破坏电力系统的安全运行,不过只要采取合理的防范方法,就能够预防雷电灾害。当下,避雷针(线)安装、电力系统设备绝缘性提升、避雷保护装置设置等是比较常用的雷电防护措施。

2防雷技术在电力系统的应用

避雷器作为雷电流泄放通道,还可以被看成是等电位连接体,安装要对地,而在线路上并联,一般都处于高阻抗环境。雷击可以在一瞬间被避雷器导通,把雷电电流引向地上,同时让设备、线路、大地在等电位上,让电力系统不会因为强电势差而被损坏。雷击能量就打,只使用避雷器是无法完全把雷电流引入地上,也会损坏自身。所以,应该将功能不一样的避雷过压保护器件放置在各个电磁场强度空间。不同器件分工合作,让电流入地,保证低残压,也让避雷器的使用寿命更长。

2.1电源系统防雷

所谓电源系统防雷就是利用避雷过压保护计算机系统电源与相关的交流配电部分,蒋避雷器安装在雷电波可能侵入的电力进线部位。电源系统有很多不一样保护级别。电源避雷器的'选择应该要与额定通流容量、电压保护水平相适应,让避雷器能够抵御雷电冲击。电影避雷器中残压特性十分重要,要想避雷器的保护效果更好就应该要使其残压更低。另外,必须兼顾避雷器能够具有很高的最大连续工作电压。原因就是如果最大连续额定工作电压不够高,避雷器会很快损坏。电源避雷器需要贴上失效警告指示,还有方便监管、维护的遥测端口。电源避雷器要有阻燃作用,防止失效与自毁情况下的起火问题。电源避雷器通常都具有失效分离装置。如果不能避雷就会自动断开电源系统,而且电源系统也会正常运行。在安装电源避雷器的过程中,要注意和电源系统的连接线越短越好,所使用的阻燃型多股铜导线的横截面面积不能超过25mm2,要紧密地并排,可以绑扎布放。避雷器接地线所使用的25mm2到35mm2的阻燃型多股铜导线,要么尽量就近入地,要么就近和交流保护接地汇流排或者直接和接地网连接。

2.2通信系统防雷

一般数据线路上会串联接口避雷器,而且是以不影响数据传输作为应用依据。数据接口的工作带要宽、物理接口要合适,并且还要考虑到接口速率,以更好地保护避雷器。数据设备接口的连接为了增加插损,要少用转接方法,这样才可以让信号更好地传输。而在选择速率高的数据设备接口时,要考虑起驻波比、极间电容、漏电流小、响应时间快的数据避雷器。从信号工作电压层面选择动作电压、限制电压合理的数据接口,以保护避雷器。选择抗雷电冲击力强的数据避雷器时,应该要充分了解设备接口抗雷电要求。数据避雷器的接地连接一定要有效,就近连接接地线与被保护数据设备的地线,而接地线截面不能低于25mm2。

2.3机房接地改造

接地系统在电力系计算机系统避雷过压保护技术中有十分重要的作用。防静电接地、防雷接地、保护接地等都属于接地技术。这些接地的用途、意义、要求都不一样,糖醋分设每个独立接地体是较为常见的,不过,由于雷击环境中,防雷接地系统和别的接地系统有电势差,所以很容易出现反击事故,让电子设备被损坏。所以,需要等电位连接全部接地系统。

3结语 总之,电力系统在不断发展,而且被运用在社会生产生活的各个行业,因此其作用极大。我国经济发展日盛,电量需求巨大,电力供应异常重要。因此,需要对电力系统进行有效保护。一直以来,雷击对电力系统的影响尤甚,因而电力系统中防雷技术的应用受到高度重视。在电力系统防雷技术应用中,我们必须要通过具体的实际情况来采取科学、有效的防雷措施。在对电力系统的防雷工作中,要积极地采取新技术新措施,保证电力系统的正常运行,为人们的生产生活创造安全、稳定的环境。

参考文献:

[1]张金国.电力系统防雷措施研究[J].科技创业家,2013(4):63

[2]王少先.电力系统防雷工程设计浅谈[J].科技资讯,2012(2):51

发表防雷论文的问题

避雷器在电力系统应用中的问题分析论文

摘要:文中阐述了避雷器自身防护问题及其对电力系统的影响,简单的论述了避雷器的保护特性,分析了氧化锌避雷器在应用中的问题及解决问题的技术措施,探讨了防雷界的热点问题。

关键词:避雷器特性应用问题分析技术措施

1.应用中的问题探讨

1.1避雷器自身过电压防护问题

避雷器是过电压保护电器,其自身仍存在过电压防护问题。对于能量有限的过电压如雷电过电压和操作过电压,避雷器泄流能起限压保护作用。对能量是无限(有补充能源)的过电压,如暂态过电压(工频过电压和谐振过电压的总称),其频率或为工频或为工频的整数倍或分数倍,与工频电源频率总有合拍的时候,如因某些原因而激发暂态过电压,工频电源能自动补充过电压能量,即使避雷器泄流过电压幅值不衰减或只弱衰减,暂态过电压如果进入避雷器保护动作区,势必长时反复动作直至热崩溃,避雷器损坏爆炸,因此暂态过电压对避雷器有致命危害。如果已将全部暂态过电压限定在保护死区内不受其危害的避雷器,称之为暂态过电压承受能力强,反之称暂态过电压承受能力差。碳化硅避雷器暂态过电压承受能力强,但由于运行中动作特性稳定性差,常因冲击放电电压(保护动作区起始电压)值下降,仍可能遭受暂态过电压危害。无间隙氧化锌避雷器因其拐点电压(可近似地把参考电压当作拐点电压)偏低,仅2.21~2.56Uxg(最大相电压),而有些暂态过电压最大值达2.5~3.5Uxg,故有暂态过电压承受能差的缺点。对暂态过电压危害有效防护办法是加结构性能稳定的串联间隙将全部暂态过电压限定在保护死区内,使避雷器免受其危害。串联间隙氧化锌避雷器有此独具优点。

1.2避雷器自身对电力系统不安全影响

保护间隙和管型避雷器在间隙击穿后,保护回路再也没有限流元件,保护动作都要造成接地故障或相间短路故障,保护作用增多电力系统故障率,影响电力系统的正常、安全运行。应用氧化锌避雷器,从根本上避免保护作用产生接地故障或相间短路故障,且不用自动重合闸装置就能减少线路雷害停电事故。

1.3避雷器其连续雷电冲击保护能力

有时高压电力装置可能遭受连续雷电冲击,连续雷电冲击是指两次雷电入侵波间隔时间仅数百μs至数千μs,间隔时间极短。碳化硅避雷器保护动作既泄放雷电流也泄放工频续流,切断续流时耗最大达10000μs,一次保护循环时间要远大于10000μs才能恢复到可进行再次动作能力,故碳化硅避雷器没有连续雷电冲击保护能力。氧化锌避雷器保护动作只泄放雷电流,雷电流泄放(小于100μs)完毕,立即恢复到可进行再次动作能力,故氧化锌避雷器具有连续雷电冲击保护能力,这对于多雷区或雷电活动特殊强烈地区的防雷保护尤为重要。

1.4工频能源的浪费

只关注防雷器件泄放雷电流的限(降)压保护作用,轻视或忽视有些器件同时泄放工频电流浪费能源作用。保护间隙或管型避雷器保护动作可能伴随短路电流(几kA至几十kA)对地放电,碳化硅避雷器保护动作有工频续流(避雷器FS型为50A,FZ型为80A,FCD型为250A)对地放电,而造成能源浪费,使用氧化锌避雷器可彻底避免保护作用带来的工频能源浪费。

2.避雷器保护特性

2.1避雷器的保护特性参数

各种型号的避雷器在同用途同电压级时,其雷电残压参数相同或接近,这是因为各生产厂都是按国标规定决定残压值的。有人认为既然雷电残压值一样,它们的保护作用和效果也应是一样的,随意选用哪种型号都可以。这是一种偏见,因为除雷电残压外,还有其它保护参数,如工频放电电压值,冲击放电电压值,是考察避雷器暂态过电压承受能力,保证其长期正常运行的参数;又如是否有雷电陡波残压值,是标示避雷器防雷保护功能完全的重要参数。综合来看,只有串联间隙氧化锌避雷器齐备上述保护特性参数,也就是说它有齐全的防护功能。

2.2避雷器动作特性运行稳定性

碳化硅避雷器保护动作要泄放雷电流和工频续流,动作负载重,经计算每次动作泄放雷电流为0.04~0.07C电荷量,工频续流为0.5~2.5C电荷量,后者与前者相比一般为11~17倍,且其间隙数量多隙距,常因动作负载重使部分间隙烧毛烧损,另外瓷套外壳脏污潮湿也会影响内间隙电容分布,这些都可能使部分间隙失效而降低冲击放电电压值,即动作特性稳定性差,可能增加保护动作频度,或遭受暂态过电压危害,而加速损坏。串联间隙氧化锌避雷器保护动作只泄放雷电流而无续流,动作负载轻,间隙不需具有灭弧及切断续流能力,故间隙数量特少,3~10kV避雷器仅一个间隙,35kV避雷器为3个间隙串联,间隙的工频放电电压值与碳化硅避雷器相同,符合GB7327规定,故间隙隙距大,动作特性可保持长期运行稳定。

2.3串联间隙氧化锌避雷器

碳化硅避雷器因其间隙结构(隙距小,数量多)带来一些缺点:如没有雷电陡波保护功能;没有连续雷电冲击保护能力;动作特性稳定差可能遭受暂态过电压危害;动作负载重寿命短等。无间隙氧化锌避雷器因其拐点电压较低,有暂态过电压承受能力差,损坏爆炸率高和寿命短等缺点。串联间隙氧化锌避雷器既有间隙又用ZnO阀片,其间隙结构不同于碳化硅避雷器,因其间隙数量少,当过电压达到冲击放电电压时间隙无时延击穿,同时因隙距大动作特性稳定,故它可避免碳化硅避雷器间隙带来的一切缺点。串联间隙氧化锌避雷器的间隙已将全部暂态过电压限定在保护死区内免受其危害,故它可避免无间隙氧化锌避雷器因拐点电压偏低带来一切缺点。串联间隙氧化锌避雷器仍有前两种避雷器保护性能优点,而避免它们的缺点。

2.4避雷器运行工况监测

避雷器失效的主要特征是泄漏电流增大,运行中不易发现,有可能长时带病运行,以致扩大事故,故有必要监察其运行工况。碳化硅避雷缺乏监察手段,靠每年定期普遍测试筛选淘汰这样作事倍功半,还不能随时剔除失效品。氧化锌避雷器可附带脱离器,当其失效损坏时,脱离器自动动作(30mA时不大于8min)退出运行,以免造成更大损失和事故,提高运行安全可靠性。

3.避雷器应用

3.1避雷器外形尺寸

制造避雷器均按户内外两用条件决定其瓷套绝缘强度,其外形尺寸与阀片材料有关。当其用于架空线路或户外变配电设备时,因其相间距大,避雷器外形尺寸不会带来不良影响。户内手车式开关柜因其体积尺寸较小,避雷器外形尺寸大时会带来不良影响。碳化硅避雷器的SiC阀片其单位通流容量仅为ZnO阀片的1/4,在相同通流能力(5kA)条件下,SiC阀片直径较大,避雷器外径也大;在相同额定电压和残压条件下,碳化硅避雷器高度比氧化锌避雷器大。尤以35kV级的更为显著。如JYN1-35型手车柜的112方案,原用FYZ1-35型无间隙氧化锌避雷器,高仅650mm,装在柜后部隔室内简易手车上,上部有隔离插头,因该产品已停产,工程设计坚持改用FZ3-35型碳化硅避雷器,高1500mm,隔室高度不够,只得将母线室与隔室间隔板取消,避雷器直接与主母线相联,这样避雷器的测试或更换必需在整段主母线断电下进行,运行维护困难,而避雷器外径较大,相间空气净距不够,加装的相间绝缘隔板,有老化受潮绝缘事故隐患。氧化锌避雷器外径和高度相对较小,35kV级还可作成悬挂式,如Y5CZz-42/110L型串联间隙氧化锌避雷器,高度仅640mm。小型化避雷器更有利于手车柜内安装使用。

3.2避雷器性能价格比

无间隙氧化锌避雷器的阀片运行中长期承受电网电压,工作条件严酷,产品制造时要对阀片严格测试筛选,合格率低成本高,故价格也高;因它有暂态过电压承受能力差的致命弱点,不适于在我国3~35kV电网中推广使用。串联间隙氧化锌避雷器因有间隙,大大改善阀片长期工作条件,产品制造时对阀片测试筛选要求相对低些,合格率高成本低,价格也就便宜,串联间隙氧化锌避雷器价格比无间隙氧化锌避雷器普遍便宜,有时也比碳化硅避雷器(如3~10kV的FZ型)便宜,同时它对其它防雷器件都有扬长避短作用,实为当代最先进防雷电器,具有高的性能价格比,是避雷器更新换代的普及和推广产品。

3.3避雷器使用寿命问题

避雷器使用寿命与许多因素有关,除制造质量,密封失效受潮及其它外界因素外,避雷器阀片的老化速度是影响寿命的关键因素。碳化硅避雷器因其动作和负载重,续流大,动作特性稳定差,可能遭受暂态过电压危害等原因,加速阀片老化,寿命不长,一般7~10年,甚致有仅3~5年的。无间隙氧化锌避雷器的阀片长期承受电网电压,工作条件严酷,拐点电压低,动作频度大,还可能遭受暂态过电压危害,温度热损伤等原因,迅速加快阀片老化,寿命较短,有的比碳化硅避雷器还短。串联间隙氧化锌避雷器的间隙可保证阀片只在过电压保护动作过程承受高电压,时间极短(100μs内),在其它情况下阀片对于电网电压,或处于隔离状态(纯间隙时),或处于低电位状态(复合间隙电阻分压),大大改善阀片长期工作条件,还可免受暂态过电压危害和温度热损伤,保证阀片温度不超过55℃,从而保证避雷器寿命达20年以上。

4.氧化锌避雷器运行中的问题分析

我公司应用氧化锌避雷器始于80年代,运行至今在110KV母线上共发生6起事故,均为氧化锌避雷器本体爆炸,其运行寿命最长达110个月,最短的仅有11个月煴1为我公司110KVⅢ段母线避雷器爆炸统计表。

从运行时间上、安装的环境、气候、及生产厂,对损坏的氧化锌避雷器进行技术分析,造成氧化锌避雷器运行中爆炸的原因可归纳如下几项:

4.1氧化锌避雷器的密封问题

氧化锌避雷器密封老化问题,主要是生产厂采用的密封技术不完善,或采用的密封材料抗老化性能不稳定,在温差变化较大时或运行时间接近产品寿命后期,造成其密封不良而后使潮气浸入,造成内部绝缘损坏,加速了电阻片的劣化而引起爆炸。

4.2电阻片抗老化性能差

在氧化锌避雷器运行在其产品寿命的后期,电阻片劣化造成泄漏电流上升,甚至造成与瓷套内部放电,放电严重时避雷器内部气体压力和温度急剧增高,而引起氧化锌避雷器本体爆炸,内部放电不太严重时可引起系统单相接地。

4.3瓷套污染

由于工作在室外的氧化锌避雷器,瓷套受到环境粉尘的污染,特别是设置在冶金厂区内变电所,由于粉尘中金属粉尘的比例较大,故给瓷套造成严重的污染而引起污闪或因污秽在瓷套表面的不均匀,而使沿瓷套表面电流也不均匀分布,势必导致电阻片中电流IMOA的不均匀分布(或沿电阻片的电压不均匀分布),使流过电阻片的电流较正常时大1—2个数量级,造成附加温升,使吸收过电压能力大为降低,也加速了电阻片的劣化。

4.4高次谐波

冶金企业电网随着大吨位电弧炉、大型整流、变频设备的应用及轧钢生产的冲击负荷等的影响,使电网上的高次谐波值严重超标。由于电阻片的非线性,当正弦电压作用时,还有一系列的奇次谐波,而在高次谐波作用时就更加速了电阻片的劣化速度。

4.5抗冲击能力差

氧化锌避雷器多在操作过电压或雷电条件下发生事故,其原因是因电阻片在制造工艺过程中,由于其各工艺质量控制点控制不严,而使电阻片的耐受方波冲击能力不强,在频繁吸收过电压能量过程中,加速了电阻片的劣化而损坏,失去了自身的技术性能。

5.技术措施

针对冶金电网的特点及氧化锌避雷器几次事故分析的.结论,要保证氧化锌避雷器在网上安全可靠运行,应采取以下措施:

5.1设计选型

在设计选型上,应首选有多年稳定运行实践的产品,在选择生产厂时,应选择有先进的工艺设备和完善的检测手段的生产厂,才能保证所选用的氧化锌避雷器具有高的抗老化、耐冲击性能,以使在产品的寿命周期内稳定运行。

5.2在线监测

增设氧化锌避雷器的在线监测仪,并加强对在线监测仪的巡检力度,特别是在雷雨后和易发生故障的部位(有电弧炉负荷的母线段、氧化锌避雷器寿命已到后期)增加巡次数。定期给氧化锌避雷器进行各项电气性能测试及在线监测仪的校验。

5.3防污措施

采用必要的避雷器瓷套的防污措施,如定期清扫或涂以防污闪硅油,在氧化锌避雷器选型上选用防污瓷套型的氧化锌避雷器。

5.4谐波治理

加强电网谐波的治理力度,在有谐波源的母线段增设动态无功补偿和滤波装置,以使电网的高次谐波值控制在国家标准允许范围内。

5.5技术管理

加强对氧化锌避雷器的技术管理工作,即对运行在网上的每一只氧化锌避雷器建立技术档案,对出厂报告、定期测试报告及在线监测仪的运行记录均要存入技术档案,直至该避雷器退出运行。

据国外有关技术资料统计,氧化锌避雷器损坏的原因有雷电和操作过电压,受潮、污闪、系统条件、本身故障等,但仍有一定比例损坏的原因不详,故仍有其在运行中对事故原因不明确的问题。又因氧化锌避雷器的劣化速度的离散性,及雷电、操作过电压、谐波、运行环境等的随机性,都决定着氧化锌避雷器的安全运行的可靠性,故需在今后的工作实践中去研究、实验、探索和总结,以使得其在运行中的不安全因素可得以预防和完善。

随着经济发展和社会需要,高层建筑如雨后春笋般不断出现在各个城市各个地区,防雷电气技术也越来越重要了。下面是我为大家整理的建筑防雷电气技术论文,希望你们喜欢。

高层建筑电气设计中的防雷技术

【摘 要】在高层建筑电气设计中,防雷接地设计是一个重要环节。本文简单介绍了建筑物防雷的等级分类,及不同类型的建筑物应当采取的防雷措施。具体分析了高层建筑的几种防雷措施,包括接闪器、引下线、接地装置、防雷电反击措施、防高电位进入措施及基础接地体施工与设计的问题。

【关键词】高层建筑;电气设计;防雷;接闪器;引下线;接地装置

一、引言

随着经济发展和社会需要,高层建筑如雨后春笋般不断出现在各个城市各个地区,随着建筑物高度的增加,防雷问题也越来越受到重视。为了满足人们生活的需要,各种类型、各种功能的电气设备越来越多,在使用这些电气时,必然会给高层建筑物带来一定程度的安全问题。所以研究高层建筑电气设计中的防雷技术问题有很重要的意义。

二、建筑物的防雷等级及防雷措施

(一)建筑物的防雷等级

按照建筑物对防雷的要求,根据其使用性质、重要性、发生雷电次数的可能性和后果,可将建筑物防雷等级分为三个级别。

第一类防雷建筑指的是制造、使用或贮存炸药、火药、起爆药、火工品等大量爆炸物质的建筑物或具有爆炸危险,会因电火花造成爆炸,且会造成人员伤亡和巨大破坏者。

第二类防雷建筑指的是国家级重点建筑物,对国民经济意义重大且装有大量电子设备的建筑物,具有爆炸危险、电火花不易引起爆炸或不至造成人员伤亡和重大破坏者,预计雷击次数大于0.06次/a的重要办公建筑和人员密集的公共建筑物以及预计雷击次数大于0.03次/a的一般建筑物。

第三类防雷建筑指的是没有前两个级别高但是也有一定雷击危险的建筑物。

(二)建筑物的防雷措施

按《建筑物防雷设计规范》(GB 50057-2010)中的一般规定,各类建筑物均应采取防雷电波侵入和防直接雷的措施。

第一类防雷建筑物和第二类防雷建筑物中,有爆炸危险的场所,应有防雷电感应和防雷电波侵入、防直击雷的措施。第二类防雷建筑物除有爆炸危险的场所外,以及第三类防雷建筑物,应采取防雷电波侵入和防直接雷的措施。具体防雷措施参考规范第3.2.1条至3.4.10条。

据研究观测发现,屋顶的坡度能够影响建筑物容易遭受雷击的部位。

建筑物屋面很少会遭受雷击。设计时应分析屋顶的实际情况,确定最易受雷击的部位,然后根据要求在这些部位装设避雷针或避雷带或避雷网进行重点保护。

三、高层建筑物的防雷措施

(一)接闪器

接闪器是一种金属物体,专门用来接受直接雷击。接闪的金属杆称为避雷针。接闪的金属线称为避雷线,又称架空地线。接闪的金属带、金属网称为避雷带、避雷网。接闪器应该由独立避雷针,架空避雷线或架空避雷网或直接装设在建筑物上的避雷针、避雷带、避雷网中的一种或几种组成。

接闪器要通过接地引下线与接地体(接地装置)相连。

接地体用来向大地引泄雷电流,为埋入地下土壤中的各型接地极的总称。

在国内,目前除仅有的几个高级建筑(如北京长城饭店、广州花园大酒店等)采用E、F放射性避雷系统中的放射电极之外,其他高层建筑多采用避雷带或者避雷网作为接闪器,很少使用避雷针。有些建筑面积高达数万甚至数十万平方米,但宽高比一般也比较大、建筑天面面积相对较小的高层建筑 ,通常只要在天面四周及水池顶部四周明设避雷带,局部再加些避雷网即可。

(二)引下线

在高层建筑中,我国建筑工程施工时常用的方法是利用柱或剪力墙的钢筋作为避雷引下线。这种方法已经写入国标《建筑物防雷设计规范》。规范规定,引下线的截面积不应小于直径为10mm的钢筋的截面积,而高层建筑中主筋截面积在20mm以上的很常见,所以要想达到这一要求并不难。为了安全,通常施工中至少采用截面积16mm的主筋做避雷引下线,一般用两根。施工中,标明引下线位置,防止上下焊接错位。

高层建筑防侧击雷施工时,将避雷引下线与圈梁、大梁链接,再尤其引出至预埋铁件,然后由预埋铁件与金属门窗焊连。但是这道工艺工程量相当大,且存在一定困难,如何解决铝合金门窗接地,尚是防雷设计中一个值得研究和探讨的问题。若建筑物采用的是玻璃幕墙,那就方便得多了。

(三)接地装置

目前,我国的高层建筑接地装置大多是采用以建筑物的深基础作为接地极的方法。这种方法有很多优点,如接地电阻低、电位分布均匀、均压效果好、施工方便、维护工程量少、节省材料等。

高层建筑多是钢筋混凝土做基础,所以凝固后有很多的孔隙,地下水渗入其中,由于是硅酸盐混凝土,使得导电能力增强。又因为混凝土基础中,钢筋密密麻麻、纵横交错,捆绑焊接后直接与导电性硅酸盐混凝土接触,从而使得接地电阻很低。桩基接地,如同使整个建筑物在地下形成了一个大型均压网,均压效果显著。同时,利用主筋接地,节省了大量钢材。

(四)防止雷电反击

在高层建筑施工中,建筑物的结构钢筋实际上都已经跟接地装置或松或紧地连成一体了。但是为了防止雷电反击,还应将建筑物内的一切金属导管和金属构件及支架等均与接地装置相连。垂直敷设的电气线路,可在适当部位装设电压击穿保护装置。最好将各种接地装置都连接成一体。上面的几种方法都是根据等电位原理,使电位均匀,避免建筑物受到雷电反击的危害。

(五)防止高电位引入

雷电波入侵,容易造成室内高电位引入问题。为防止产生此类问题,进入建筑物的架空金属管道应在入户处与接地装置相连接。应尽量采用全电缆进线,若全电缆进线实在有困难,架空线路应在入户前50米外换接电缆进线,换接处需要装设避雷器,同时,避雷器、架空线绝缘子铁脚、电缆外皮均应接地,接地时的冲击电阻要小于等于10Ω。进入建筑物的金属管道或低压直埋电缆线路,应在入口处将电缆外皮、电缆金属进户导管等与接地装置相连接。

(六)基础接地极设计与施工

在施工过程中,高层建筑的基础桩基(不论是挖孔桩、冲孔桩、钻孔桩)都是将一根根钢筋混凝土柱子伸入地下,直达几十米深的岩层。桩基上面做建筑物的承台,把桩基连成一体。承台也是用钢筋混凝土制作的,一般有一米多厚,承台上面是建筑物的剪力墙及柱子,建筑物的地面部分就座落于承台之上。

四、结论

高层建筑的防雷问题直接影响到建筑物的使用安全,威胁到人们的生命和财产安全,所以应当引起足够的重视,由于高层建筑的高度越来越高,建筑越来越多,其防雷设计也存在一定的问题和缺陷,有待业内人士和相关人员进一步的研究和探讨。

参考文献:

[1]GB 50057-2010, 建筑物防雷设计规范[S].北京:中国计划出版社,2010.

[2]刘思亮.建筑供配电[M].北京:中国建筑工业出版社,1998.

[3]张郁芳.浅谈某高层住宅电气设计中的防雷接地设计[J].山西建筑,2008,34 (20): 189-190.

点击下页还有更多>>>建筑防雷电气技术论文

电力系统防雷技术应用研究论文

摘要: 雷击对电力系统的破坏会产生严重后果,因而电力系统内外部的防雷要求也越来越高了。因为科技进步使得防雷技术不断发展,而雷电这种自然现象对电力系统的危害还是会一直存在,故而要想让电力系统安全供电,重点还是应该做好防雷工作。文章主要通过雷电对电力系统运行的影响论述来探讨电力系统防雷技术的应用,以期为电力系统的安全运行提供有益建议。

关键词: 电力系统;防雷技术;应用

作为自然现象之一的雷电会对电力系统造成击穿、线路损害、设备失灵等不同的损坏,而且还雷电涌流还会进入系统二次设备,让相关保护装置出现失灵之类的恶性事故,由此严重威胁电力系统的安全运行。也正是因为如此,人们一直在研究雷电及相关的防雷技术,通过大量的研究来研发更为有效的雷电保护装置,为电力系统的安全运行保驾护航。

1雷电与电力系统运行

尽管雷电属于自热现象,但是却是电力系统运行中的不可抗力,雷电是因为正电极存在负电荷而产生,能够在电场周围形成强大的高压,让空气绝缘被影响,受到损坏,而雷电间各种电极不断进行大量放电,尽管放电时间短且不会超过100,不过电流强度却高达100000A。闪电在放电中产生电火,在短时间内周围空气突然膨胀后爆鸣,从而产生了自然雷电现象。电力系统很容易被雷电所袭击,电力、设备与系统都会被电磁、热力影响,造成线路、电线等出现熔毁问题。并且电雷带来的高强度电压、电磁会极大影响电路与电线的绝缘体,只要存在高强度电压,电压强度就会很大,由此出现闪络问题,而这种问题在电力设备、线路等绝缘物体上发生就会让电力系统设备与线路出现损坏。尽管雷电会破坏电力系统的安全运行,不过只要采取合理的防范方法,就能够预防雷电灾害。当下,避雷针(线)安装、电力系统设备绝缘性提升、避雷保护装置设置等是比较常用的雷电防护措施。

2防雷技术在电力系统的应用

避雷器作为雷电流泄放通道,还可以被看成是等电位连接体,安装要对地,而在线路上并联,一般都处于高阻抗环境。雷击可以在一瞬间被避雷器导通,把雷电电流引向地上,同时让设备、线路、大地在等电位上,让电力系统不会因为强电势差而被损坏。雷击能量就打,只使用避雷器是无法完全把雷电流引入地上,也会损坏自身。所以,应该将功能不一样的避雷过压保护器件放置在各个电磁场强度空间。不同器件分工合作,让电流入地,保证低残压,也让避雷器的使用寿命更长。

2.1电源系统防雷

所谓电源系统防雷就是利用避雷过压保护计算机系统电源与相关的交流配电部分,蒋避雷器安装在雷电波可能侵入的电力进线部位。电源系统有很多不一样保护级别。电源避雷器的'选择应该要与额定通流容量、电压保护水平相适应,让避雷器能够抵御雷电冲击。电影避雷器中残压特性十分重要,要想避雷器的保护效果更好就应该要使其残压更低。另外,必须兼顾避雷器能够具有很高的最大连续工作电压。原因就是如果最大连续额定工作电压不够高,避雷器会很快损坏。电源避雷器需要贴上失效警告指示,还有方便监管、维护的遥测端口。电源避雷器要有阻燃作用,防止失效与自毁情况下的起火问题。电源避雷器通常都具有失效分离装置。如果不能避雷就会自动断开电源系统,而且电源系统也会正常运行。在安装电源避雷器的过程中,要注意和电源系统的连接线越短越好,所使用的阻燃型多股铜导线的横截面面积不能超过25mm2,要紧密地并排,可以绑扎布放。避雷器接地线所使用的25mm2到35mm2的阻燃型多股铜导线,要么尽量就近入地,要么就近和交流保护接地汇流排或者直接和接地网连接。

2.2通信系统防雷

一般数据线路上会串联接口避雷器,而且是以不影响数据传输作为应用依据。数据接口的工作带要宽、物理接口要合适,并且还要考虑到接口速率,以更好地保护避雷器。数据设备接口的连接为了增加插损,要少用转接方法,这样才可以让信号更好地传输。而在选择速率高的数据设备接口时,要考虑起驻波比、极间电容、漏电流小、响应时间快的数据避雷器。从信号工作电压层面选择动作电压、限制电压合理的数据接口,以保护避雷器。选择抗雷电冲击力强的数据避雷器时,应该要充分了解设备接口抗雷电要求。数据避雷器的接地连接一定要有效,就近连接接地线与被保护数据设备的地线,而接地线截面不能低于25mm2。

2.3机房接地改造

接地系统在电力系计算机系统避雷过压保护技术中有十分重要的作用。防静电接地、防雷接地、保护接地等都属于接地技术。这些接地的用途、意义、要求都不一样,糖醋分设每个独立接地体是较为常见的,不过,由于雷击环境中,防雷接地系统和别的接地系统有电势差,所以很容易出现反击事故,让电子设备被损坏。所以,需要等电位连接全部接地系统。

3结语 总之,电力系统在不断发展,而且被运用在社会生产生活的各个行业,因此其作用极大。我国经济发展日盛,电量需求巨大,电力供应异常重要。因此,需要对电力系统进行有效保护。一直以来,雷击对电力系统的影响尤甚,因而电力系统中防雷技术的应用受到高度重视。在电力系统防雷技术应用中,我们必须要通过具体的实际情况来采取科学、有效的防雷措施。在对电力系统的防雷工作中,要积极地采取新技术新措施,保证电力系统的正常运行,为人们的生产生活创造安全、稳定的环境。

参考文献:

[1]张金国.电力系统防雷措施研究[J].科技创业家,2013(4):63

[2]王少先.电力系统防雷工程设计浅谈[J].科技资讯,2012(2):51

发表防雷论文的问题提问

避雷器在电力系统应用中的问题分析论文

摘要:文中阐述了避雷器自身防护问题及其对电力系统的影响,简单的论述了避雷器的保护特性,分析了氧化锌避雷器在应用中的问题及解决问题的技术措施,探讨了防雷界的热点问题。

关键词:避雷器特性应用问题分析技术措施

1.应用中的问题探讨

1.1避雷器自身过电压防护问题

避雷器是过电压保护电器,其自身仍存在过电压防护问题。对于能量有限的过电压如雷电过电压和操作过电压,避雷器泄流能起限压保护作用。对能量是无限(有补充能源)的过电压,如暂态过电压(工频过电压和谐振过电压的总称),其频率或为工频或为工频的整数倍或分数倍,与工频电源频率总有合拍的时候,如因某些原因而激发暂态过电压,工频电源能自动补充过电压能量,即使避雷器泄流过电压幅值不衰减或只弱衰减,暂态过电压如果进入避雷器保护动作区,势必长时反复动作直至热崩溃,避雷器损坏爆炸,因此暂态过电压对避雷器有致命危害。如果已将全部暂态过电压限定在保护死区内不受其危害的避雷器,称之为暂态过电压承受能力强,反之称暂态过电压承受能力差。碳化硅避雷器暂态过电压承受能力强,但由于运行中动作特性稳定性差,常因冲击放电电压(保护动作区起始电压)值下降,仍可能遭受暂态过电压危害。无间隙氧化锌避雷器因其拐点电压(可近似地把参考电压当作拐点电压)偏低,仅2.21~2.56Uxg(最大相电压),而有些暂态过电压最大值达2.5~3.5Uxg,故有暂态过电压承受能差的缺点。对暂态过电压危害有效防护办法是加结构性能稳定的串联间隙将全部暂态过电压限定在保护死区内,使避雷器免受其危害。串联间隙氧化锌避雷器有此独具优点。

1.2避雷器自身对电力系统不安全影响

保护间隙和管型避雷器在间隙击穿后,保护回路再也没有限流元件,保护动作都要造成接地故障或相间短路故障,保护作用增多电力系统故障率,影响电力系统的正常、安全运行。应用氧化锌避雷器,从根本上避免保护作用产生接地故障或相间短路故障,且不用自动重合闸装置就能减少线路雷害停电事故。

1.3避雷器其连续雷电冲击保护能力

有时高压电力装置可能遭受连续雷电冲击,连续雷电冲击是指两次雷电入侵波间隔时间仅数百μs至数千μs,间隔时间极短。碳化硅避雷器保护动作既泄放雷电流也泄放工频续流,切断续流时耗最大达10000μs,一次保护循环时间要远大于10000μs才能恢复到可进行再次动作能力,故碳化硅避雷器没有连续雷电冲击保护能力。氧化锌避雷器保护动作只泄放雷电流,雷电流泄放(小于100μs)完毕,立即恢复到可进行再次动作能力,故氧化锌避雷器具有连续雷电冲击保护能力,这对于多雷区或雷电活动特殊强烈地区的防雷保护尤为重要。

1.4工频能源的浪费

只关注防雷器件泄放雷电流的限(降)压保护作用,轻视或忽视有些器件同时泄放工频电流浪费能源作用。保护间隙或管型避雷器保护动作可能伴随短路电流(几kA至几十kA)对地放电,碳化硅避雷器保护动作有工频续流(避雷器FS型为50A,FZ型为80A,FCD型为250A)对地放电,而造成能源浪费,使用氧化锌避雷器可彻底避免保护作用带来的工频能源浪费。

2.避雷器保护特性

2.1避雷器的保护特性参数

各种型号的避雷器在同用途同电压级时,其雷电残压参数相同或接近,这是因为各生产厂都是按国标规定决定残压值的。有人认为既然雷电残压值一样,它们的保护作用和效果也应是一样的,随意选用哪种型号都可以。这是一种偏见,因为除雷电残压外,还有其它保护参数,如工频放电电压值,冲击放电电压值,是考察避雷器暂态过电压承受能力,保证其长期正常运行的参数;又如是否有雷电陡波残压值,是标示避雷器防雷保护功能完全的重要参数。综合来看,只有串联间隙氧化锌避雷器齐备上述保护特性参数,也就是说它有齐全的防护功能。

2.2避雷器动作特性运行稳定性

碳化硅避雷器保护动作要泄放雷电流和工频续流,动作负载重,经计算每次动作泄放雷电流为0.04~0.07C电荷量,工频续流为0.5~2.5C电荷量,后者与前者相比一般为11~17倍,且其间隙数量多隙距,常因动作负载重使部分间隙烧毛烧损,另外瓷套外壳脏污潮湿也会影响内间隙电容分布,这些都可能使部分间隙失效而降低冲击放电电压值,即动作特性稳定性差,可能增加保护动作频度,或遭受暂态过电压危害,而加速损坏。串联间隙氧化锌避雷器保护动作只泄放雷电流而无续流,动作负载轻,间隙不需具有灭弧及切断续流能力,故间隙数量特少,3~10kV避雷器仅一个间隙,35kV避雷器为3个间隙串联,间隙的工频放电电压值与碳化硅避雷器相同,符合GB7327规定,故间隙隙距大,动作特性可保持长期运行稳定。

2.3串联间隙氧化锌避雷器

碳化硅避雷器因其间隙结构(隙距小,数量多)带来一些缺点:如没有雷电陡波保护功能;没有连续雷电冲击保护能力;动作特性稳定差可能遭受暂态过电压危害;动作负载重寿命短等。无间隙氧化锌避雷器因其拐点电压较低,有暂态过电压承受能力差,损坏爆炸率高和寿命短等缺点。串联间隙氧化锌避雷器既有间隙又用ZnO阀片,其间隙结构不同于碳化硅避雷器,因其间隙数量少,当过电压达到冲击放电电压时间隙无时延击穿,同时因隙距大动作特性稳定,故它可避免碳化硅避雷器间隙带来的一切缺点。串联间隙氧化锌避雷器的间隙已将全部暂态过电压限定在保护死区内免受其危害,故它可避免无间隙氧化锌避雷器因拐点电压偏低带来一切缺点。串联间隙氧化锌避雷器仍有前两种避雷器保护性能优点,而避免它们的缺点。

2.4避雷器运行工况监测

避雷器失效的主要特征是泄漏电流增大,运行中不易发现,有可能长时带病运行,以致扩大事故,故有必要监察其运行工况。碳化硅避雷缺乏监察手段,靠每年定期普遍测试筛选淘汰这样作事倍功半,还不能随时剔除失效品。氧化锌避雷器可附带脱离器,当其失效损坏时,脱离器自动动作(30mA时不大于8min)退出运行,以免造成更大损失和事故,提高运行安全可靠性。

3.避雷器应用

3.1避雷器外形尺寸

制造避雷器均按户内外两用条件决定其瓷套绝缘强度,其外形尺寸与阀片材料有关。当其用于架空线路或户外变配电设备时,因其相间距大,避雷器外形尺寸不会带来不良影响。户内手车式开关柜因其体积尺寸较小,避雷器外形尺寸大时会带来不良影响。碳化硅避雷器的SiC阀片其单位通流容量仅为ZnO阀片的1/4,在相同通流能力(5kA)条件下,SiC阀片直径较大,避雷器外径也大;在相同额定电压和残压条件下,碳化硅避雷器高度比氧化锌避雷器大。尤以35kV级的更为显著。如JYN1-35型手车柜的112方案,原用FYZ1-35型无间隙氧化锌避雷器,高仅650mm,装在柜后部隔室内简易手车上,上部有隔离插头,因该产品已停产,工程设计坚持改用FZ3-35型碳化硅避雷器,高1500mm,隔室高度不够,只得将母线室与隔室间隔板取消,避雷器直接与主母线相联,这样避雷器的测试或更换必需在整段主母线断电下进行,运行维护困难,而避雷器外径较大,相间空气净距不够,加装的相间绝缘隔板,有老化受潮绝缘事故隐患。氧化锌避雷器外径和高度相对较小,35kV级还可作成悬挂式,如Y5CZz-42/110L型串联间隙氧化锌避雷器,高度仅640mm。小型化避雷器更有利于手车柜内安装使用。

3.2避雷器性能价格比

无间隙氧化锌避雷器的阀片运行中长期承受电网电压,工作条件严酷,产品制造时要对阀片严格测试筛选,合格率低成本高,故价格也高;因它有暂态过电压承受能力差的致命弱点,不适于在我国3~35kV电网中推广使用。串联间隙氧化锌避雷器因有间隙,大大改善阀片长期工作条件,产品制造时对阀片测试筛选要求相对低些,合格率高成本低,价格也就便宜,串联间隙氧化锌避雷器价格比无间隙氧化锌避雷器普遍便宜,有时也比碳化硅避雷器(如3~10kV的FZ型)便宜,同时它对其它防雷器件都有扬长避短作用,实为当代最先进防雷电器,具有高的性能价格比,是避雷器更新换代的普及和推广产品。

3.3避雷器使用寿命问题

避雷器使用寿命与许多因素有关,除制造质量,密封失效受潮及其它外界因素外,避雷器阀片的老化速度是影响寿命的关键因素。碳化硅避雷器因其动作和负载重,续流大,动作特性稳定差,可能遭受暂态过电压危害等原因,加速阀片老化,寿命不长,一般7~10年,甚致有仅3~5年的。无间隙氧化锌避雷器的阀片长期承受电网电压,工作条件严酷,拐点电压低,动作频度大,还可能遭受暂态过电压危害,温度热损伤等原因,迅速加快阀片老化,寿命较短,有的比碳化硅避雷器还短。串联间隙氧化锌避雷器的间隙可保证阀片只在过电压保护动作过程承受高电压,时间极短(100μs内),在其它情况下阀片对于电网电压,或处于隔离状态(纯间隙时),或处于低电位状态(复合间隙电阻分压),大大改善阀片长期工作条件,还可免受暂态过电压危害和温度热损伤,保证阀片温度不超过55℃,从而保证避雷器寿命达20年以上。

4.氧化锌避雷器运行中的问题分析

我公司应用氧化锌避雷器始于80年代,运行至今在110KV母线上共发生6起事故,均为氧化锌避雷器本体爆炸,其运行寿命最长达110个月,最短的仅有11个月煴1为我公司110KVⅢ段母线避雷器爆炸统计表。

从运行时间上、安装的环境、气候、及生产厂,对损坏的氧化锌避雷器进行技术分析,造成氧化锌避雷器运行中爆炸的原因可归纳如下几项:

4.1氧化锌避雷器的密封问题

氧化锌避雷器密封老化问题,主要是生产厂采用的密封技术不完善,或采用的密封材料抗老化性能不稳定,在温差变化较大时或运行时间接近产品寿命后期,造成其密封不良而后使潮气浸入,造成内部绝缘损坏,加速了电阻片的劣化而引起爆炸。

4.2电阻片抗老化性能差

在氧化锌避雷器运行在其产品寿命的后期,电阻片劣化造成泄漏电流上升,甚至造成与瓷套内部放电,放电严重时避雷器内部气体压力和温度急剧增高,而引起氧化锌避雷器本体爆炸,内部放电不太严重时可引起系统单相接地。

4.3瓷套污染

由于工作在室外的氧化锌避雷器,瓷套受到环境粉尘的污染,特别是设置在冶金厂区内变电所,由于粉尘中金属粉尘的比例较大,故给瓷套造成严重的污染而引起污闪或因污秽在瓷套表面的不均匀,而使沿瓷套表面电流也不均匀分布,势必导致电阻片中电流IMOA的不均匀分布(或沿电阻片的电压不均匀分布),使流过电阻片的电流较正常时大1—2个数量级,造成附加温升,使吸收过电压能力大为降低,也加速了电阻片的劣化。

4.4高次谐波

冶金企业电网随着大吨位电弧炉、大型整流、变频设备的应用及轧钢生产的冲击负荷等的影响,使电网上的高次谐波值严重超标。由于电阻片的非线性,当正弦电压作用时,还有一系列的奇次谐波,而在高次谐波作用时就更加速了电阻片的劣化速度。

4.5抗冲击能力差

氧化锌避雷器多在操作过电压或雷电条件下发生事故,其原因是因电阻片在制造工艺过程中,由于其各工艺质量控制点控制不严,而使电阻片的耐受方波冲击能力不强,在频繁吸收过电压能量过程中,加速了电阻片的劣化而损坏,失去了自身的技术性能。

5.技术措施

针对冶金电网的特点及氧化锌避雷器几次事故分析的.结论,要保证氧化锌避雷器在网上安全可靠运行,应采取以下措施:

5.1设计选型

在设计选型上,应首选有多年稳定运行实践的产品,在选择生产厂时,应选择有先进的工艺设备和完善的检测手段的生产厂,才能保证所选用的氧化锌避雷器具有高的抗老化、耐冲击性能,以使在产品的寿命周期内稳定运行。

5.2在线监测

增设氧化锌避雷器的在线监测仪,并加强对在线监测仪的巡检力度,特别是在雷雨后和易发生故障的部位(有电弧炉负荷的母线段、氧化锌避雷器寿命已到后期)增加巡次数。定期给氧化锌避雷器进行各项电气性能测试及在线监测仪的校验。

5.3防污措施

采用必要的避雷器瓷套的防污措施,如定期清扫或涂以防污闪硅油,在氧化锌避雷器选型上选用防污瓷套型的氧化锌避雷器。

5.4谐波治理

加强电网谐波的治理力度,在有谐波源的母线段增设动态无功补偿和滤波装置,以使电网的高次谐波值控制在国家标准允许范围内。

5.5技术管理

加强对氧化锌避雷器的技术管理工作,即对运行在网上的每一只氧化锌避雷器建立技术档案,对出厂报告、定期测试报告及在线监测仪的运行记录均要存入技术档案,直至该避雷器退出运行。

据国外有关技术资料统计,氧化锌避雷器损坏的原因有雷电和操作过电压,受潮、污闪、系统条件、本身故障等,但仍有一定比例损坏的原因不详,故仍有其在运行中对事故原因不明确的问题。又因氧化锌避雷器的劣化速度的离散性,及雷电、操作过电压、谐波、运行环境等的随机性,都决定着氧化锌避雷器的安全运行的可靠性,故需在今后的工作实践中去研究、实验、探索和总结,以使得其在运行中的不安全因素可得以预防和完善。

电力系统防雷技术应用研究论文

摘要: 雷击对电力系统的破坏会产生严重后果,因而电力系统内外部的防雷要求也越来越高了。因为科技进步使得防雷技术不断发展,而雷电这种自然现象对电力系统的危害还是会一直存在,故而要想让电力系统安全供电,重点还是应该做好防雷工作。文章主要通过雷电对电力系统运行的影响论述来探讨电力系统防雷技术的应用,以期为电力系统的安全运行提供有益建议。

关键词: 电力系统;防雷技术;应用

作为自然现象之一的雷电会对电力系统造成击穿、线路损害、设备失灵等不同的损坏,而且还雷电涌流还会进入系统二次设备,让相关保护装置出现失灵之类的恶性事故,由此严重威胁电力系统的安全运行。也正是因为如此,人们一直在研究雷电及相关的防雷技术,通过大量的研究来研发更为有效的雷电保护装置,为电力系统的安全运行保驾护航。

1雷电与电力系统运行

尽管雷电属于自热现象,但是却是电力系统运行中的不可抗力,雷电是因为正电极存在负电荷而产生,能够在电场周围形成强大的高压,让空气绝缘被影响,受到损坏,而雷电间各种电极不断进行大量放电,尽管放电时间短且不会超过100,不过电流强度却高达100000A。闪电在放电中产生电火,在短时间内周围空气突然膨胀后爆鸣,从而产生了自然雷电现象。电力系统很容易被雷电所袭击,电力、设备与系统都会被电磁、热力影响,造成线路、电线等出现熔毁问题。并且电雷带来的高强度电压、电磁会极大影响电路与电线的绝缘体,只要存在高强度电压,电压强度就会很大,由此出现闪络问题,而这种问题在电力设备、线路等绝缘物体上发生就会让电力系统设备与线路出现损坏。尽管雷电会破坏电力系统的安全运行,不过只要采取合理的防范方法,就能够预防雷电灾害。当下,避雷针(线)安装、电力系统设备绝缘性提升、避雷保护装置设置等是比较常用的雷电防护措施。

2防雷技术在电力系统的应用

避雷器作为雷电流泄放通道,还可以被看成是等电位连接体,安装要对地,而在线路上并联,一般都处于高阻抗环境。雷击可以在一瞬间被避雷器导通,把雷电电流引向地上,同时让设备、线路、大地在等电位上,让电力系统不会因为强电势差而被损坏。雷击能量就打,只使用避雷器是无法完全把雷电流引入地上,也会损坏自身。所以,应该将功能不一样的避雷过压保护器件放置在各个电磁场强度空间。不同器件分工合作,让电流入地,保证低残压,也让避雷器的使用寿命更长。

2.1电源系统防雷

所谓电源系统防雷就是利用避雷过压保护计算机系统电源与相关的交流配电部分,蒋避雷器安装在雷电波可能侵入的电力进线部位。电源系统有很多不一样保护级别。电源避雷器的'选择应该要与额定通流容量、电压保护水平相适应,让避雷器能够抵御雷电冲击。电影避雷器中残压特性十分重要,要想避雷器的保护效果更好就应该要使其残压更低。另外,必须兼顾避雷器能够具有很高的最大连续工作电压。原因就是如果最大连续额定工作电压不够高,避雷器会很快损坏。电源避雷器需要贴上失效警告指示,还有方便监管、维护的遥测端口。电源避雷器要有阻燃作用,防止失效与自毁情况下的起火问题。电源避雷器通常都具有失效分离装置。如果不能避雷就会自动断开电源系统,而且电源系统也会正常运行。在安装电源避雷器的过程中,要注意和电源系统的连接线越短越好,所使用的阻燃型多股铜导线的横截面面积不能超过25mm2,要紧密地并排,可以绑扎布放。避雷器接地线所使用的25mm2到35mm2的阻燃型多股铜导线,要么尽量就近入地,要么就近和交流保护接地汇流排或者直接和接地网连接。

2.2通信系统防雷

一般数据线路上会串联接口避雷器,而且是以不影响数据传输作为应用依据。数据接口的工作带要宽、物理接口要合适,并且还要考虑到接口速率,以更好地保护避雷器。数据设备接口的连接为了增加插损,要少用转接方法,这样才可以让信号更好地传输。而在选择速率高的数据设备接口时,要考虑起驻波比、极间电容、漏电流小、响应时间快的数据避雷器。从信号工作电压层面选择动作电压、限制电压合理的数据接口,以保护避雷器。选择抗雷电冲击力强的数据避雷器时,应该要充分了解设备接口抗雷电要求。数据避雷器的接地连接一定要有效,就近连接接地线与被保护数据设备的地线,而接地线截面不能低于25mm2。

2.3机房接地改造

接地系统在电力系计算机系统避雷过压保护技术中有十分重要的作用。防静电接地、防雷接地、保护接地等都属于接地技术。这些接地的用途、意义、要求都不一样,糖醋分设每个独立接地体是较为常见的,不过,由于雷击环境中,防雷接地系统和别的接地系统有电势差,所以很容易出现反击事故,让电子设备被损坏。所以,需要等电位连接全部接地系统。

3结语 总之,电力系统在不断发展,而且被运用在社会生产生活的各个行业,因此其作用极大。我国经济发展日盛,电量需求巨大,电力供应异常重要。因此,需要对电力系统进行有效保护。一直以来,雷击对电力系统的影响尤甚,因而电力系统中防雷技术的应用受到高度重视。在电力系统防雷技术应用中,我们必须要通过具体的实际情况来采取科学、有效的防雷措施。在对电力系统的防雷工作中,要积极地采取新技术新措施,保证电力系统的正常运行,为人们的生产生活创造安全、稳定的环境。

参考文献:

[1]张金国.电力系统防雷措施研究[J].科技创业家,2013(4):63

[2]王少先.电力系统防雷工程设计浅谈[J].科技资讯,2012(2):51

关于变电站二次系统的防雷保护问题及措施

论文摘要: 雷电一直是影响变电站安全运行的重要危害。随着变电站数字化改造与建设,做好变电站二次系统的防雷保护显得更加重要。本文阐述了变电站二次系统的构成特点,进而揭示雷电危害与二次系统之间的关系。在此基础上对雷电危害的主要形式进行了归纳和总结,最后提出变电站二次系统防雷保护的具体技术措施。 论文关键词: 变电站防雷;二次系统;防雷保护;技术措施 一、前言 随着电力体制改革的推进,变电站数字化改造与建设也不断深入发展,综合自动化变电站的不断增多,雷电对弱电设备的危害问题日益突显出来。从国内有关报道和变电站运行的实际来看,变电站二次设备遭受到雷击,造成设备损坏、通信中断、系统退出等情况普遍存在。这不仅严重威胁电网的安全运行,而且给人们的生活带来了诸多的不便。笔者结合工作实践,针对变电站二次系统的特点,通过对雷电波危害的途径分析,结合当今弱电防雷的一些技术和供电局变电站的情况,探讨变电站二次系统防雷措施。 二、变电站二次系统的结构特点 变电站二次系统,是指变电站的内保护设备、自动化设备、通信系统、计算机网络设备及监控系统、交直流电源系统等各种二次设备的总称。二次系统集中了变电站自动化监控管理的重要设备,其具有微机监测、监控、保护、小电流接地选线、故障录波、低频减载、“四遥”远传等功能,在电力调度自动化领域起着举足轻重的作用。 由于二次系统内部连接线路纵横交错,当雷击附近大地、架空线路和雷雨云放电时直接形成的,或者由于静电及电磁感应形成的冲击过电压,极易通过与之相连的电源线路、信号线路或接地系统,通过各种接口,以传导、耦合、辐射等方式侵入自动化系统,从而可能造成危害系统正常工作甚至破坏系统的雷击事故。 三、雷电放电对变电站二次系统的主要危害形式 雷电是自然界中强大的脉冲放电过程,雷电侵入地面建筑物或设备造成灾害是多途径的,一般来说,有直接雷击、感应雷击、电磁脉冲辐射、雷电过电压的侵入、反击等。 (一)直接雷击:主要破坏力在于电流特性而不在于放电所产生的高电位,它所产生强大的雷电流转变成热能将物体损坏。 (二)感应雷击:从雷云密布到发生闪电放电的整个过程中,雷电活动区几乎同时出现两种物理现象—静电感应和电磁感应,这两种现象可能造成称之为感应雷击的危害形式。 (三)电磁脉冲辐射:当闪电放电时,其电流是随时间而非均匀变化,脉冲电流向外辐射电磁波,这种电磁脉冲辐射虽然随着距离的增大而减小,但却比较缓慢,闪电的电磁脉冲辐射通过空间以电磁波的形式耦合到对瞬间电磁脉冲极其敏感的现代电子设备上,造成设备的损坏。 (四)雷电过电压的侵入:直接雷击或感应雷都可以使导线或金属管道产生过电压,这种过电压沿导线或金属管道从远处雷区或防雷区域外传来,侵入建筑物内部或设备内部。 (五)反击:在雷暴活动区域内,当雷电闪击到建筑物的接闪装置上时,尽管接闪装置的接地系统十分良好,其接地电阻也很小,但由于雷电流幅值大,波头陡度高,雷电流流过时也会使接地引下线和接地装置的电位骤升到上百千伏。 四、变电站二次系统进行防雷保护的技术措施分析 弱电设备抗过电压能力低,在雷雨季节极易受到雷电波的侵害,造成设备的损坏和误动作。弱电设备的电源系统可能受到侵入过电压和感应过电压的危害,在实际运用中应加装电源防雷保护器SPD进行多级保护,将过电压降低到无危害的水平,对于引入控制室的信号线,网络线和微波馈线,均应加装信号防雷保护器,保证自动化系统、远动设备及通信的正常工作。对于弱电设备的防雷保护,总体来说是一个综合性的问题,长期的防雷实践告诉我们,在防雷中从直击雷防护到接地、均压、屏蔽、限幅、分流、隔离等多个环节都要认真对待,才能确保设备的安全。 (一)接地与均压 接地是提高二次设备防雷水平最直接、最有效的一个措施,所有雷击电流均可以通过接地网引入大地,可靠的.接地可以有效的避免电涌电压对二次设备造成危害。防雷规范对不同接地网规定有不同的电阻值,在经济合理的前提下,应尽可能降低接地电阻,能够有效限制地电位的升高。 接地与均压是相辅相成的,所谓均压就是要在同一层面、同一房间内的四周设置一闭环的接地母线带,在同一房间里的所有仪器、设备的壳体、电力电缆、信号电缆的外皮和金属管道等应分别直接就近连接到接地母线上,并连接牢固,以保证各个接地点的等电位。雷电流的幅值非常大,陡度很高,其流过之处相对零电位的大地立即升至高电位,周围尚处于大地零电位的物体会产生旁侧闪络放电。这种旁侧闪络不仅会导致装有易燃易爆物的建筑物失火和爆炸,而且其放电过程所伴随的脉冲电磁场会对室内电子设备造成感应电位,使其受到损害。完善的等电位可有效防止非等电位体间电位差造成事故。

发表防雷论文的问题回答

避雷器在电力系统应用中的问题分析论文

摘要:文中阐述了避雷器自身防护问题及其对电力系统的影响,简单的论述了避雷器的保护特性,分析了氧化锌避雷器在应用中的问题及解决问题的技术措施,探讨了防雷界的热点问题。

关键词:避雷器特性应用问题分析技术措施

1.应用中的问题探讨

1.1避雷器自身过电压防护问题

避雷器是过电压保护电器,其自身仍存在过电压防护问题。对于能量有限的过电压如雷电过电压和操作过电压,避雷器泄流能起限压保护作用。对能量是无限(有补充能源)的过电压,如暂态过电压(工频过电压和谐振过电压的总称),其频率或为工频或为工频的整数倍或分数倍,与工频电源频率总有合拍的时候,如因某些原因而激发暂态过电压,工频电源能自动补充过电压能量,即使避雷器泄流过电压幅值不衰减或只弱衰减,暂态过电压如果进入避雷器保护动作区,势必长时反复动作直至热崩溃,避雷器损坏爆炸,因此暂态过电压对避雷器有致命危害。如果已将全部暂态过电压限定在保护死区内不受其危害的避雷器,称之为暂态过电压承受能力强,反之称暂态过电压承受能力差。碳化硅避雷器暂态过电压承受能力强,但由于运行中动作特性稳定性差,常因冲击放电电压(保护动作区起始电压)值下降,仍可能遭受暂态过电压危害。无间隙氧化锌避雷器因其拐点电压(可近似地把参考电压当作拐点电压)偏低,仅2.21~2.56Uxg(最大相电压),而有些暂态过电压最大值达2.5~3.5Uxg,故有暂态过电压承受能差的缺点。对暂态过电压危害有效防护办法是加结构性能稳定的串联间隙将全部暂态过电压限定在保护死区内,使避雷器免受其危害。串联间隙氧化锌避雷器有此独具优点。

1.2避雷器自身对电力系统不安全影响

保护间隙和管型避雷器在间隙击穿后,保护回路再也没有限流元件,保护动作都要造成接地故障或相间短路故障,保护作用增多电力系统故障率,影响电力系统的正常、安全运行。应用氧化锌避雷器,从根本上避免保护作用产生接地故障或相间短路故障,且不用自动重合闸装置就能减少线路雷害停电事故。

1.3避雷器其连续雷电冲击保护能力

有时高压电力装置可能遭受连续雷电冲击,连续雷电冲击是指两次雷电入侵波间隔时间仅数百μs至数千μs,间隔时间极短。碳化硅避雷器保护动作既泄放雷电流也泄放工频续流,切断续流时耗最大达10000μs,一次保护循环时间要远大于10000μs才能恢复到可进行再次动作能力,故碳化硅避雷器没有连续雷电冲击保护能力。氧化锌避雷器保护动作只泄放雷电流,雷电流泄放(小于100μs)完毕,立即恢复到可进行再次动作能力,故氧化锌避雷器具有连续雷电冲击保护能力,这对于多雷区或雷电活动特殊强烈地区的防雷保护尤为重要。

1.4工频能源的浪费

只关注防雷器件泄放雷电流的限(降)压保护作用,轻视或忽视有些器件同时泄放工频电流浪费能源作用。保护间隙或管型避雷器保护动作可能伴随短路电流(几kA至几十kA)对地放电,碳化硅避雷器保护动作有工频续流(避雷器FS型为50A,FZ型为80A,FCD型为250A)对地放电,而造成能源浪费,使用氧化锌避雷器可彻底避免保护作用带来的工频能源浪费。

2.避雷器保护特性

2.1避雷器的保护特性参数

各种型号的避雷器在同用途同电压级时,其雷电残压参数相同或接近,这是因为各生产厂都是按国标规定决定残压值的。有人认为既然雷电残压值一样,它们的保护作用和效果也应是一样的,随意选用哪种型号都可以。这是一种偏见,因为除雷电残压外,还有其它保护参数,如工频放电电压值,冲击放电电压值,是考察避雷器暂态过电压承受能力,保证其长期正常运行的参数;又如是否有雷电陡波残压值,是标示避雷器防雷保护功能完全的重要参数。综合来看,只有串联间隙氧化锌避雷器齐备上述保护特性参数,也就是说它有齐全的防护功能。

2.2避雷器动作特性运行稳定性

碳化硅避雷器保护动作要泄放雷电流和工频续流,动作负载重,经计算每次动作泄放雷电流为0.04~0.07C电荷量,工频续流为0.5~2.5C电荷量,后者与前者相比一般为11~17倍,且其间隙数量多隙距,常因动作负载重使部分间隙烧毛烧损,另外瓷套外壳脏污潮湿也会影响内间隙电容分布,这些都可能使部分间隙失效而降低冲击放电电压值,即动作特性稳定性差,可能增加保护动作频度,或遭受暂态过电压危害,而加速损坏。串联间隙氧化锌避雷器保护动作只泄放雷电流而无续流,动作负载轻,间隙不需具有灭弧及切断续流能力,故间隙数量特少,3~10kV避雷器仅一个间隙,35kV避雷器为3个间隙串联,间隙的工频放电电压值与碳化硅避雷器相同,符合GB7327规定,故间隙隙距大,动作特性可保持长期运行稳定。

2.3串联间隙氧化锌避雷器

碳化硅避雷器因其间隙结构(隙距小,数量多)带来一些缺点:如没有雷电陡波保护功能;没有连续雷电冲击保护能力;动作特性稳定差可能遭受暂态过电压危害;动作负载重寿命短等。无间隙氧化锌避雷器因其拐点电压较低,有暂态过电压承受能力差,损坏爆炸率高和寿命短等缺点。串联间隙氧化锌避雷器既有间隙又用ZnO阀片,其间隙结构不同于碳化硅避雷器,因其间隙数量少,当过电压达到冲击放电电压时间隙无时延击穿,同时因隙距大动作特性稳定,故它可避免碳化硅避雷器间隙带来的一切缺点。串联间隙氧化锌避雷器的间隙已将全部暂态过电压限定在保护死区内免受其危害,故它可避免无间隙氧化锌避雷器因拐点电压偏低带来一切缺点。串联间隙氧化锌避雷器仍有前两种避雷器保护性能优点,而避免它们的缺点。

2.4避雷器运行工况监测

避雷器失效的主要特征是泄漏电流增大,运行中不易发现,有可能长时带病运行,以致扩大事故,故有必要监察其运行工况。碳化硅避雷缺乏监察手段,靠每年定期普遍测试筛选淘汰这样作事倍功半,还不能随时剔除失效品。氧化锌避雷器可附带脱离器,当其失效损坏时,脱离器自动动作(30mA时不大于8min)退出运行,以免造成更大损失和事故,提高运行安全可靠性。

3.避雷器应用

3.1避雷器外形尺寸

制造避雷器均按户内外两用条件决定其瓷套绝缘强度,其外形尺寸与阀片材料有关。当其用于架空线路或户外变配电设备时,因其相间距大,避雷器外形尺寸不会带来不良影响。户内手车式开关柜因其体积尺寸较小,避雷器外形尺寸大时会带来不良影响。碳化硅避雷器的SiC阀片其单位通流容量仅为ZnO阀片的1/4,在相同通流能力(5kA)条件下,SiC阀片直径较大,避雷器外径也大;在相同额定电压和残压条件下,碳化硅避雷器高度比氧化锌避雷器大。尤以35kV级的更为显著。如JYN1-35型手车柜的112方案,原用FYZ1-35型无间隙氧化锌避雷器,高仅650mm,装在柜后部隔室内简易手车上,上部有隔离插头,因该产品已停产,工程设计坚持改用FZ3-35型碳化硅避雷器,高1500mm,隔室高度不够,只得将母线室与隔室间隔板取消,避雷器直接与主母线相联,这样避雷器的测试或更换必需在整段主母线断电下进行,运行维护困难,而避雷器外径较大,相间空气净距不够,加装的相间绝缘隔板,有老化受潮绝缘事故隐患。氧化锌避雷器外径和高度相对较小,35kV级还可作成悬挂式,如Y5CZz-42/110L型串联间隙氧化锌避雷器,高度仅640mm。小型化避雷器更有利于手车柜内安装使用。

3.2避雷器性能价格比

无间隙氧化锌避雷器的阀片运行中长期承受电网电压,工作条件严酷,产品制造时要对阀片严格测试筛选,合格率低成本高,故价格也高;因它有暂态过电压承受能力差的致命弱点,不适于在我国3~35kV电网中推广使用。串联间隙氧化锌避雷器因有间隙,大大改善阀片长期工作条件,产品制造时对阀片测试筛选要求相对低些,合格率高成本低,价格也就便宜,串联间隙氧化锌避雷器价格比无间隙氧化锌避雷器普遍便宜,有时也比碳化硅避雷器(如3~10kV的FZ型)便宜,同时它对其它防雷器件都有扬长避短作用,实为当代最先进防雷电器,具有高的性能价格比,是避雷器更新换代的普及和推广产品。

3.3避雷器使用寿命问题

避雷器使用寿命与许多因素有关,除制造质量,密封失效受潮及其它外界因素外,避雷器阀片的老化速度是影响寿命的关键因素。碳化硅避雷器因其动作和负载重,续流大,动作特性稳定差,可能遭受暂态过电压危害等原因,加速阀片老化,寿命不长,一般7~10年,甚致有仅3~5年的。无间隙氧化锌避雷器的阀片长期承受电网电压,工作条件严酷,拐点电压低,动作频度大,还可能遭受暂态过电压危害,温度热损伤等原因,迅速加快阀片老化,寿命较短,有的比碳化硅避雷器还短。串联间隙氧化锌避雷器的间隙可保证阀片只在过电压保护动作过程承受高电压,时间极短(100μs内),在其它情况下阀片对于电网电压,或处于隔离状态(纯间隙时),或处于低电位状态(复合间隙电阻分压),大大改善阀片长期工作条件,还可免受暂态过电压危害和温度热损伤,保证阀片温度不超过55℃,从而保证避雷器寿命达20年以上。

4.氧化锌避雷器运行中的问题分析

我公司应用氧化锌避雷器始于80年代,运行至今在110KV母线上共发生6起事故,均为氧化锌避雷器本体爆炸,其运行寿命最长达110个月,最短的仅有11个月煴1为我公司110KVⅢ段母线避雷器爆炸统计表。

从运行时间上、安装的环境、气候、及生产厂,对损坏的氧化锌避雷器进行技术分析,造成氧化锌避雷器运行中爆炸的原因可归纳如下几项:

4.1氧化锌避雷器的密封问题

氧化锌避雷器密封老化问题,主要是生产厂采用的密封技术不完善,或采用的密封材料抗老化性能不稳定,在温差变化较大时或运行时间接近产品寿命后期,造成其密封不良而后使潮气浸入,造成内部绝缘损坏,加速了电阻片的劣化而引起爆炸。

4.2电阻片抗老化性能差

在氧化锌避雷器运行在其产品寿命的后期,电阻片劣化造成泄漏电流上升,甚至造成与瓷套内部放电,放电严重时避雷器内部气体压力和温度急剧增高,而引起氧化锌避雷器本体爆炸,内部放电不太严重时可引起系统单相接地。

4.3瓷套污染

由于工作在室外的氧化锌避雷器,瓷套受到环境粉尘的污染,特别是设置在冶金厂区内变电所,由于粉尘中金属粉尘的比例较大,故给瓷套造成严重的污染而引起污闪或因污秽在瓷套表面的不均匀,而使沿瓷套表面电流也不均匀分布,势必导致电阻片中电流IMOA的不均匀分布(或沿电阻片的电压不均匀分布),使流过电阻片的电流较正常时大1—2个数量级,造成附加温升,使吸收过电压能力大为降低,也加速了电阻片的劣化。

4.4高次谐波

冶金企业电网随着大吨位电弧炉、大型整流、变频设备的应用及轧钢生产的冲击负荷等的影响,使电网上的高次谐波值严重超标。由于电阻片的非线性,当正弦电压作用时,还有一系列的奇次谐波,而在高次谐波作用时就更加速了电阻片的劣化速度。

4.5抗冲击能力差

氧化锌避雷器多在操作过电压或雷电条件下发生事故,其原因是因电阻片在制造工艺过程中,由于其各工艺质量控制点控制不严,而使电阻片的耐受方波冲击能力不强,在频繁吸收过电压能量过程中,加速了电阻片的劣化而损坏,失去了自身的技术性能。

5.技术措施

针对冶金电网的特点及氧化锌避雷器几次事故分析的.结论,要保证氧化锌避雷器在网上安全可靠运行,应采取以下措施:

5.1设计选型

在设计选型上,应首选有多年稳定运行实践的产品,在选择生产厂时,应选择有先进的工艺设备和完善的检测手段的生产厂,才能保证所选用的氧化锌避雷器具有高的抗老化、耐冲击性能,以使在产品的寿命周期内稳定运行。

5.2在线监测

增设氧化锌避雷器的在线监测仪,并加强对在线监测仪的巡检力度,特别是在雷雨后和易发生故障的部位(有电弧炉负荷的母线段、氧化锌避雷器寿命已到后期)增加巡次数。定期给氧化锌避雷器进行各项电气性能测试及在线监测仪的校验。

5.3防污措施

采用必要的避雷器瓷套的防污措施,如定期清扫或涂以防污闪硅油,在氧化锌避雷器选型上选用防污瓷套型的氧化锌避雷器。

5.4谐波治理

加强电网谐波的治理力度,在有谐波源的母线段增设动态无功补偿和滤波装置,以使电网的高次谐波值控制在国家标准允许范围内。

5.5技术管理

加强对氧化锌避雷器的技术管理工作,即对运行在网上的每一只氧化锌避雷器建立技术档案,对出厂报告、定期测试报告及在线监测仪的运行记录均要存入技术档案,直至该避雷器退出运行。

据国外有关技术资料统计,氧化锌避雷器损坏的原因有雷电和操作过电压,受潮、污闪、系统条件、本身故障等,但仍有一定比例损坏的原因不详,故仍有其在运行中对事故原因不明确的问题。又因氧化锌避雷器的劣化速度的离散性,及雷电、操作过电压、谐波、运行环境等的随机性,都决定着氧化锌避雷器的安全运行的可靠性,故需在今后的工作实践中去研究、实验、探索和总结,以使得其在运行中的不安全因素可得以预防和完善。

每年4~9月是华南地区雷电灾害的多发季节,雷电灾害给人民带来生命安全和财产损失。本文介绍雷电产生的原因,对施工机械的危害以及对雷电灾害的预防方法和技术,这些方法和技术对同行在施工过程中预防雷电灾害具有普遍的参考意义。 关键词:雷电施工机械危害预防 1雷电的产生 雷电是自然界中一种常见的放电现象。关于雷电的产生有多种解释理论,通常我们认为由于大气中热空气上升,与高空冷空气产生摩擦,从而形成了带有正负电荷的小水滴。当正负电荷累积达到一定的电荷值时,会在带有不同极性的云团之间以及云团对地之间形成强大的电场,从而产生云团对云团和云团对地的放电过程,这就是通常所说的闪电和响雷。具体来说,冰晶的摩擦、雨滴的破碎、水滴的冻结、云体的碰撞等均可使云粒子起电。一般云的顶部带正电,底部带负电,两种极性不同的电荷会使云的内部或云与地之间形成强电场,瞬间剧烈放电爆发出强大的电火花,也就是我们看到的闪电。在闪电通道中,电流极强,温度可骤升至2万摄氏度,气压突增,空气剧烈膨胀,人们便会听到爆炸似的声波振荡,这就是雷声。 2雷电危害的种类 雷击的危害主要有三方面:第一是直击雷。是指雷云对大地某点发生的强烈放电。它可以直接击中设备,雷电击中架空线,如电力线,电话线等。雷电流便沿着导线进入设备,从而造成损坏。第二是感应雷。它可以分为静电感应及电磁感应。当带电雷云(一般带负电)出现在导线上空时,由于静电感应作用,导线上束缚了大量的相反电荷。一旦雷云对某目标放电,雷云上的负电荷便瞬间消失,此时导线上的大量正电荷依然存在,并以雷电波的形式沿着导线经设备入地,引起设备损坏。当雷电流沿着导体流入大地时,由于频率高,强度大,在导体的附近便产生很强的交变电磁场,如果设备在这个场中,便会感应出很高的电压,以致损坏。对于灵敏的电子设备,尤需注意。第三是地电位提高。当10kA的雷电流通过下导体入地时,我们假设接地电阻为10Ω,根据欧姆定律,我们可知在入地点A处电压为100kV。因A点与B、C、D点相连,所以这几点电压都为100kV。而E点接地,其电压值为0,设备的D点与E点间有100kV的电压差,足以将设备损坏。据有关统计表明:直击雷的损坏仅占15%,感应雷与地电位提高的损坏占85%。目前,直击雷造成的灾害已明显减少,而随着城市经济的发展,感应雷和雷电波侵入造成的危害却大大增加。一般建筑物上的避雷针只能预防直击雷,而强大的电磁场产生的感应雷和脉冲电压却能潜入室内危及电视、电话及联网微机等弱电设备。 3防雷的方法和技术 在科学技术日益发展的今天,虽然人类不可能完全控制暴烈的雷电,但是经过长期的摸索与实践,已积累起很多有关防雷的知识和经验,形成一系列对防雷行之有效的方法和技术。 (1)接闪接闪就是让在一定范围内出现的闪电能量按照人们设计的通道泄放到大地中去。把一定保护范围的闪电放电捕获到,纳入预先设计的对地泄放的合理途径之中。避雷针是一种主动式接闪装置,其功能就是把闪电电流引导入大地。避雷线和避雷带是在避雷针基础上发展起来的。采用避雷针是最首要、最基本的防雷措施。 (2)接地接地就是让已经纳入防雷系统的闪电能量泄放入大地,良好的接地才能有效地降低引下线上的电压,避免发生反击。过去有些规范要求电子设备单独接地,目的是防止电网中杂散电流或暂态电流干扰设备的正常工作。接地是防雷系统中最基础的环节。接地不好,所有防雷措施的防雷效果都不能发挥出来。防雷接地是防雷设施安装验收规范中最基本的安全要求。 (3)均压连接接闪装置在捕获雷电时,引下线立即升至高电位,会对防雷系统周围的尚处于地电位的导体产生旁侧闪络,并使其电位升高,进而对人员和设备构成危害。为了减少这种闪络危险,最简单的办法是采用均压环,将处于地电位的导体等电位连接起来,一直到接地装置。金属设施、电气装置和电子设备,如果其与防雷系统的导体,特别是接闪装置的距离达不到规定的安全要求时,则应该用较粗的导线把它们与防雷系统进行等电位连接。这样在闪电电流通过时,所有设施立即形成一个“等电位岛”,保证导电部件之间不产生有害的电位差,不发生旁侧闪络放电。完善的等电位连接还可以防止闪电电流入地造成的地电位升高所产生的反击。 (4)分流分流就是在一切从室外来的导线与接地线之间并联一种适当的避雷器。当直接雷或感应雷在线路上产生的过电压波沿着这些导线进入室内或设备时,避雷器的电阻突然降到低值,近于短路状态,将闪电电流分流入地。分流是现代防雷技术中迅猛发展的重点,是防护各种电气电子设备的关键措施。由于雷电流在分流之后,仍会有少部分沿导线进入设备,这对于不耐高压的微电子设备来说仍是很危险的,所以对于这类设备在导线进入机壳前应进行多级分流。采用分流这一防雷措施时,应特别注意避雷器性能参数的选择,因为附加设施的安装或多或少地会影响系统的性能。 (5)屏蔽屏蔽就是用金属网、箔、壳、管等导体把需要保护的对象包围起来,阻隔闪电的脉冲电磁场从空间入侵的通道。屏蔽是防止雷电电磁脉冲辐射对电子设备影响的最有效方法。 4雷电对施工机械的危害及预防 公路施工作业处在露天环境下进行。施工机械的电气控制系统特别是微电子控制装置受雷电直击或雷电感应过电压损害的几率很大。京珠高速公路清远段地处石灰岩山区,在雷雨季节是雷电袭击的高发地区,每当天空中乌云密布大雨来临时,雷电往往会对施工机械进行正面的袭击;而有时即使在天空中没有雨云又不下雨的情况下,感应雷也会时有发生,其产生的浪涌电压入侵并损坏路面摊铺机的微电控制装置,为此,防雷工作势在必行。 (1)在沥青混合料揽拌厂场安装避雷针装置由于沥青混合料搅拌设备及其配套机械集中在一个生产厂场使用,比较容易进行集中防雷,为此,在拌和厂场安装避雷针。避雷针的高度高于搅拌楼的最高点,达到有效的保护半径,防止雷电对任何一台作业机械直击。避雷针接地要可靠,由于石灰岩山区的地质土壤比较干硬,土壤电阻值过大,所以接地网的埋设与广珠东线的做法不尽相同。接地网的角钢桩点埋设土坑要求1.0m深左右,角钢在土坑内要露出20cm左右,在土坑内按比例填满木炭和颗粒生盐作为降阻介质,生盐与木炭的重量比例为1:10,即1kg生盐掺合10kg木炭,然后填土复盖。这样可以确保接地电阻值在4以下。当雷电袭击时由避雷针及其引线经过接地网迅速将强大的雷电电流引入大地,防止雷电对机电系统的直击。此外,还对沥青混合料搅拌操作控制室进行屏蔽,做法是将操作室内微电子控制系统的工作接地、保护接地与金属结构的控制室外壳用导体连接在一起,再通过接地引线引入地下接地网,使它们保持相等的地电位,预防静电及雷电。 (2)对路面摊铺机械电气控制装置装设过电压保护器由于路面摊铺机械是随时移动作业的,不可能集中避雷,而处在露天环境下的移动机械电气控制装置最容易受感应雷浪涌电压的入侵,例如沥青沥青摊铺机控制路面平整度和控制机械定位的压力传感器等就深受其害。为了保护这些控制灵敏度极高的机械微电子控制装置免遭感应雷浪涌电压入侵损毁,根据每台机械控制装置的不同构造特点,对其装设过电压保护器。 5结束语 雷电灾害对机械电气控制装置特别是微电子装置的侵害是一种常见的自然灾害,为避免雷电对其侵害,应根据机械电气控制设备的不同构造特点而采用不同的防雷方法。只要合理地选用防雷设备,应定期由专业防雷公司检测防雷设施,评估防雷设施是否符合国家规范要求,施工项目应设立防范雷电灾害责任人,负责防雷安全工作,建立各项防雷安全工作,建立各项防雷设施的定期检测,雷雨后的检查和日常的维护。施工单位在防雷设施的设计和建设时,应根据地质、土壤、气象、环境、被保护物的特点,雷电活动规律等因素综合考虑,采用安全可靠、技术先进、经济合理的设计施工。就会大大降低雷电灾害带来的损失。

发表防雷论文的问题公式

告诉你一外最简单的算法,假若你的避雷针高三米,哪么以避雷针为圆心,避雷针高三米为半径的圆,再从圆的边到避雷针顶部组成一个圆锥体的空间就是这支避雷针的保护范为.我以前就是做防雷工程的,防雷检测所检测的时候也是这样估算的.

附录四 滚球法确定接闪器的保护范围1.单只避雷针的保护范围应按下列方法确定(附图4.1)。(1)当避雷针高度h小于或等于hr时: ①距地面hr处作一平行于地面的平行线; ②以针尖为圆心,hr为半径,作弧线交于平行线的A、B两点; ③以A、B为圆心,hr为半径作弧线,该弧线与针尖相交并与地面相切。从此弧线起到地面止就是保护范围。保护范围是一个对称的锥体;④避雷针在hx高度的xxˊ平面上和在地面上的保护半径,按下列计算式确定: (附 4.1) (附 4.2) 式中:rx——避雷针在 hx高度的xx′平面上的保护半径(m); hr——滚球半径,按本规范表5.2.1确定(m); hx——被保护物的高度(m); r0——避雷针在地面上的保护半径(m)。 (2)当避雷针高度h大于hr时,在避雷针上取高度hr的一点代替单支避雷针针尖作为圆心。其余的做法同本款第(1)项。(附4.l)和(附4.2)式中的h用hr代人。2.双支等高避雷针的保护范围,在避雷针高度h小于或等于hr的情况下,当两支避雷针的距离D大于或等于 时,应各按单支避雷针的方法确定;当D小于 时,应按下列方法确定(附图4.2)。(1)AEBC外侧的保护范围,按照单支避雷针的方法确定。(2)C、E点位于两针间的垂直平分线上。在地面每侧的最小保护宽度b0按下式计算: (附 4.3)在AOB轴线上,距中心线任一距离x处,其在保护范围上边线上的保护高度hx 按下式确定: (附4.4)该保护范围上边线是以中心线距地面的hr一点O’为圆心,以 为半径所作的圆弧AB。 (3)两针间AEBC内的保护范围,ACO部分的保护范围按以下方法确定:在任一保护高度hx 和C点所处的垂直平面上,以hx作为假想避雷针,按单支避雷针的方法逐点确定(见附图4.2的1—1剖面图)。确定BCO、AEO、BEO部分的保护范围的方法与ACO部分的相同。(4)确定xxˊ平面上保护范围截面的方法。以单支避雷针的保护半径rx 为半径,以 A、B为圆心作弧线与四边形AEBC相交;以单支避雷针的(r0-rx)为半径,以E、C为圆心作弧线与上述弧线相接。见附图4.2中的粗虚线。3.双支不等高避雷针的保护范围,在h1小于或等于hr和h。小于或等于hr的情况下,当D大于或等于 时,应各按单支避雷针所规定的方法确定;当 时,应按下列方法确定(附图4.3)。 (1)AEBC外侧的保护范围,按照单支避雷针的方法确定。 (2)CE线或HOˊ线的位置按下式计算: (附4.5)(3)在地面上每侧的最小保护宽度b。按下式计算: (附4.6) 在AOB轴线上,A、B间保护范围上边线按下式确定: (附4.7)式中:x——距CE线或HOˊ线的距离。 该保护范围上边线是以HO′线上距地面hr的一点O′为圆心,以 为半径所作的圆弧AB。(4)两针间AEBC内的保护范围,ACO与AEO是对称的,BCO与 BEO是对称的,ACO部分的保护范围按以下方法确定:在hx和C点所处的垂直平面上,以hx作为假想避雷针,按单支避雷针的方法确定(见附图4.3的1—l剖面图)。确定AEO、BCO、BEO部分的保护范围的方法与ACO部分的相同。(5)确定xx′平面上保护范围截面的方法与双支等高避雷针相同。4.矩形布置的四支等高避雷针的保护范围,在h小于或等于hr的情况下,当D3大于或等于 时,应各按双支等高避雷针的方法确定;当D3小于 时,应按下列方法确定(附图4.4)。(l)四支避雷针的外侧各按双支避雷针的方法确定。(2)B、E避雷针连线上的保护范围见附图4.4的l—1剖面图,外侧部分按单支避雷针的方法确定。两针间的保护范围按以下方法确定:以B、E两针针尖为圆心、hr为半径作弧相交于O点,以O点为圆心、hr为半径作圆弧,与针尖相连的这段圆弧即为针间保护范围。保护范围最低点的高度h。按下式计算: (附4.8) (3)附图4.4的2—2剖面的保护范围,以P点的垂直线上的O点(距地面的高度为hr+h0)为圆心,hr为半径作圆弧与B、C和A、E双支避雷针所作出在该剖面的外侧保护范围延长圆弧相交于F、H点。F点(H点与此类同)的位置及高度可按下列计算式确定: (hr-hx)2=h2r-(b0+x)2 (附4.9) (附4.10) (4)确定附图4.4的3—3剖面保护范围的方法与本款第(3)项相同。(5)确定四支等高避雷针中间在h0至h之间于hy,高度的yy′平面上保护范围截面的方法:以P点为圆心、 为半径作圆或圆弧,与各双支避雷针在外侧所作的保护范围截面组成该保护范围截面。见附图4.4中的虚线。5.单根避雷线的保护范围,当避雷线的高度h大于或等于2 hr时,无保护范围;当避雷线的高度h小于2 hr 时,应按下列方法确定(附图4.5)。确定架空避雷线的高度时应计及弧垂的影响。在无法确定弧垂的情况下,当等高支柱间的距离小于120m时架空避雷线中点的弧垂宜采用2m,距离为120~150m时宜采用3m。(l)距地面hr处作一平行于地面的平行线; (2)以避雷线为圆心、hr为半径,作弧线交于平行线的A、B两点; (3)以A、B为圆心,hr为半径作弧线,该两弧线相交或相切并与地面相切。从该弧线起到地面止就是保护范围; (4)当h小于2hr且大于hr时,保护范围最高点的高度h。按下式计算: hr=2hr-h (附 4.11) (5)避雷线在hx高度的xxˊ平面上的保护宽度,按下式计算: (附4.12)式中:bx——避雷线在 hx高度的xx′平面上的保护宽度(m); h ——避雷线的高度(m); hr ——滚球半径,按本规范表5.2.l确定(m); hx ——被保护物的高度(m)。(6)避雷线两端的保护范围按单支避雷针的方法确定。6.两根等高避雷线的保护范围,应按下列方法确定。 (1)在避雷线高度h小于或等于hr的情况下,当D大于或等于 时,各按单根避雷线所规定的方法确定;当D小于 时,按下列方法确定(附图 4.6): ①两根避雷线的外侧,各按单根避雷线的方法确定; ②两根避雷线之间的保护范围按以下方法确定:以A、B两避雷线为圆心,hr为半径作圆弧交于O点,以O点为圆心、hr为半径作圆弧交于A、B点; ③两避雷线之间保护范围最低点的高度h0按下式计算: (附4.13) ④避雷线两端的保护范围按双支避雷针的方法确定,但在中线上h0线的内移位置按以下方法确定(附图4.6的1—1剖面):以双支避雷针所确定的保护范围中点最低点的高度 作为假想避雷针,将其保护范围的延长弧线与h0线交于E点。内移位置的距离x也可按下式计算: (附4.14)式中:b0——按(附4.3)式确定。(2)在避雷线高度h小于2hr且大于hr,而且避雷线之间的距离 D小于2hr且大于 的情况下,按下列方法确定(附图4.7)。① 距地面hr处作一与地面平行的线; ③ 以避雷线A、B为圆心,hr为半径作弧线相交于O点并与平行线相交或相切于C、E点; ③ 以O点为圆心、hr为半径作弧线交于A、B点; ④ 以C、E为圆心,hr为半径作弧线交于A、B并与地面相切; ⑤ 两避雷线之间保护范围最低点的高度h0按下式计算: (附4.15) ⑥ 最小保护宽度bm位于高处,其值按下式计算: (附4.16) ⑦ 避雷线两端的保护范围按双支高度hr的避雷针确定,但在中线上线h0的内移位置接以下方法确定(附图4.7的1—1剖面):以双支高度hr的避雷针所确定的中点保护范围最低点的高度h0′=(hr-D/2)作为假想避雷针,将其保护范围的延长弧线与h0线交于F点。内移位置的距离x也可按下式计算: (附4.17)7.本附录各图中所画的地面也可以是位于建筑物上的接地金属物、其它接闪器。当接闪器在“地面上保护范围的截面”的外周线触及接地金属物、其它接闪器时,各图的保护范围均适用于这些接闪器;当接地金属物、其它接闪器是处在外周线之内且位于被保护部位的边沿时,应按以下方法确定所需断面的保护范围(见附图4.8):(1)以 A、B为圆心,hr为半径作弧线相交于 O点;(2)以O为圆心,hr为半径作弧线AB,弧线AB就是保护范围的上边线。注:当接闪器在“地面保护范围的截面”的外周触及的是屋面时,各图的保护范围仍有效,但外周线触及的屋面及外部得不到保护,内部得到保护。

移动通信基站的防雷与接地问题探讨工学论文

摘要: 本文论述了移动基站防雷接地系统经常出现的问题,介绍了移动通信基站防雷接地的重要性,防雷接地系统的构成和基本要求,并结合多年运维经验提出根据实际情况设计移动通信基站防雷接地系统的设计思想。

关键词: 移动通信;基站;防雷;接地

简介由于移动通信基站的天线设置大多安装在建筑物的房顶上,还有一部分安装在铁塔上,相对周围环境而言,形成十分突出的目标,从而导致雷击概率增多。通信设备损坏,耗费了大量人力财力。怎样才能有效地预防雷害,确保移动通信基站设备和工作人员的安全呢?几年来的维护经验告诉我们:必须根据每个基站的实际情况设计移动通信基站的防雷接地系统,实施基站针对性防雷。

1认清移动基站雷害的主要原因

移动基站防雷是一个复杂的系统工程,过去我们按照防雷理论[1],尽量提高基站防雷系统的泄流能力,选用了80kA甚至100kA的大型防雷器,但是防雷效果却不尽人意,经常出现基站防雷器没有明显动作,基站设备却已经发生损坏[2]。是防雷器不好吗?不,防雷器都是检测合格的入网产品。原因是没有按照基站的实际情况设计防雷系统。经调查统计了黑龙江省近两年来的雷击事故,得出一条重要数据;基站内设备被直击雷和雷电感应破坏的概率为零。这是因为基站设备包括基站室外电力变压器的位置普遍较低[3],完全处于建筑防雷设施或铁塔以及架空线路避雷系统和建筑防雷等外围的避雷系统泄放,所以基站设备很难遭到直击雷损害。

2防止地电压反击是基站防雷接地的主要课题

当雷电流基站附近的避雷器对地泄放时,由于接地电阻的存在必然引起基站工作地的电位升高,基站直流负荷如BTS电源、开关电源的监控单元、基站的动力环境监控器等设备相对远端地一般都存在寄生电容,这些设备一端接工作接地,无流的远端地与基站的工作接地间存在电位差,因而产生差模脉冲电压[5]。当超过设备绝缘耐压的容许限度时必然造成设备的损坏。基站的单相交流负荷如基站空调、照明等设备的零线接在变压器的交流地上,当雷电流沿基站附近的避雷器对地泄放时,变压器的交流地和交流重复接地电位也会升高,因此基站的单相交流设备也同样存在地电压反击的问题。

若把基站设备与接地有关的电路简单等效为线路电阻、线路寄生电感(可忽略不计)、线路负载(如传感器、BTS、空调、灯具等)、终端对远端地寄生电容组成的串联回路。假设基站的冲击接地电r为2欧姆,防雷器对地的泄放电流为2kA,这时基站的接地排的瞬间电压为U=1×r=4kV,可见负载两端的瞬间浪涌电压可达4kV,如不采取措施,必然造成设备损坏。

3因地制宜消减反击电压

怎样才能避免地电压反击造成的`损失呢?一般很自然会想到使用交流过压保护器和直流浪涌抑制器,即在交流变压器的低压侧、基站交流配电箱的地零间加装交流过压保护器;在直流负载的电源输入端加装浪涌抑制器。所有交流过压保护器和直流浪涌抑制器必须靠近被保护的设备安装,避免被保护设备由于接地或电源引线过长引起脉冲反射。除此之外一个非常重要的问题就是将基站的工作接地与室外避雷器接地在基站地网上的引接点分开焊接,这样可以大大降低基站工作接地母排的电压浪涌幅值。众所周知,雷电电流沿地网泄放时,在避雷器引下线与地网连接点附近土壤内形成一个强电位场,距离越近电压越高。将基站工作接地与室外避雷器接地分开,可以大大降低基站的反击电压。所以YD5068-98《移动通信基站防雷与设计规范》明确指出:基站工作地与防雷地在基站联合接地网上的引接点距离不应小于5m,条件允许时宜间距10~15m。实际上除电力线路外,基站的铁塔遭雷击次数最多,与铁塔共用接地网的基站经常受到地电压反击的损害,如果铁塔地网边缘距离基站大于5m,应在基站附近另建环形工作接地网;条件差的基站可以沿铁塔地网与基站工作接地引接线,补设接地桩;只能利用铁塔地网的基站也应把铁塔避雷接地的引接点与工作接地的引接点分别在对角塔基上安装。

对于山项基站尤其应注意将基站的工作接地与铁塔避雷接地及站基室外接地分开,因为山顶基站的接地电阻较大,接地引线较长,雷电流泄放相对缓慢,所以地电压反击比较严重。

降低基站接地电阻也有利于电压反击事故。接地电阻较大的山上基站,可利用塔基钢筋、蓄水池、无爆炸和电击危险的金属管路等自然接地体,埋设地桩有困难的山上基站也可从塔基沿山体的自然沟壑,最好选择阴暗潮湿的地方,制作横向辐射接地网,辐射接地网长度应小于30m,塔基四周辐射的横向接地网越多也有利于雷电散流。

4适当地选用电源线路保护空开

防止雷电波侵入避雷的响应特性有远近软硬之分:气体放电管和火花间隙防雷器是基于斩弧技术的角形火花隙和同轴放电火花隙,当线中电压超过防雷器的击穿电压后,防雷器的绝缘电阻立刻急剧下降,放电能力较强,残压相对较高,恢复电压低于原来的击穿电压,属于硬响应特性;属于软响应特性的压敏电阻和浪涌抑制二极管,其特点是响应时间短,放电电流小,残压低,而且恢复电压基本不变。硬响应特性的防雷器工频后续电流和防雷器绝缘劣化可能造成线路短路,所以防雷器前面应该配置过流保护空气开关或熔丝。其额定电流应小于防雷器的最大短路允许强度。如果主电路保护空开关大于防雷器的最大保险丝强度,应设避雷器分路保护空开。

5实现分级防雷

防雷器的残压是保护基站设备的最重要参数,一般来讲,泄流能力强的防雷器,响应时间长,残压高。世界上没有任何一种防雷器能满足所有混合雷电冲击波、残压以及响应时间指标要求,所以应根据基站电源设备的绝缘等级划分防雷层次,实现多级防护,对雷电能量逐级减弱,使各级防雷器残压相互配合,最终使过电压值限制在设备绝缘强度之内。另外多级防护对于某一级防雷器失效、防雷器的残压不配合设备绝缘强度等也是必须的。我们认为应该结合YD5078-98《通信工程电源系统防雷技术规定》和基站的实际情况,从交流电力网高压线路开始,根据基站主要电源配套设备的耐雷电冲击指标和防雷器残压要求,采取分级协调的防护措施,进行基站的防雷系统设备。避雷器的直流1mAA参考电压是我们选择避雷器的绝缘要求,选用时应考虑电网的电压波动上限值和操作过电压远小于直流1mA参考电压。

实现各级防雷器的能量分配与电压配合的要点在于利用两级防雷器之间线缆本身的感抗。电缆本身的感抗有一定的阻碍电流及分压作用,使雷电流更多地被分配到前级泄放。当保护地线与其它线缆紧贴敷设或处于同一条电缆之内时,要求两级防雷器之间线缆长度在15m左右,当防雷器接地线与被保护电缆有一定距离(>1m),这时要求线缆长度大于5m即可。在一些不适合采用线缆本身作退耦措施的,如两级防雷器靠近或线缆长度较短时,可利用专门的退耦器件,这是无距离要求。

参考文献

[1]YD5068-98移动通信基站防雷与接地设计规范[S].

[2]张殿富.移动通信基础[M].北京:中国水利水电出版社.

[3]金山,刘吉克,陈强.YD/T 1429-2006通信局(站)在用防雷系统的技术要求和检测方法[S].2006.

[4]曹和生,吴少丰,匡本贺.GB/T 21431-2008建筑物防雷装置检测技术规范[S].2008.

[5]张农.关于基站防雷接地的问题[J].邮电设计技术,2004(4).

随着经济发展和社会需要,高层建筑如雨后春笋般不断出现在各个城市各个地区,防雷电气技术也越来越重要了。下面是我为大家整理的建筑防雷电气技术论文,希望你们喜欢。

高层建筑电气设计中的防雷技术

【摘 要】在高层建筑电气设计中,防雷接地设计是一个重要环节。本文简单介绍了建筑物防雷的等级分类,及不同类型的建筑物应当采取的防雷措施。具体分析了高层建筑的几种防雷措施,包括接闪器、引下线、接地装置、防雷电反击措施、防高电位进入措施及基础接地体施工与设计的问题。

【关键词】高层建筑;电气设计;防雷;接闪器;引下线;接地装置

一、引言

随着经济发展和社会需要,高层建筑如雨后春笋般不断出现在各个城市各个地区,随着建筑物高度的增加,防雷问题也越来越受到重视。为了满足人们生活的需要,各种类型、各种功能的电气设备越来越多,在使用这些电气时,必然会给高层建筑物带来一定程度的安全问题。所以研究高层建筑电气设计中的防雷技术问题有很重要的意义。

二、建筑物的防雷等级及防雷措施

(一)建筑物的防雷等级

按照建筑物对防雷的要求,根据其使用性质、重要性、发生雷电次数的可能性和后果,可将建筑物防雷等级分为三个级别。

第一类防雷建筑指的是制造、使用或贮存炸药、火药、起爆药、火工品等大量爆炸物质的建筑物或具有爆炸危险,会因电火花造成爆炸,且会造成人员伤亡和巨大破坏者。

第二类防雷建筑指的是国家级重点建筑物,对国民经济意义重大且装有大量电子设备的建筑物,具有爆炸危险、电火花不易引起爆炸或不至造成人员伤亡和重大破坏者,预计雷击次数大于0.06次/a的重要办公建筑和人员密集的公共建筑物以及预计雷击次数大于0.03次/a的一般建筑物。

第三类防雷建筑指的是没有前两个级别高但是也有一定雷击危险的建筑物。

(二)建筑物的防雷措施

按《建筑物防雷设计规范》(GB 50057-2010)中的一般规定,各类建筑物均应采取防雷电波侵入和防直接雷的措施。

第一类防雷建筑物和第二类防雷建筑物中,有爆炸危险的场所,应有防雷电感应和防雷电波侵入、防直击雷的措施。第二类防雷建筑物除有爆炸危险的场所外,以及第三类防雷建筑物,应采取防雷电波侵入和防直接雷的措施。具体防雷措施参考规范第3.2.1条至3.4.10条。

据研究观测发现,屋顶的坡度能够影响建筑物容易遭受雷击的部位。

建筑物屋面很少会遭受雷击。设计时应分析屋顶的实际情况,确定最易受雷击的部位,然后根据要求在这些部位装设避雷针或避雷带或避雷网进行重点保护。

三、高层建筑物的防雷措施

(一)接闪器

接闪器是一种金属物体,专门用来接受直接雷击。接闪的金属杆称为避雷针。接闪的金属线称为避雷线,又称架空地线。接闪的金属带、金属网称为避雷带、避雷网。接闪器应该由独立避雷针,架空避雷线或架空避雷网或直接装设在建筑物上的避雷针、避雷带、避雷网中的一种或几种组成。

接闪器要通过接地引下线与接地体(接地装置)相连。

接地体用来向大地引泄雷电流,为埋入地下土壤中的各型接地极的总称。

在国内,目前除仅有的几个高级建筑(如北京长城饭店、广州花园大酒店等)采用E、F放射性避雷系统中的放射电极之外,其他高层建筑多采用避雷带或者避雷网作为接闪器,很少使用避雷针。有些建筑面积高达数万甚至数十万平方米,但宽高比一般也比较大、建筑天面面积相对较小的高层建筑 ,通常只要在天面四周及水池顶部四周明设避雷带,局部再加些避雷网即可。

(二)引下线

在高层建筑中,我国建筑工程施工时常用的方法是利用柱或剪力墙的钢筋作为避雷引下线。这种方法已经写入国标《建筑物防雷设计规范》。规范规定,引下线的截面积不应小于直径为10mm的钢筋的截面积,而高层建筑中主筋截面积在20mm以上的很常见,所以要想达到这一要求并不难。为了安全,通常施工中至少采用截面积16mm的主筋做避雷引下线,一般用两根。施工中,标明引下线位置,防止上下焊接错位。

高层建筑防侧击雷施工时,将避雷引下线与圈梁、大梁链接,再尤其引出至预埋铁件,然后由预埋铁件与金属门窗焊连。但是这道工艺工程量相当大,且存在一定困难,如何解决铝合金门窗接地,尚是防雷设计中一个值得研究和探讨的问题。若建筑物采用的是玻璃幕墙,那就方便得多了。

(三)接地装置

目前,我国的高层建筑接地装置大多是采用以建筑物的深基础作为接地极的方法。这种方法有很多优点,如接地电阻低、电位分布均匀、均压效果好、施工方便、维护工程量少、节省材料等。

高层建筑多是钢筋混凝土做基础,所以凝固后有很多的孔隙,地下水渗入其中,由于是硅酸盐混凝土,使得导电能力增强。又因为混凝土基础中,钢筋密密麻麻、纵横交错,捆绑焊接后直接与导电性硅酸盐混凝土接触,从而使得接地电阻很低。桩基接地,如同使整个建筑物在地下形成了一个大型均压网,均压效果显著。同时,利用主筋接地,节省了大量钢材。

(四)防止雷电反击

在高层建筑施工中,建筑物的结构钢筋实际上都已经跟接地装置或松或紧地连成一体了。但是为了防止雷电反击,还应将建筑物内的一切金属导管和金属构件及支架等均与接地装置相连。垂直敷设的电气线路,可在适当部位装设电压击穿保护装置。最好将各种接地装置都连接成一体。上面的几种方法都是根据等电位原理,使电位均匀,避免建筑物受到雷电反击的危害。

(五)防止高电位引入

雷电波入侵,容易造成室内高电位引入问题。为防止产生此类问题,进入建筑物的架空金属管道应在入户处与接地装置相连接。应尽量采用全电缆进线,若全电缆进线实在有困难,架空线路应在入户前50米外换接电缆进线,换接处需要装设避雷器,同时,避雷器、架空线绝缘子铁脚、电缆外皮均应接地,接地时的冲击电阻要小于等于10Ω。进入建筑物的金属管道或低压直埋电缆线路,应在入口处将电缆外皮、电缆金属进户导管等与接地装置相连接。

(六)基础接地极设计与施工

在施工过程中,高层建筑的基础桩基(不论是挖孔桩、冲孔桩、钻孔桩)都是将一根根钢筋混凝土柱子伸入地下,直达几十米深的岩层。桩基上面做建筑物的承台,把桩基连成一体。承台也是用钢筋混凝土制作的,一般有一米多厚,承台上面是建筑物的剪力墙及柱子,建筑物的地面部分就座落于承台之上。

四、结论

高层建筑的防雷问题直接影响到建筑物的使用安全,威胁到人们的生命和财产安全,所以应当引起足够的重视,由于高层建筑的高度越来越高,建筑越来越多,其防雷设计也存在一定的问题和缺陷,有待业内人士和相关人员进一步的研究和探讨。

参考文献:

[1]GB 50057-2010, 建筑物防雷设计规范[S].北京:中国计划出版社,2010.

[2]刘思亮.建筑供配电[M].北京:中国建筑工业出版社,1998.

[3]张郁芳.浅谈某高层住宅电气设计中的防雷接地设计[J].山西建筑,2008,34 (20): 189-190.

点击下页还有更多>>>建筑防雷电气技术论文

相关百科

热门百科

首页
发表服务