用这个工具可以减小图片的宽高和文件大小很方便
在线智能压缩图片大小,图片降低像素,PNG|JPG大图缩小
▼ 在线一键压缩图片步骤:
一、首先点击加号添加需要压缩的图片。目前已知支持对jpg、png等多种常见的图片格式进行压缩,如果上传图片并压缩成功,则代表支持该图片格式。二、可以自行修改图片需要被压缩到的最大宽高尺寸,默认为图片原始的宽高尺寸,且宽高比例是自动锁定的。三、必须设置图片被压缩后,期望输出的图片文件的最大占用空间。(必填项)四、选择图片生成的算法。默认为混合优先算法,绝大多数情况下使用默认算法即可。五、压缩的设定值不能小于1Kb,但图片压缩的最终效果可以小于1Kb。
分子模拟(Molecular Simulation) 利用计算机以原子水平的分子模型来模拟分子结构与行为,进而模拟分子体系的各种物理、化学性质的方法。它是在实验基础上,通过基本原理,构筑起一套模型和算法,从而计算出合理的分子结构与分子行为。分子模拟不仅可以模拟分子的静态结构,也可以模拟分子体系的动态行为。[1]分子模拟的主要方法有两种:分子蒙特卡洛法和分子动力学法。[1]中文名分子模拟外文名Molecular Simulation快速导航分类 模拟技术 应用分子模拟是指利用理论方法与计算技术,模拟或仿真分子运动的微观行为,广泛的应用于计算化学,计算生物学,材料科学领域,小至单个化学分子,大至复杂生物体系或材料体系都可以是它用来研究的对象。原理优势利用适当的简化条件,将原子间的作用等效为质点系的运动,从而避免了求解繁琐的量子力学方程。原子的运动遵从牛顿第二定律,质点系整体遵从哈密顿原理。与之对应,完全从量子力学出发进行的原子计算称为”第一性原理(ab into)计算“。第一性原理计算虽然精度高,但是计算复杂,难以实现大规模的模拟。而分子模拟则在保证精度的同时,大大扩展了原子的计算机模拟的使用范围。第一性原理计算通常不过几十、几百个原子,而分子模拟甚至可以实现百万甚至千万个原子的运算。[2]分类分子模拟的工作可分为两类:预测型和解释型。预测型工作是对材料进行性能预测、对过程进行优化筛选,进而为实验提供可行性方案设计。解释型工作即通过模拟解释现象、建立理论、探讨机理,从而为实验奠定理论基础。模拟技术这是随着计算机在科研中的应用而发展起来的一门新的科学,是计算机科学与基础科学相结合的产物。在药物研究方面通过分析和计算一系列活性药物分子的三维构象并将其叠合,可以了解某一类药物分子所应具有的药物构象,这一信息给予新药研究很大帮助,药效构象的计算为今后的药效基团方法以及数据库虚拟筛选的方法打下了基础。应用近年来分子模拟技术发展迅速并在多个学科领域得到了广泛的应用。在药物设计领域,可用于研究病毒、药物的作用机理等;在生物科学领域,可用于表征蛋白质的多级结构与性质;在材料学领域,可用于研究结构与力学性能、材料的优化设计等;在化学领域,可用于研究表面催化及机理等;在石油化工领域,可用于分子筛催化剂结构表征、合成设计、吸附扩散,可构建和表征高分子链以及晶态或非晶态本体聚合物的结构,预测包括共混行为、机械性质、扩散、内聚与润湿以及表面粘接等在内的重要性质。9月29日上午,科研处与我院联合邀请王秀秀博士在线上为广大师生作题为“分子动力学模拟及其在生物科学中的应用”的学术讲座。报告会由基础医学院副院长余方流主持。王秀秀博士主要从事以分子动力学模拟技术应用于生物大分子之间相互作用研究。她以“工科技术、理科思维、生物学应用”为主线,深入浅出地分享了博士研究阶段的两个科研案例:一是通过蛋白-蛋白对接、分子动力学模拟以及免疫共沉淀等多重验证,找出了kindlin-2上新的Actin结合位点;二是通过设计比泛素分子量更小的多肽,最终找到了与泛素受体CXCR4结合最紧密且本身最稳定的多肽,为人类肠道辐射防护作用机理研究奠定理论基础。整场报告主题分明,思路清晰,充分展示了分子动力学模拟在生物科学或医学中应用的广阔前景与重要价值。线上学术报告线上师生围绕生物信息学与分子动力学模拟等热点话题与王秀秀进行了积极交流,线上报告互动活跃,精彩纷呈。王秀秀,女,苏州大学放射医学专业博士,师从柴之芳院士,2022年基础医学院新引进应届博士。在读期间,以第一作者在Journal of Materials Chemistry A和Biomolecules发表SCI论文两篇,共同第一作者在Journal of Physics D: Applied Physics发表SCI论文一篇。分子模拟在生物化学中的应用实例王春芳;王靖方;栗琳;魏冬青【期刊名称】《原子与分子物理学报》【年(卷),期】2007(24)2【摘 要】分子模拟是一种描述和模拟分子和分子体系运动状态和性质的方法.随着电子计算机技术的飞速发展,分子模拟进入了一个前所未有的新时代.在此之前,人们只能通过机械模型和纸笔计算进行简单的分子模拟,现在通过利用电子计算机人们可以做更为复杂、更为全面的分子模拟.本文通过两个实例来简单阐述了分子模拟在生物化学中的应用.一则是通过模拟膦酰基氧化腈和丙乙腈的1,3偶极环加成反应过程,用密度泛函理论方法在B3LYP/6-31G(d,p)水平上解释了得到2:1的加成产物的现象,来解释1,3偶极环加成反应得到2:1加成产物的现象.一则是通过结构生物信息学的方法建立H5N1高致病性禽流感病毒蛋白的三维结构,模拟其与一些药物分子的相互作用,研究H5N1的活性中心.【总页数】5页(P316-320)【作 者】王春芳;王靖方;栗琳;魏冬青【作者单位】上海交通大学生命科学与技术学院,上海市,200240;天津师范大学生物信息与药物开发研究所,天津市,300第 2 页074;上海交通大学生命科学与技术学院,上海市,200240;中国科学院上海生命科学院系统生物学重点实验室生物信息中心,上海市,200031;上海交通大学生命科学与技术学院,上海市,200240;北京大学生物化学与分子生物学院,北京市,100871;上海交通大学生命科学与技术学院,上海市,200240【正文语种】中 文【中图分类】O561.1【相关文献】1.分子模拟在生物化学中的应用实例 [J], 吴铭第 3 页2.华东六省一市生物化学与分子生物学学会——2008年学术交流会在江苏省南通市召开(华东六省一市生物化学与分子生物学学会理事长、秘书长联席会议同时召开) [J], 无3.第21届国际生物化学与分子生物学联盟学术大会暨第12届亚洲大洋洲生物化学家与分子生物学家学术大会 [J], 4.中国生物化学与分子生物学会农业生物化学与分子生物学分会成立大会暨第六届全国农业生物化学与分子生物学学术交流会在贵州省贵阳市召开 [J], 5.中国生物化学与分子生物学会中医药生物化学与分子生物学分会中医药普通第 4 页高等教育“十一五”国家级规划教材《生物化学》定稿会在桂林召开 [J],因版权原因,仅展示原文概要,查看原文内容请购买
下面的三种方法主要是针对位图格式图片,矢量图片不存在这种问题。1. 减少图片的尺寸我们在发现投稿图片太大时,可以查看图片的宽度和高度是多少,看是不是太大了。如果太大,我们可以减少宽度和高度来达到减少图片的大小。对于位图来说,可以使用PS来查看。使用PS打开图片后,点击图像-图像大小来查看投稿图片的高度和宽度。我们可以看到该图片的宽高度以及分辨率。我们可以点击宽度旁边的单位,将像素换成厘米,看看是多少厘米。上面的图片转换成厘米后显示宽度和高度约为40厘米。在前面的推文R语言统计与绘图:科研SCI作图基础知识中,我们讲过,投稿图片一般分为单栏、2/3栏,双栏图片。每种版式的图片对宽度和高度要求不一样,但是就是最宽的双栏图片也只有17厘米左右。我们可以修改图片的宽度为17厘米,并约束长宽比,点击确定。然后点击文件-存储为,选择tiff格式图片,点击保存。然后选择LZW压缩,如果有图层,选择扔掉图层并拷贝,点击确定即可。2. 调整图片的分辨率除了图片的宽度和高度会影响图片的大小外,图片的分辨率也是很重要的一个因素。我们可以根据期刊的投稿要求来设置图片的分辨率,不要一味的追求高分辨率。期刊要求300分辨率,你就设置300分辨率即可,然后可以根据需要适当上调,不要直接怼到1200分辨率,没必要。查看图片的分辨率也可以根据PS查看,跟上面一样,点击图像-图像大小来查看图片分辨率。如果分辨率太高,可以修改分辨率的数值,根据期刊要求调整到合适的分辨率3. 投稿图片组合图形过多除了上面两种情况外,还可能遇到组合图形,有的组合图形可以达到几十张,甚至上百张。组合图形期刊一般要求300分辨率即可。可以调整每张图片的尺寸和分辨率,在进行组合。另外组合图形还可以拆分为两张图片进行展示。华算科技专注理论计算模拟服务,是唯一拥有VASP商业版权及其计算服务资质、唯一拥有全职技术团队的正规机构!采用第一性原理计算与分子动力学、蒙特卡罗等方法相结合,对电池、催化、纳米材料、生物医药等进行多尺度设计与模拟,专注为海内外催化、纳米及能源领域科研人员提供材料计算模拟整体技术解决方案。
papertime查重结果高,更能说明这个查重系统的准确性和严格性,papertime系统包括了知网,维普,万方等数据库,还有百度文库和道客巴巴等数据库,强大的网络数据库检索重复率肯定严格。所以大多数毕业生都用papertime作为前期查重。如果学校用知网查重或者维普查重,你用papertime查重后,重复率达到了学校要求,再用知网或者维普肯定都能顺利通过!给你一个papertime官网的查重字数兑换码(four six three zero nine two 把英文换成数字兑换几千字使用,在电脑浏览器兑换,手机无法兑换)。在官网的“充值中心”拉到最底部兑换使用!如果对每个人都说一遍密码,简直太麻烦了,而且每个人手中的设备不一定能保持安全,污染了自家内网可就惨了。这样的情况,为什么不试试路由器的“访客网络”功能呢?学会使用它,不仅来访亲友上网更方便了,用户自己的网络安全也能得到保障。这样实用的功能,要怎样设置呢?我们马上来教给大家这一方便又实用的上网技能。访客网络支持双频同时开启其实,在我们安装后变很少去关心的很多无线路由器上,都有“访客网络”或者“客人网络”这一功能。我们只需要打开浏览器,在浏览器地址栏输入“”(根据不同型号路由器后台管理地址略有不同,请大家自行分辨)。然后,路由器的管理后台中找到“访客网络”这一功能,就可以对其进行设置。访客网络设置页面随后,我们可以对访客网络的网络名称(SSID)进行个性化设置,方便亲友进行查找,设置一个辨识度高的名字是必须的。一般的访客网络,为了方便使用,通常都会在开放状态下运行。让亲友不必再输入无线密码进行连接。因为无法访问内网,使得安全级别大幅提升,如果发现不是自己认识的亲友连接到了自己的访客网络,千万别忘了将它强制断开连接。访客模式的好处就是不需要密码即可访问你的网络,但是受到一定的限制,而且可以设置一定的时效性。
papertime查重检测数据库范围:学位论文库,学术期刊库,会议论文库,互联网文档资源,自建对比库。检测算法:先通过动态扫描技术在指纹索引库中找到相似指纹,然后加载文本用相似性哈希和杰卡德思想以及编辑距离计算句子相似度。查重结果偏高只能查重数据库更全面。
papertime查重结果高,更能说明这个查重系统的准确性和严格性,papertime系统包括了知网,维普,万方等数据库,还有百度文库和道客巴巴等数据库,强大的网络数据库检索重复率肯定严格。所以大多数毕业生都用papertime作为前期查重。如果学校用知网查重或者维普查重,你用papertime查重后,重复率达到了学校要求,再用知网或者维普肯定都能顺利通过!给你一个papertime官网的查重字数兑换码(four six three zero nine two 把英文换成数字兑换几千字使用,在电脑浏览器兑换,手机无法兑换)。在官网的“充值中心”拉到最底部兑换使用!祝大家顺利毕业!
正规期刊发表论文的六个步骤详解,很多细节需要注意投稿才不能成功
摘要:密度泛函理论是研究材料基态物理性质的理论基础,而基于密度泛函理论的第一性原理计算则是研究材料基态性质的强大工具。通过计算,不仅可以解释材料的物理性质,而且可以模拟不同条件下材料的行为。这就可以为预测材料的新性能或者指导新材料的合成提供依据。本论文的目的就是利用基于密度泛函理论的第一性原理计算来研究几种磁性材料的电子结构和磁性机理。在计算中采用了WIEN2K程序包。WIEN2K程序包所采用的具体计算方法是全势线性缀加平面波方法,它是晶体电子结构计算中最精确的方法之一。有机化合物要获得宏观的磁性,除了顺磁中心以外,还要求分子在空间的排列要合适,以... 关键词:磁性材料密度泛函理论第一性原理电子结构授予学位:博士学科专业:凝聚
材料在合成或加工过程中会有意或无意地引入一些结构缺陷,此外由于熵对系统自由能的贡献,缺陷也可在有限温度下自发地出现。不同缺陷可能对材料性能产生有利或有害的影响。如,外来杂质可以增加载流子浓度,但同时引入的额外散射过程又会降低其迁移率。缺陷设计还可开发出新技术,如可用点缺陷作为量子信息领域中的单光子发射器或量子位主机。随着新材料的发现,缺陷对于工程师和科学家而言,仍然是活跃而重要的研究领域。而现在,这似乎与诸如石墨烯和过渡金属二硫化物(TMD)等二维(2D)材料特别相关。由于2D材料比表面积大,因而多数原子暴露在表面并与周围环境接触。2D材料因与反应物存在相互作用,不仅缺陷浓度远大于块体系统,且缺陷调控也更加容易。缺陷类型的确定可以通过拉曼光谱实现,然而缺陷类型或浓度与拉曼特征变化之间的定量关系难以建立,是一个普遍存在的难题。
来自芬兰阿尔托大学应用物理系的Hannu-Pekka Komsa领导的团队,构建了基于经验势和第一性原理计算的组合方法,可用于模拟缺陷材料的拉曼光谱,其中经验势用于评估缺陷系统的振动模式,然后与第一性原理计算得到的拉曼张量进行结合。他们研究了在何种程度上可以区分空穴类型,并提供随缺陷浓度变化时拉曼光谱演化的起源分析。这种方法不仅能可靠地模拟拉曼光谱,还可深入了解缺陷系统中振动模式的物理内涵,以及如何用拉曼光谱对它们进行探测。作者利用该方法研究了单层MoS2中的空位缺陷,捕获了缺陷对突出峰位移和不对称展宽的影响,其结果与实验数据定性一致。此外,他们使用声子局域模型来拟合其模拟的拉曼光谱,以评估该模型在缺陷材料中的适用性。结果发现,当同时考虑完整的声子色散关系和局域类型时,该模型非常有效。通过本研究发现,只要有适当的经验势,就可以有效地评估缺陷系统的拉曼光谱。
该文近期发表于 npj Computational Materials 6 : 59 (2020),英文标题与摘要如下,点击可以自由获取论文PDF。
Simulating Raman spectra by combining first-principles and empirical potential approaches with application to defective MoS2
Zhennan Kou, Arsalan Hashemi, Martti J. Puska, Arkady V. Krasheninnikov & Hannu-Pekka Komsa
Successful application of two-dimensional transition metal dichalcogenides in optoelectronic, catalytic, or sensing devices heavily relies on the materials’ quality, that is, the thickness uniformity, presence of grain boundaries, and the types and concentrations of point defects. Raman spectroscopy is a powerful and nondestructive tool to probe these factors but the interpretation of the spectra, especially the separation of different contributions, is not straightforward. Comparison to simulated spectra is beneficial, but for defective systems first-principles simulations are often computationally too expensive due to the large sizes of the systems involved. Here, we present a combined first-principles and empirical potential method for simulating Raman spectra of defective materials and apply it to monolayer MoS2 with random distributions of Mo and S vacancies. We study to what extent the types of vacancies can be distinguished and provide insight into the origin of different evolutions of Raman spectra upon increasing defect concentration. We apply our simulated spectra to the phonon confinement model used in previous experiments to assess defect concentrations, and show that the simplest form of the model is insufficient to fully capture peak shapes, but a good match is obtained when the type of phonon confinement and the full phonon dispersion relation are accounted for.
化合物的配比不同,其属性也不同,物化性质也不同,这昱第一性原理。
超硬材料因其具有高硬度、耐磨、热稳定性好等优良特性通常被作为削切工具和超硬涂层,在工业和国防领域有着广泛的应用。传统超硬材料通常由硼、碳、氮等轻质元素合成。1955年金刚石的合成和1957年立方氮化硼的合成成为了超硬材料发展史上的两座里程碑。近年来,过渡金属因具有高的价电子密度而受到人们的广泛关注。但过渡金属本身的硬度并不高,人们通过将硼、碳、氮等轻质元素掺入过渡金属中形成过渡金属轻质元素化合物,从而提高其硬度。如,常压下合成的 ReB2、OsB2和高压下合成的PtN2,都具有较高的体弹模量和剪切模量,被认为是潜在的超硬材料。因此,对过渡金属轻质元素化合物的研究成为了超硬材料研究的一个新热点。一些过渡金属硼化物能够在常压条件下合成,从而大大降低了生产成本,受到了研究者们的欢迎。我们采用基于粒子群优化算法的CALYPSO软件包结合第一性原理计算的方法对ReB3和IrB3的结构进行了预测和研究。通过结构预测我们发现了一些新结构:对称性为P-6m2、P63/mmc、P-3m1的ReB3和对称性为Amm2、P63/mmc、P-6m2、P-3m1的IrB3。其中对称性为P-6m2的ReB3和对称性为Amm2的IrB3可能分别为ReB3和IrB3的基态结构,且在0-100GPa的压强下它们一直为基态结构。通过声子谱的计算,这些结构均没有虚频,说明它们都是动力学稳定的。弹性性质的计算表明它们都是弹性稳定的。态密度穿过费米能级表明它们均具有金属性。P63/mmc-ReB3和P-6m2-ReB3的理论硬度分别达到37和30GPa,通过电子结构的分析我们发现它们具有高硬度的原因来自于它们结构中很强的B-B键和Re-B键。P63/mmc-ReB3和P-6m2-ReB3高的理论硬度使得它们有望成为新型的超硬材料。过渡金属氮化物中,过渡金属钽的氮化物因其出色的性能(例如化学稳定性,高硬度,高熔点,具有良好的热和电导性,以及超导等)始终是研究者们关注的焦点。我们采用基于粒子群优化的CALYPSO软件包对Ta-N系统6种不同配比的化合物进行了结构预测。预测得到的结构包括:P-6m2(187)-TaN、P-6m2(189)-TaN、C2/m(12)-TaN2、P4/mmm(123)-TaN3、P6cn(60)-Ta2N、P-4m2(115)-Ta2N3、P63cm(185)-Ta3N5。随后,我们采用第一性原理计算的方法对它们的结构、相稳定性、动力学稳定性、弹性性质和电子结构等进行了研究。其中 P-6m2(187)-TaN与先前实验上合成的δ-TaN结构相同,P-6m2(189)-TaN与先前实验上合成的ε-TaN结构相同。所有这些结构的形成焓在所研究的压强范围内(0-50GPa)都是负值,表明它们可以稳定存在。我们通过声子谱的计算来判断这些结构的动力学稳定性,发现除 P4/mmm(123)-TaN3以外的其它结构都不存在虚频,说明除 P4/mmm(123)-TaN3以外的结构都是动力学稳定的。弹性常数满足机械稳定性条件,表明它们都是弹性稳定的。除 TaN3以外,其它预测结构都具有较大的体弹模量(高于260 GPa),这表明它们都具有较强的抵抗体积形变的能力。P-6m2(187)-TaN具有较高的剪切模量,说明它具有较强的抵抗剪切形变的能力。对所有预测结构进行态密度计算,P63cm(185)-Ta3N5在费米面处出现了带隙,说明 Ta3N5是一种半导体材料。而其它结构的态密度穿过费米能级说明它们都是金属性质的。过渡金属化合物WB3和OsB3受到研究者们的广泛关注,但他们的基态结构还有待进一步确定。我们同样采用了CALYPSO软件包对WB3和OsB3进行了结构预测,得到的结构有:R-3m-WB3、P63/mmc-WB3、P-3m1-WB3、P-6m2-WB3、P-6m2-OsB3、P-3m1-OsB3、P6/mmm-OsB3。这些结构中,P-6m2-OsB3和R-3m-WB3分别为 OsB3和WB3的基态结构。声子色散曲线显示,除 P6/mmm-OsB3以外,其它结构均没有虚频出现,说明其它结构是动力学稳定的。R-3m-WB3和P63/mmc-WB3拥有较大的理论硬度(37GPa和38GPa),接近超硬材料的标准40GPa。这表明R-3m-WB3和P63/mmc-WB3可以作为潜在的超硬材料。电子结构的分析发现 R-3m-WB3和P63/mmc-WB3中存在很强的W-B键和B-B键。这就解释了它们稳定性好而且硬度较高的原因
嗯,可以说说具体的写作要求么?
计算机组成原理是计算机专业人员必须掌握的基础知识。显而易见《计算机组成原理》是计算机科学与技术专业的一门核心的专业必修课程。下面是我给大家推荐的计算机组成原理相关论文,希望大家喜欢!
计算机组成原理相关论文篇一
《浅谈计算机组成原理》
摘要:计算机组成原理是计算机科学与技术专业的主干硬件专业基础课,本书突出介绍计算机组成的一般原理,不结合任何具体机型,在体系结构上改变了过去自底向上的编写习惯,采用从外部大框架入手,层层细化的叙述方法,即采用自顶向下的分析方法,详述了计算机组成原理,使读者更容易形成计算机的整体概念。此外,为了适应计算机科学发展的需要,除了叙述基本原理外,本书还增加了不少新的内容,书中举例力求与当代计算机技术相结合,考虑到不好学校不设外部设备课程,故本书适当地增加了外存和外部设备的内容。通过本书的学习,可以对计算机的原理有个整体的概念,能有个大概的了解,对待不同的机型以后也会好掌握的。
关键字:计算机组成原理;课程;作用
在计算机普及的今天,现代信息技术飞速发展,计算机的应用在政治、经济、文化等方方面面产生了巨大影响。而计算机的知识更新的速度非常的快,这就使得我们这些学计算机的面临着要不断的更新自己关于计算机的知识,以适应市场的需要。其实在大学四年里,我们并不能学到很多的知识,我们学习的只不过是如何学习的能力,大学就是培养学生各种能力的地方。在大学里学到的知识很多是你以后走上社会用不到的。这就要求我们在学习课本上的理论知识的同时,还应从中学习到学习的能力。
计算机组成原理是硬件系列课程中的核心课程,是计算机专业重要的专业基础课,它对其它课程有承上启下的作用,它的先修课程为“汇编语言”、“数字逻辑”,它又与“计算机系统结构”、“操作系统”、“计算机接口技术”等课程密切相关。它的主要教学任务是要求学生能系统地理解计算机硬件系统的逻辑组成和工作原理,培养学生对计算机硬件结构的分析、应用、设计及开发能力。它既有自身的完整理论体系,又有很强的实践性。该课程具有知识面、内容多、抽象枯燥、难理解、更新快等特点。
课程主要内容和基本原理
(一)本书的主要内容
该课程主要讲解简单、单台计算机的完整组成原理和内部运行机制,包括运算器部件、控制器部件、存储器子系统、输入/输出子系统(总线与接口等)与输入/输出系统设备,围绕各自的功能、组成、设计、实现、使用等知识进行介绍。
(二)本课程的特点
这本书摆脱了传统,死板的编写方法,采用从整体框架入手,自顶向下,由表及里,层层细化的叙述方法,通过对计算机系统概述,总线系统等的深入剖析和详细讲解,使我们能形象的理解计算机的基本组成和工作原理。而且为了适应计算机科学发展的需要,除了叙述基本原理外,书中还增加了新的内容,书中举例力求与当代计算机技术相结合。
而且该课程的工程性、实践性、技术性比较强,还强调培养学生的动手动脑能力、开创与创新意识、实验技能,这些要求更多的是通过作业、教学实验等环节完成,要求学生有意识地主动加强这些方面的练习与锻炼。
(三)本课程的作用
计算机组成原理课,对于许多必须学习这门课的学生来说都会感到困难和不理解,为什么要学习这门课,本人在这里可以打个比喻。在过去每个人都会造人,但是都不清楚他的详细过程,现在由于科学家的工作,使得我们都清楚了他的过程,就使得我们能够创造出来比较优良的人来了。用计算机的过程和这个差不多,当我们明白了计算机的组成和工作原理以后,我们就可以更好的使用好计算机,让它为我们服务。
1、实际应用
首先我认为在《计算机组成原理》这本书中学到的有关计算机原理方面的知识,对我们以后了解计算机以及和计算机打交道,甚至在以后应用计算机时,都可能会有很大的益处,计算机原理的基本知识是不会变的,变也只是会在此基础上,且不会偏离这些最基本的原理,尤其是这本计算机组成原理介绍的计算机原理是一种一般的计算机原理,不是针对某一个特定的机型而介绍的,下面我们来谈谈系统总线的发展和应用。
2、定义
总线,英文叫作“BUS”,即我们中文的“公共车”,这是非常形象的比如,公共车走的路线是一定的,我们任何人都可以坐公共车去该条公共车路线的任意一个站点。如果把我们人比作是电子信号,这就是为什么英文叫它为“BUS”而不是“CAR”的真正用意。当然,从专业上来说,总线是一种描述电子信号传输线路的结构形式,是一类信号线的集合,是子系统间传输信息的公共通道[1]。通过总线能使整个系统内各部件之间的信息进行传输、交换、共享和逻辑控制等功能。如在计算机系统中,它是CPU、内存、输入、输出设备传递信息的公用通道,主机的各个部件通过主机相连接,外部设备通过相应的接口电路再于总线相连接。
3、工作原理
系统总线在微型计算机中的地位,如同人的神经中枢系统,CPU通过系统总线对存储器的内容进行读写,同样通过总线,实现将CPU内数据写入外设,或由外设读入CPU。微型计算机都采用总线结构。总线就是用来信息的一组通信线。微型计算机通过系统总线将各部件连接到一起,实现了微型计算机内部各部件间的信息交换。一般情况下,CPU提供的信号需经过总线形成电路形成系统总线。系统总线按照传递信息的功能来分,分为地址总线、数据总线和控制总线。这些总线提供了微处理器(CPU)与存储器、输入输出接口部件的连接线。可以认为,一台微型计算机就是以CPU为核心,其它部件全“挂接”在与CPU相连接的系统总线上。这种总线结构形式,为组成微型计算机提供了方便。人们可以根据自己的需要,将规模不一的内存和接口接到系统总线上,很容易形成各种规模的微型计算机。
4、分类:
总线分类的方式有很多,如被分为外部和内部总线、系统总线和非系统总线等等,下面是几种最常用的分类方法。
(1)按功能分
最常见的是从功能上来对数据总线进行划分,可以分为地址总线、数据总线、和控制总线。在有的系统中,数据总线和地址总线可以在地址锁存器控制下被共享,也即复用。
地址总线是专门用来传送地址的。在设计过程中,见得最多的应该是从CPU地址总线来选用外部存储器的存储地址。地址总线的位数往往决定了存储器存储空间的大小,比如地址总线为16位,则其最大可存储空间为216(64KB)。
数据总线是用于传送数据信息,它又有单向传输和双向传输数据总线之分,双向传输数据总线通常采用双向三态形式的总线。数据总线的位数通常与微处理的字长相一致。例如Intel8086微处理器字长16位,其数据总线宽度也是16位。在实际工作中,数据总线上传送的并不一定是完全意义上的数据。
控制总线是用于传送控制信号和时序信号。如有时微处理器对外部存储器进行操作时要先通过控制总线发出读/写信号、片选信号和读入中断响应信号等。控制总线一般是双向的,其传送方向由具体控制信号而定,其位数也要根据系统的实际控制需要而定。
(2)按传输方式分
按照数据传输的方式划分,总线可以被分为串行总线和并行总线。从原理来看,并行传输方式其实优于串行传输方式,但其成本上会有所增加。通俗地讲,并行传输的通路犹如一条多车道公路,而串行传输则是只允许一辆汽车通过单线公路。目前常见的串行总线有SPI、I2C、USB、IEEE1394、RS232、CAN等;而并行总线相对来说种类要少,常见的如IEEE1284、ISA、PCI等。
(3)按时钟信号方式分
按照时钟信号是否独立,可以分为同步总线和异步总线。同步总线的时钟信号独立于数据,也就是说要用一根单独的线来作为时钟信号线;而异步总线的时钟信号是从数据中提取出来的,通常利用数据信号的边沿来作为时钟同步信号。
5、发展简史
计算机系统总线的详细发展历程,包括早期的PC总线和ISA总线、PCI/AGP总线、PCI-X总线以及主流的PCIExpress、HyperTransport高速串行总线。从PC总线到ISA、PCI总线,再由PCI进入PCIExpress和HyperTransport体系,计算机在这三次大转折中也完成三次飞跃式的提升。
与这个过程相对应,计算机的处理速度、实现的功能和软件平台都在进行同样的进化,显然,没有总线技术的进步作为基础,计算机的快速发展就无从谈起。业界站在一个崭新的起点:PCIExpress和HyperTransport开创了一个近乎完美的总线架构。而业界对高速总线的渴求也是无休无止,PCIExpress2.0和HyperTransport3.0都将提上日程,它们将会再次带来效能提升。在计算机系统中,各个功能部件都是通过系统总线交换数据,总线的速度对系统性能有着极大的影响。而也正因为如此,总线被誉为是计算机系统的神经中枢。但相比CPU、显卡、内存、硬盘等功能部件,总线技术的提升步伐要缓慢得多。在PC发展的二十余年历史中,总线只进行三次更新换代,但它的每次变革都令计算机的面貌焕然一新。
6、心得体会
自从上了大学后,进入这个专业后才能这么经常的接触到电脑,才能学到有关电脑方面的知识。正因为接触这类知识比较的晚,所以学习这方面的知识感觉到吃力。学习了这门课后觉得,计算机组成原理确实很难,随着计算机技术和电子技术的飞速发展。计算机内部结构日趋复杂和庞大而且高度集成化。这使的我们普遍感到计算机组成原理这门课难学、难懂、概念抽象、感性认识差。在计算机技术快速发展的今天,新技术、新理论从提出到实际应用的周期大大缩短。我们很难在有限的教学时间内.在理解掌握基本知识技能的基础上。学习新知识、新技术,很难增强我们的学习兴趣。也就更谈不上能够利用基本原理解决在学习过程中所遇到的新问题。
当进入第四章,存储器的学习时,各种问题就不断的出现,尤其在进行存储器容量扩展时,很多的问题都是似懂非懂的,在做题目时,也是犯各种各样的错误。在第五章的学习中,对于I/O设备与主机交换信息的控制方式中的程序查询方式,程序中断方式和DMA方式有了点了解。最难的就要数中央处理器和控制单元了。对于计算机运算方法,这个没太搞懂,像定点运算中的乘法运算和除法运算,又是用的什么原码一位乘、原码两位乘、补码一位乘、补码两位乘。总之,我是被绕晕了。还有就是控制单元的设计方法微程序设计,这个知识点也是不太懂,总的来说这门课程,学得不是很好。可是通过这门课的学习,我也学习到了很多以前不知道的知识:计算机都有些什么硬件,都有哪几类总线,总线在计算机中又扮演着什么角色。计算机中的存储器有哪些等等。让我对计算机有了一个大致的了解。至少我不再像以前那样对计算机什么也都不懂。
结语:
通过学习这门课程,我们能够从中得到有关计算机方面的知识,但是更多的是这门课程可以培养我们以下能力:
1、系统级的认识能力。建立整机概念,掌握自项向下的问题分析能力,既能理解系统各层次的细节,又能站在系统总体的角度从宏观上认识系统,然后将系统很好的分解为功能模块。这种理解必须超越各组成部分的实现细节,而认识到计算机的软件系统和硬件系统的结构以及它们建立和分析的过程,这一过程是应该以深入理解计算机组成原理为基础的。
2、培养学生理论联系实际的能力。计算机实践教学是计算机课程的重要环节,学好计算机仅靠理论知识是不够的,课堂讲授是使学生掌握计算机的基本知识和基本技能,而计算机实践教学的目的是要通过实际操作将所学到的知识付诸实际,是课堂教学的延伸和补充。计算机设计与实践就是从理论、抽象、设计三个方面将计算机系统内部处理器、存储器、控制器、运算器、外设等各个部分联系起来,达到互相支撑、互相促进进。
参考文献
[1]唐硕飞主编计算机组成原理高等教育出版社
[2]陈金儿,王让定,林雪明,等.基于CC2005的“计算机组成原理与结构”课程改革[J].计算机教育,2006(11):33-37.
[3]郑玉彤.《计算机组成原理》课程实现的比较研究[J].中央民族大学学报,2003,12(1):79-82.
[4]刘旭东,熊桂喜.“计算机组成原理”的课程改革与实践[J].计算机教育,2009(7):74-76.
[5]赵秋云,何嘉,魏乐.对《计算机组成原理》课程教学模式的探讨[J].电脑知识与技术,2008,4(3):693-694.
[6]姚爱红,张国印,武俊鹏.计算机专业硬件课程实践教学研究[J].计算机教育,2007(12):29-31.
计算机组成原理相关论文篇二
《计算机组成及其控制单元》
摘要:本论文主要论述了冯-诺依曼型计算机的基本组成与其控制单元的构建方法,一台计算机的核心是cpu,cpu的核心就是他的控制单元,控制单元好比人的大脑,不同的大脑有不同的想法,不同的控制单元也有不同的控制思路。所以,控制单元直接影响着指令系统,它的格式不仅直接影响到机器的硬件结构,而且也直接影响到系统软件,影响机器的适用范围。而冯诺依曼型计算机是计算机构建的经典结构,正是现代计算机的代表。
关键字:冯诺依曼型计算机,计算机的组成,指令系统,微指令
一.计算机组成原理课程综述:
本课程采用从外部大框架入手,层层细化的叙述方法,先是介绍计算机的基本组成,发展和展望。后详述了存储器,输入输出系统,通信总线,cpu的特性结构和功能,包括计算机的基本运算,指令系统和中断系统,并专门介绍了控制单元的功能和设计思路和实现措施。
二.课程主要内容和基本原理:
A.计算机的组成:
冯诺依曼型计算机主要有五大部件组成:运算器,存储器,控制器,输入输出设备。
1.总线:
总线是计算机各种功能部件之间传送信息的公共通信干线,它是由导线组成的传输线束,按照计算机所传输的信息种类,计算机的总线可以划分为数据总线、地址总线和控制总线,分别用来传输数据、数据地址和控制信号。总线是一种内部结构,它是cpu、内存、输入、输出设备传递信息的公用通道,主机的各个部件通过总线相连接,外部设备通过相应的接口电路再与总线相连接,从而形成了计算机硬件系统。在计算机系统中,各个部件之间传送信息的公共通路叫总线,微型计算机是以总线结构来连接各个功能部件的。总线按功能和规范可分为三大类型:
(1)片总线(ChipBus,C-Bus)
又称元件级总线,是把各种不同的芯片连接在一起构成特定功能模块(如CPU模块)的信息传输通路。
(2)内总线
又称系统总线或板级总线,是微机系统中各插件(模块)之间的信息传输通路。例如CPU模块和存储器模块或I/O接口模块之间的传输通路。(3)外总线又称通信总线,是微机系统之间或微机系统与其他系统(仪器、仪表、控制装置等)之间信息传输的通路,如EIARS-232C、IEEE-488等。其中的系统总线,即通常意义上所说的总线,一般又含有三种不同功能的总线,即数据总线DB、地址总线AB和控制总线CB。
2.存储器:
存储器是计算机系统中的记忆设备,用来存放程序和数据。计算机中全部信息,包括输入的原始数据、计算机程序、中间运行结果和最终运行结果都保存在存储器中。它根据控制器指定的位置存入和取出信息。有了存储器,计算机才有记忆功能,才能保证正常工作。按用途存储器可分为主存储器(内存)和辅助存储器(外存),也有分为外部存储器和内部存储器的分类方法。外存通常是磁性介质或光盘等,能长期保存信息。内存指主板上的存储部件,用来存放当前正在执行的数据和程序,但仅用于暂时存放程序和数据,关闭电源或断电,数据会丢失。
存储器的主要功能是存储程序和各种数据,并能在计算机运行过程中高速、自动地完成程序或数据的存取。
存储器是具有“记忆”功能的设备,它采用具有两种稳定状态的物理器件来存储信息。这些器件也称为记忆元件。在计算机中采用只有两个数码“0”和“1”的二进制来表示数据。记忆元件的两种稳定状态分别表示为“0”和“1”。日常使用的十进制数必须转换成等值的二进制数才能存入存储器中。计算机中处理的各种字符,例如英文字母、运算符号等,也要转换成二进制代码才能存储和操作。
按照与CPU的接近程度,存储器分为内存储器与外存储器,简称内存与外存。内存储器又常称为主存储器(简称主存),属于主机的组成部分;外存储器又常称为辅助存储器(简称辅存),属于外部设备。CPU不能像访问内存那样,直接访问外存,外存要与CPU或I/O设备进行数据传输,必须通过内存进行。在80386以上的高档微机中,还配置了高速缓冲存储器(cache),这时内存包括主存与高速缓存两部分。对于低档微机,主存即为内存。
3.I/O系统:
I/O系统是操作系统的一个重要的组成部分,负责管理系统中所有的外部设备。
计算机外部设备。在计算机系统中除CPU和内存储外所有的设备和装置称为计算机外部设备(外围设备、I/O设备)。I/O设备:用来向计算机输入和输出信息的设备,如键盘、鼠标、显示器、打印机等。
I/O设备与主机交换信息有三种控制方式:程序查询方式,程序中断方式,DMA方式。程序查询方式是由cpu通过程序不断的查询I/O设备是否做好准备,从而控制其与主机交换信息。
程序中断方式不查询设备是否准备就绪,继续执行自身程序,只是当I/o设备准备就绪并向cpu发出中断请求后才给予响应,这大大提高了cpu的工作效率。
在DMA方式中,主存与I/O设备之间有一条数据通路,主存与其交换信息时,无需调用中断服务程序。
4.运算器:
计算机中执行各种算术和逻辑运算操作的部件。运算器的基本操作包括加、减、乘、除四则运算,与、或、非、异或等逻辑操作,以及移位、比较和传送等操作,亦称算术逻辑部件(ALU)。
运算器由:算术逻辑单元(ALU)、累加器、状态寄存器、通用寄存器组等组成。算术逻辑运算单元(ALU)的基本功能为加、减、乘、除四则运算,与、或、非、异或等逻辑操作,以及移位、求补等操作。计算机运行时,运算器的操作和操作种类由控制器决定。运算器处理的数据来自存储器;处理后的结果数据通常送回存储器,或暂时寄存在运算器中。与运算器共同组成了CPU的核心部分。
实现运算器的操作,特别是四则运算,必须选择合理的运算方法。它直接影响运算器的性能,也关系到运算器的结构和成本。另外,在进行数值计算时,结果的有效数位可能较长,必须截取一定的有效数位,由此而产生最低有效数位的舍入问题。选用的舍入规则也影响到计算结果的精确度。在选择计算机的数的表示方式时,应当全面考虑以下几个因素:要表示的数的类型(小数、整数、实数和复数):决定表示方式,可能遇到的数值范围:确定存储、处理能力。数值精确度:处理能力相关;数据存储和处理所需要的硬件代价:造价高低。运算器包括寄存器、执行部件和控制电路3个部分。在典型的运算器中有3个寄存器:接收并保存一个操作数的接收寄存器;保存另一个操作数和运算结果的累加寄存器;在运算器进行乘、除运算时保存乘数或商数的乘商寄存器。执行部件包括一个加法器和各种类型的输入输出门电路。控制电路按照一定的时间顺序发出不同的控制信号,使数据经过相应的门电路进入寄存器或加法器,完成规定的操作。为了减少对存储器的访问,很多计算机的运算器设有较多的寄存器,存放中间计算结果,以便在后面的运算中直接用作操作数。
B.控制单元:
控制单元负责程序的流程管理。正如工厂的物流分配部门,控制单元是整个CPU的指挥控制中心,由指令寄存器IR、指令译码器ID和操作控制器0C三个部件组成,对协调整个电脑有序工作极为重要。它根据用户预先编好的程序,依次从存储器中取出各条指令,放在指令寄存器IR中,通过指令译码(分析)确定应该进行什么操作,然后通过操作控制器OC,按确定的时序,向相应的部件发出微操作控制信号。操作控制器OC中主要包括节拍脉冲发生器、控制矩阵、时钟脉冲发生器、复位电路和启停电路等控制逻辑。
1.指令系统
指令系统是计算机硬件的语言系统,也叫机器语言,它是软件和硬件的主要界面,从系统结构的角度看,它是系统程序员看到的计算机的主要属性。因此指令系统表征了计算机的基本功能决定了机器所要求的能力,也决定了指令的格式和机器的结构。对不同的计算机在设计指令系统时,应对指令格式、类型及操作功能给予应有的重视。
计算机所能执行的全部指令的集合,它描述了计算机内全部的控制信息和“逻辑判断”能力。不同计算机的指令系统包含的指令种类和数目也不同。一般均包含算术运算型、逻辑运算型、数据传送型、判定和控制型、输入和输出型等指令。指令系统是表征一台计算机性能的重要因素,它的格式与功能不仅直接影响到机器的硬件结构,而且也直接影响到系统软件,影响到机器的适用范围。
根据指令内容确定操作数地址的过程称为寻址。一般的寻址方式有立即寻址,直接寻址,间接寻址,寄存器寻址,相对寻址等。
一条指令实际上包括两种信息即操作码和地址码。操作码用来表示该指令所要完成的操作(如加、减、乘、除、数据传送等),其长度取决于指令系统中的指令条数。地址码用来描述该指令的操作对象,它或者直接给出操作数,或者指出操作数的存储器地址或寄存器地址(即寄存器名)。
2.微指令
在微程序控制的计算机中,将由同时发出的控制信号所执行的一组微操作称为微指令。所以微指令就是把同时发出的控制信号的有关信息汇集起来形成的。将一条指令分成若干条微指令,按次序执行就可以实现指令的功能。若干条微指令可以构成一个微程序,而一个微程序就对应了一条机器指令。因此,一条机器指令的功能是若干条微指令组成的序列来实现的。简言之,一条机器指令所完成的操作分成若干条微指令来完成,由微指令进行解释和执行。微指令的编译方法是决定微指令格式的主要因素。微指令格式大体分成两类:水平型微指令和垂直型微指令。
从指令与微指令,程序与微程序,地址与微地址的一一对应关系上看,前者与内存储器有关,而后者与控制存储器(它是微程序控制器的一部分。微程序控制器主要由控制存储器、微指令寄存器和地址转移逻辑三部分组成。其中,微指令寄存器又分为微地址寄存器和微命令寄存器两部分)有关。同时从一般指令的微程序执行流程图可以看出。每个CPU周期基本上就对应于一条微指令。
三.心得体会;
在做完这次课程论文后,让我再次加深了对计算机的组成原理的理解,对计算机的构建也有更深层次的体会。计算机的每一次发展,都凝聚着人类的智慧和辛勤劳动,每一次创新都给人类带来了巨大的进步。计算机从早期的简单功能,到现在的复杂操作,都是一点一滴发展起来的。这种层次化的让我体会到了,凡事要从小做起,无数的‘小’便成就了‘大’。
现在计算机仍以惊人的速度发展,期待未来的计算机带给人们更大的惊喜和进步。
四.结语:
自从1945年世界上第一台电子计算机诞生以来,计算机技术迅猛发展,CPU的速度越来越快,体积越来越小,价格越来越低。计算机界据此总结出了“摩尔法则”,该法则认为每18个月左右计算机性能就会提高一倍。
越来越多的专家认识到,在传统计算机的基础上大幅度提高计算机的性能必将遇到难以逾越的障碍,从基本原理上寻找计算机发展的突破口才是正确的道路。很多专家探讨利用生物芯片、神经网络芯片等来实现计算机发展的突破,但也有很多专家把目光投向了最基本的物理原理上,因为过去几百年,物理学原理的应用导致了一系列应用技术的革命,他们认为未来光子、量子和分子计算机为代表的新技术将推动新一轮超级计算技术革命。
五.参考文献:
【1】计算机组成原理,唐朔飞
【2】计算机组成原理,白中英
提供一些关于JSP网页页面设计论文的参考文献,供参考。[1]张爱平,赖欣.在JSP中调用JavaBean实现Web数据库访问[J].计算机时代,2007,(01).[2]仲伟和.基于JSP网页自动生成工具的设计与实现[J].科技信息(科学教研),2007,(15).[3]马国财.基于JSP技术的MIS系统中复杂查询器的设计与实现[J].青海大学学报(自然科学版),2007,(02).[4]李佳.基于JSP技术的网页自动生成工具的实现[J].电脑开发与应用,2009,(03)[5]梁玉环,李村合,索红光.基于JSP的网站访问统计系统的设计与实现[J].计算机应用研究,2004,(04)[6]熊皓,杨月英.JSP自动生成工具的设计与实现[J].黄石理工学院学报,2005,(04)[7]韩世芬.基于JSP网页自动生成工具的开发[J].科技资讯,2006,(17)[8]孙年芳.基于JSP网页自动生成工具的设计与实现[J].计算机与信息技术,2008,(11)[9]朱海泉,李兵.基于JSP网页自动生成工具的设计与实现[J].长春师范学院学报,2006,(12)[10]仲伟和.基于JSP网页自动生成工具的设计与实现[J].科技信息(科学教研),2007,(15)[11]万晓凤,谢毅.基于JSP的电子政务系统通知模块的设计[J].南昌水专学报,2004,(01)[12]马云飞,张良均.利用JSP开发动态Web应用系统[J].现代计算机,2001,(01)
计算机方面的论文内容方向也有很多,要根据你所研究的方向制定论文资料信息的查询以及论文撰写中的机枪方针等等。这样论文发表才有用。具体的论文撰写事项,不妨来职称驿站网看看。
一部分收一部分不收并不是外文期刊都不收版面费,有一部分外文期刊确实不收版面费,但还有很大一部分外文期刊是收版面费的,而且费用都比较高,一般都是一千到四千美元不等,折合人民币大概几千到几万不等,所以你所说的外文期刊不收版面费是不准确的。不收版面费的期刊,下载全文时可能要付一定的费用。扩展资料:物理学三大期刊物理学报、物理学进展、高压物理学报、工程热物理学报、计算物理、原子核物理评论、原子能科学技术、中国科学(物理学,力学,天文学)、光学学报。中国激光,发光学报,光子学报。声学学报,原子与分子物理学报,光谱学与光谱分析,量子电子学报,量子光学学报,物理,低温物理学报,计算物理,核聚变与等离子体物理,大学物理,波谱学杂志,光散射学报。物理学是研究物质运动最一般规律和物质基本结构的学科。作为自然科学的带头学科,物理学研究大至宇宙,小至基本粒子等一切物质最基本的运动形式和规律,因此成为其他各自然科学学科的研究基础。它的理论结构充分地运用数学作为自己的工作语言,以实验作为检验理论正确性的唯一标准,它是当今最精密的一门自然科学学科。
计算机期刊一直显示编委会,主要是由于在等待编辑部审核中的缘故。我们可以理一下整个流程,提交文章给编辑部后,都是进行简单的检测,满足抄袭率最低标准后才可以,一般是20%以内。然后才是初审,复审,而这些流程并不是一次进行的,需要一定的排期,等前面审核完才可以,而你的这种状态,就是处于审核之前的状态。所以不用紧张,耐心等待即可。
凝聚态物理有本《凝聚态物理学进展》 ,是本国际中文刊,不过是个普刊,不知道行不行