首页

职称论文知识库

首页 职称论文知识库 问题

数学史论文发表小说

发布时间:

数学史论文发表小说

数学不是“数”学——话说无理数 “数学是一门研究数量关系和空间形式的科学”的说法在中国曾经十分流行,这可能与恩格斯著作的长期影响有关。对于数学,今天人们更加认同于如下的说法: “数学是一个完全自成体系的知识领域…数学仅仅讨论它本身想象中的实体及关系”(《科学技术百科全书》[麦格劳-希尔图书公司]第1卷数学,科学出版社1980,235-236页); “到1900年,数学已经从实在性中分裂出来了;它已经明显地而且无可挽回地失去了它对自然界真理的所有权,因而变成了一些没有意义的东西的任意公理的必然推论的随从了”( 克莱因《古今数学思想》第4册,上海科学技术出版社1979,111页)。 照此说法,数学就不是“数”学了。然而,数学与生俱来的强大应用性并不因为“数学已经从实在性中分裂出来了”而有稍微的减弱。既是抽象的又有实在的一面,人们逐渐形成了对数学的主流看法——数学的现状“一方面是其内在的统一性,另一方面是外界应用的更高的自觉性”,数学的两种趋势是“从外部寻求新问题和在内部追求统一”(美国国家研究委员会《振兴美国数学——90年代的计划》,叶其孝等译,世界图书出版公司1993),而不再局限于给数学下一个定义。毕达哥拉斯无理数是一个能恰好地描述数学特征的案例。从数学发展史看,人类对无理数的发蒙始于古希腊毕达哥拉斯(Pythagoras,公元前582-497)学派,但二千四百年后才产生包括无理数在内的实数严格定义;从当今教育的知识体系看,学生在初中阶段开始接触无理数,直到大学毕业却仍然不明白无理数的实质含义。历史与现实两者的契合正好说明无理数的两面特征,应用性使得它是常见的数学工具之一,而抽象性又使所有非数学工作者不能真正认识它。克罗内克 数系的扩张过程以自然数为基础,德国数学家克罗内克(Kronecker,1823-1891)说“上帝创造了整数,其它一切都是人造的”(克莱因《古今数学思想》第4册,上海科学技术出版社1979,41页)。零与自然数的产生源于人类在生存活动中的原始冲动,这一推测想来不会有问题,人的双手有十指与十进制的广泛使用也当然有密切关系; 类似于 2+3=5 的事实产生了加法的概念,然而2加上几会等于1呢?由此需要定义负数:一个数的“负数”即它与该数之和等于0;进而定义减法。产生零、负自然数,合称整数; 加法的重复进行产生了乘法,2×3=6 就是三个2相加。然而2乘以几会等于1呢?由此需要定义倒数:一个数的“倒数”即它与该数之积等于1,进而定义除法,产生既约分数,合称有理数。 以上过程不论用抽象的数学语言还是通俗语言来描述都容易为人接受,可以说由于计数、测量的需要而扩大了数系。 最早出现的无理数也与计数、测量有关。乘法的重复进行产生了乘方,23 就是三个2相乘,然而哪个数的平方会等于2呢?毕达哥拉斯学派提出了这个问题,边长为1的正方形的对角线的长度不是既约分数,后来用√2表示对角线的长度,无理数的概念初步形成。 以下是关于√2不是有理数的一个证明,载于欧几里德《几何原本》,但据说是更早的毕达哥拉斯学派所作 :设√2是既约分数p/q,即√2=p/q,则2q2=p2,这表明p2是偶数,p也是偶数(否则若p是奇数则p2是奇数),设p=2k,得q2=2k2,于是q也是偶数,这与p/q是既约分数矛盾。 虽然开方运算可能产生无理数,但仿照上述办法来扩张数系会遇到困难。例如仅用开方定义新的数例如√2,3√2(后来被称为初等无理数)是不够的;(1+√2) 就不能通过对某有理数开方而得,那么(1+√2)是什么?试作一比较,任何有理数总可以乘以某整数而还原成整数,但(1+√2)的任何次乘方却不可能得到有理数。阿贝尔 考虑到此,容易想到的办法是用有理数的加减乘除、乘方、开方定义新的数,后来被称为复合无理数,显然它包含了初等无理数。毕竟扩张数系的动力之一是使代数方程有解,例如(1+√2)的产生使得方程x2-2x-1=0有解。 但又有新的问题,挪威数学家阿贝尔(Abel,1802-1829)于1825年证明“一般五次方程不能只用根式求解”,紧接着法国数学家伽罗瓦(Galois,1811-1832)解决“方程须有何种性质才可求根式解”的问题,复合无理数立即黯然失色。伽罗瓦 数学家顽强地推进,索性将新的数系定义为所有有理系数方程的根(后来称为代数数),有理数、初等无理数、复合无理数都被包括在内。数系的扩张本来是从现实需要出发的问题,但现在已经开始变得抽象了,因为代数数中那些不是有理数、初等无理数、复合无理数的“数”究竟什么样子?这不仅不能回答,似乎也并不重要,重要的是这样的“数”确实存在。 不得不面对的烦恼是,一个代数数的描述与运算都必须通过相关的代数方程的系数,而且代数方程的根通常不是唯一的。 彻底摧毁这一定义方式的是1844年柳维尔(Liouville,1809-1882)证明非代数数的存在。早在1830年代,e=1+(1/1!)+(1+2!)+...+(1/n!)+...与圆周率π被证明是无理数,在柳维尔的结论宣布后不久,1873年、1883年数学家埃尔米特(Hermite,1822-1901)与林德曼(Lindemann,1852-1939)先后证明e,π不是代数数。 由于有理数可表示成有限小数或无限循环小数,人们想到用“无限不循环小数”来定义无理数,这也是直至19世纪中叶以前的实际做法。它看起来很通俗,不明白无理数奥妙的人大体也是这样理解无理数的。但这样做遇到的困难更大:关键的问题是你无法判断一个数是无限不循环的,也不能将两个无限不循环的数进行加减乘除。 不循环的无限小数当然是难以认识,如果我们翻用一下列夫•托尔斯泰著名小说《安娜•卡列尼娜》中的名句“幸福的家庭都是幸福的;不幸的家庭各有各的不幸”,那就是:循环的小数都是一样的循环,不循环的小数各有各的不循环!16世纪德国数学家施蒂费尔(Stifel,约1486-1567)说“当我们想把它们数出来(用十进小数表示)时,…就发现它们无止境地往远处跑,因而没有一个无理数实质上是能被我们准确掌握住的…。而本身缺乏准确性的东西就不能称其为真正的数…。所以,正如无穷大的数并非数一样,无理数也不是真正的数,而是隐藏在一种无穷迷雾后面的东西”(克莱因《古今数学思想》第1册,上海科学技术出版社1979, 292页) 克莱因指出“所有在Weierstrass(德国数学家外尔斯特拉斯1815-1897——引注)之前引进无理数的人都采用了这样的概念,即无理数是一个以有理数为项的无穷序列的极限。但是这个极限,假如是无理数,在逻辑上是不存在的,除非无理数已经有了定义”(克莱因《古今数学思想》第4册,上海科学技术出版社1979,46页)。 一本著名的数学教材将“无限不循环小数”称为“中学生的实数”,“用这个定义,实数是非常具体的对象,但在定义加法和乘法时所包含的困难是不容忽视的”,在介绍了加法定义的一种方式及指出乘法可类似处理后说“不过,乘法逆元素的存在将又一次是最困难的”并就此打住(斯皮瓦克《微积分》下册,张毓贤等译,人民教育出版社1981,695页)。 根据施蒂费尔的说法我们只能说√2不是有理数,而不能说它是无理数,因为我们还没有定义什么是“无理数”。前述古希腊人关于√2无理性的证明应当是“不存在这样的有理数使其平方等于2”。由于除了有理数就没有数,√2根本就不是“数”。 现在可以看到无理数问题的困难所在:从开方运算的逆运算与确定边长为1的正方形的对角线长度的需要,都应当在有理数的基础上再扩大,这与以往从自然数扩大到整数、从整数扩大到有理数没有什么两样。然而在具体做法上,利用运算的逆向进行或通过对有理数进行代数运算或用代数方程的根而产生的“数”是不完全的,“无限不循环小数”的说法又不合理不严格。这一困难使数学史上数系的扩张停滞了两千多年。 进一步扩张数系的必要性是不成问题的,在很长时间里人们将无理数理解为其近似值,从实用的角度来说,一个没有严格定义的东西难道就不能存在、不能使用吗?但是数学奉行严密逻辑的理念自欧几里德《几何原本》以来就坚定不移,不以现实为背景的非欧几何的产生(18世纪)加深了数学家对于摆脱实在性的趋同。 从整数产生有理数曾经主要是根据测量、计数的需要,但现在要回到始点从头做起。例如纯粹从数学发展的内在动力与逻辑展开来定义有理数: 设p,q是整数,则数偶(p,q)称为有理数,规定两个有理数的乘法、加法规则,证明它们符合交换律、结合律等等。这是一个用以参考的范式:将某种“对象”定义为实数,其目标与要求应当是能包含以上已有的所有对象,有通常的加法乘法且符合运算规则。 以下介绍的两种定义中的“数”仅指有理数,而实数是用“数”按特定方式构成的那样一些“对象”或“东西”。 戴德金(Dadekind,1831-1916)定义:一个实数定义为有理数的一个集合,这个集合是数轴上所有有理数从某处分开的左边“一半”(数学术语为“分割”),且没有最大的数。 按戴德金的定义,实数集合的每个元是有理数集合的一个子集,一个实数是有理数的一个集合。例如所有小于2的有理数集合确定一个实数,它就是2;所有其平方小于2的有理数集合确定一个实数,它就是√2。须注意这两例有一个重要区别,对应于有理数的“分割”其“右半”有最小的数2,对应于无理数的“分割”其“右半”没有最小的数。戴德金的定义来源于这样的启示:每个有理数作为有长度的线段,对应着数轴上的坐标。边长为1的正方形的对角线线段也应对应数轴上的一个点,这意味着如果只有有理数,数轴上存有“空隙”——尽管有理数非常稠密。应当填补这些“空隙”使数轴成为完美的,欧几里德《几何原本》中曾记载过这一思想的雏形。 康托(Cantor,1845-1918)定义:一个实数定义为有理数的柯西序列a1,a2,...,an,此处an都是有理数,且满足对于任意自然数p必有自然数N,使当m>N,n>N时有|am-an|<1/q。康托的定义来源于如下的启示:若只限于有理数,则“微积分”的命题“单调有界数列必收敛”可能不成立,例如有理数数列x0=1,xn+1=(xn+2/xn)/2 是单调递减的、有界的,其极限是√2。 在以上两种定义中还要分别规定实数之间的大小比较、如何运算然后证明运算是符合熟知的规则的。另一个需要解决的重要问题是,这两种实数定义所规定的这些“东西”在抽象意义上是不是相同的?如果不能肯定回答岂不会带来一片混乱,何况还会有其它形式的实数定义。这些问题当然都已一一妥帖解决。 试对两种定义做一比较评判:康托的定义较实在,由于明显涉及了无限(必定有时间如何发展的直觉)的概念称为是动态的。例如,说数列1,1.4,1.41,1.414,1.4142,...定义无理数√2,必须附加对于数列变化规律的种种说明。戴德金的定义较虚幻,但是是静态的,它摆脱了由时间直觉所附加的束缚。 为了加深印象,现在我们必须用最简明最通俗的语言来描述一下“实数”:按戴德金的说法,一个实数是有理数的一个集合;按康托的说法,一个实数是有理数的一个(柯西)序列。数学史上还有别的实数定义,在那里实数又有另外一副面孔。 几乎在构建实数体系的同时,1874年康托还证明了无理数比有理数多得多、非代数数比代数数多得多!这也意味着,无形的、不是根式的无理数竟比直观的、根式的无理数多得多!数轴上代表有理数的点虽然是稠密的——任何两个有理数点之间恒有无数多有理数点,但是除有理数点外的“空隙”更多。“空隙”一旦填满,稠密概念发展成了连续的概念,数轴上点与实数完全对应,无理数问题画上了永远的句号。这里涉及关于集合中元素“个数”的比较问题,本文限于篇幅就此打住了。 实数体系的建立,使得诸如3√2表示什么得以明确,“高等数学”中命题“单调有界数列必收敛”、闭区间连续函数的性质得以证明。 然而从应用角度或对于非数学工作者(绝大多数人)而言,却是再次回到古希腊。无理数仍然是“小数”,人们并不真正关心它的“无尽”、“不循环”,事实上也无法弄清楚,只是按需要取作适当位数的近似值。例如说到圆周率π,为什么要关心它是循环的还是不循环的呢?“十位小数就足以使地球周界准确到一英寸以内,三十位小数便能使整个可见宇宙的四周准确到连最强大的显微镜都不能分辨的一个量”(丹齐克《数:科学的语言》苏仲湘译,上海教育出版社2000年,98页)。 至于数学家,在定义了无理数之后依然两手空空,数学家所知道的无理数确实少的可怜:知道得最多的只是各式各样的根式,这是古希腊人即已知道的;其次是π与e两个非代数数。那些比代数数多得多的无理数在哪儿?1900年数学家希尔伯特(Hilbert,1862-1943)提出著名的23个数学问题即包括了这一内容。以后的进展是,数学家证明若α是代数数(除0与1)、β是无理的代数数,则αβ是非代数数(1934年)。然而,若稍微追问一句“(π+e)是无理数还是有理数”?则至今都没有严密的答案。数学家心安理得的是建立了无懈可击的实数体系,在坚实的基础上,任何闲言碎语都是不足道的。无理数所体现的完美无缺、一丝不苟的纯粹理性与无孔不入、尽人皆知的世俗应用,可谓占尽天上人间风光,正是数学的魅力之所在。

凤歌小说《昆仑》中的元外之元

下载链接: 提取码:hupc

“你懂个屁,谁愿意抛妻弃子,来这个鸟地方,还不是为了求一条糊口的生路。”

“哪…咱们会不会遇上强盗呢?”

“你似乎很想遇上啊。”老者打量他。

文靖嘿嘿笑道:“真的遇上,说不准谁抢谁呢。”

“就凭你那几下三脚猫功夫。”老者冷笑:“迟早被人一顿拳脚打死。”

八岁的高斯发现了数学定理德国著名大科学家高斯(1777~1855)出生在一个贫穷的家庭。高斯在还不会讲话就自己学计算,在三岁时有一天晚上他看着父亲在算工钱时,还纠正父亲计算的错误。长大后他成为当代最杰出的天文学家、数学家。他在物理的电磁学方面有一些贡献,现在电磁学的一个单位就是用他的名字命名。数学家们则称呼他为“数学王子”。他八岁时进入乡村小学读书。教数学的老师是一个从城里来的人,觉得在一个穷乡僻壤教几个小猢狲读书,真是大材小用。而他又有些偏见:穷人的孩子天生都是笨蛋,教这些蠢笨的孩子念书不必认真,如果有机会还应该处罚他们,使自己在这枯燥的生活里添一些乐趣。这一天正是数学教师情绪低落的一天。同学们看到老师那抑郁的脸孔,心里畏缩起来,知道老师又会在今天捉这些学生处罚了。“你们今天替我算从1加2加3一直到100的和。谁算不出来就罚他不能回家吃午饭。”老师讲了这句话后就一言不发的拿起一本小说坐在椅子上看去了。教室里的小朋友们拿起石板开始计算:“1加2等于3,3加3等于6,6加4等于10……”一些小朋友加到一个数后就擦掉石板上的结果,再加下去,数越来越大,很不好算。有些孩子的小脸孔涨红了,有些手心、额上渗出了汗来。还不到半个小时,小高斯拿起了他的石板走上前去。“老师,答案是不是这样?”老师头也不抬,挥着那肥厚的手,说:“去,回去再算!错了。”他想不可能这么快就会有答案了。可是高斯却站着不动,把石板伸向老师面前:“老师!我想这个答案是对的。”数学老师本来想怒吼起来,可是一看石板上整整齐齐写了这样的数:5050,他惊奇起来,因为他自己曾经算过,得到的数也是5050,这个8岁的小鬼怎么这样快就得到了这个数值呢?高斯解释他发现的一个方法,这个方法就是古时希腊人和中国人用来计算级数1+2+3+…+n的方法。高斯的发现使老师觉得羞愧,觉得自己以前目空一切和轻视穷人家的孩子的观点是不对的。他以后也认真教起书来,并且还常从城里买些数学书自己进修并借给高斯看。在他的鼓励下,高斯以后便在数学上作了一些重要的研究了。小欧拉智改羊圈欧拉是数学史上著名的数学家,他在数论、几何学、天文数学、微积分等好几个数学的分支领域中都取得了出色的成就。不过,这个大数学家在孩提时代却一点也不讨老师的喜欢,他是一个被学校除了名的小学生。事情是因为星星而引起的。 当时,小欧拉在一个教会学校里读书。有一次,他向老师提问,天上有多少颗星星。老师是个神学的信徒,他不知道天上究竟有多少颗星,圣经上也没有回答过。其实,天上的星星数不清,是无限的。我们的肉眼可见的星星也有几千颗。这个老师不懂装懂,回答欧拉说:"天有有多少颗星星,这无关紧要,只要知道天上的星星是上帝镶嵌上去的就够了。"欧拉感到很奇怪:"天那么大,那么高,地上没有扶梯,上帝是怎么把星星一颗一颗镶嵌到一在幕上的呢?上帝亲自把它们一颗一颗地放在天幕,他为什么忘记了星星的数目呢?上帝会不会太粗心了呢?他向老师提出了心中的疑问,老师又一次被问住了,涨红了脸,不知如何回答才好。老师的心中顿时升起一股怒气,这不仅是因为一个才上学的孩子向老师问出了这样的问题,使老师下不了台,更主要的是,老师把上帝看得高于一切。小欧拉居然责怪上帝为什么没有记住星星的数目,言外之意是对万能的上帝提出了怀疑。在老师的心目中,这可是个严重的问题。在欧拉的年代,对上帝是绝对不能怀疑的,人们只能做思想的奴隶,绝对不允许自由思考。小欧拉没有与教会、与上帝"保持一致",老师就让他离开学校回家。但是,在小欧拉心中,上帝神圣的光环消失了。他想,上帝是个窝囊废,他怎么连天上的星星也记不住?他又想,上帝是个独裁者,连提出问题都成了罪。他又想,上帝也许是个别人编造出来的家伙,根本就不存在。回家后无事,他就帮助爸爸放羊,成了一个牧童。他一面放羊,一面读书。他读的书中,有不少数学书。爸爸的羊群渐渐增多了,达到了100只。原来的羊圈有点小了,爸爸决定建造一个新的羊圈。他用尺量出了一块长方形的土地,长40米,宽15米,他一算,面积正好是600平方米,平均每一头羊占地6平方米。正打算动工的时候,他发现他的材料只够围100米的篱笆,不够用。若要围成长40米,宽15米的羊圈,其周长将是110米(15+15+40+40=110)父亲感到很为难,若要按原计划建造,就要再添10米长的材料;要是缩小面积,每头羊的面积就会小于6平方米。小欧拉却向父亲说,不用缩小羊圈,也不用担心每头羊的领地会小于原来的计划。他有办法。父亲不相信小欧拉会有办法,听了没有理他。小欧拉急了,大声说,只有稍稍移动一下羊圈的桩子就行了。父亲听了直摇头,心想:"世界上哪有这样便宜的事情?"但是,小欧拉却坚持说,他一定能两全齐美。父亲终于同意让儿子试试看。小欧拉见父亲同意了,站起身来,跑到准备动工的羊圈旁。他以一个木桩为中心,将原来的40米边长截短,缩短到25米。父亲着急了,说:"那怎么成呢?那怎么成呢?这个羊圈太小了,太小了。"小欧拉也不回答,跑到另一条边上,将原来15米的边长延长,又增加了10米,变成了25米。经这样一改,原来计划中的羊圈变成了一个25米边长的正方形。然后,小欧拉很自信地对爸爸说:"现在,篱笆也够了,面积也够了。"父亲照着小欧拉设计的羊圈扎上了篱笆,100米长的篱笆真的够了,不多不少,全部用光。面积也足够了,而且还稍稍大了一些。父亲心里感到非常高兴。孩子比自己聪明,真会动脑筋,将来一定大有出息。父亲感到,让这么聪明的孩子放羊实在是及可惜了。后来,他想办法让小欧拉认识了一个大数学家伯努利。通过这位数学家的推荐,1720年,小欧拉成了巴塞尔大学的大学生。这一年,小欧拉13岁,是这所大学最年轻的大学生。报效祖国宏愿------ 华罗庚的故事同学们都知道,华罗庚是一位靠自学成才的世界一流的数学家。他仅有初中文凭,因一篇论文在《科学》杂志上发表,得到数学家熊庆来的赏识,从此华罗庚北上清华园,开始了他的数学生涯。1936年,经熊庆来教授推荐,华罗庚前往英国,留学剑桥。20世纪声名显赫的数学家哈代,早就听说华罗庚很有才气,他说:“你可以在两年之内获得博士学位。”可是华罗庚却说:“我不想获得博士学位,我只要求做一个访问者。”“我来剑桥是求学问的,不是为了学位。”两年中,他集中精力研究堆垒素数论,并就华林问题、他利问题、奇数哥德巴赫问题发表18篇论文,得出了著名的“华氏定理”,向全世界显示了中国数学家出众的智慧与能力。1946年,华罗庚应邀去美国讲学,并被伊利诺大学高薪聘为终身教授,他的家属也随同到美国定居,有洋房和汽车,生活十分优裕。当时,不少人认为华罗庚是不会回来了。新中国的诞生,牵动着热爱祖国的华罗庚的心。1950年,他毅然放弃在美国的优裕生活,回到了祖国,而且还给留美的中国学生写了一封公开信,动员大家回国参加社会主义建设。他在信中坦露出了一颗爱中华的赤子之心:“朋友们!梁园虽好,非久居之乡。归去来兮……为了国家民族,我们应当回去……”虽然数学没有国界,但数学家却有自己的祖国。华罗庚从海外归来,受到党和人民的热烈欢迎,他回到清华园,被委任为数学系主任,不久又被任命为中国科学院数学研究所所长。从此,开始了他数学研究真正的黄金时期。他不但连续做出了令世界瞩目的突出成绩,同时满腔热情地关心、培养了一大批数学人才。为摘取数学王冠上的明珠,为应用数学研究、试验和推广,他倾注了大量心血。据不完全统计,数十年间,华罗庚共发表了152篇重要的数学论文,出版了9部数学著作、11本数学科普著作。他还被选为科学院的国外院士和第三世界科学家的院士。从初中毕业到人民数学家,华罗庚走过了一条曲折而辉煌的人生道路,为祖国争得了极大的荣誉。阿基米德(约公元前287~212年)——希腊物理学家、数学家。阿基米德的父亲是一位天文学家和数学家,他从小受到良好的教育,特别喜爱数学。有一次,国王请他去测定金匠刚刚为其做好的王冠是纯金的还是掺有银子的混合物,并且告诫他不得毁坏王冠。起初,阿基米德茫然不知所措。直到有一天,当自己泡大一满盆洗澡水里时,溢出水量的体积等于他身体浸入水中的那部分体积。那么,如果把王冠浸入水中 ,根据水面上升的情况算出王冠的体积与等重量金子的体积相等,就说明王冠是纯金的;假如掺有银子的话,王冠的体积就会大一些。他兴奋地从浴盆中跃出,全身赤条条地奔向皇宫,大喊着:"我找到了!找到了!"他为此而发明了 浮力原理。除此之外,他还发现了著名的杠杆原理。伴随着这一发明,还产生了一句众所周知的名言:"只要给我一个支点,我就能撬动地球。"在阿基米德的老年岁月里,他的祖国与罗马发生战争,当他住的城市遭劫掠时,阿基米德还专心地研究他在沙地上画的几何图形,凶残的罗马士兵刺倒了这位75岁的老人,伟大的科学家扑倒在鲜血染红了的几何图形上……阿基米德死后,人们整理出版了《阿基米德遗著全集》,以永远缅怀这位科学巨匠的伟大业绩。牛顿(1642~1727)牛顿英国物理学家、数学家。曾任英国皇家学会会长。牛顿是举世公认的、有史以来最伟大的科学家之一。他的幼年充满了辛酸,在他出生前3个月父亲便去世了,之后母亲改嫁,他是由外祖母抚养成人的。23毕业于著名的剑桥大学后留校工作。后因逃避伦敦流行的鼠疫来到母亲的农场里。在这里,他被一个常人熟视无睹的现象吸引住了。有一次,他看到一个熟透了的苹果落在地上,便开始思索为什么苹果会垂直落在地上,而不是飞到天上去呢?一定是有一种力在拉它,那么这种将苹果往下拉的力会不会控制月球?他就是通过这个看起来十分简单的现象,发现了著名的万有引力定律。这个定律的巨大作用,很快就显示了出来。它解释了当时所知道的天体的一切运动。同时,牛顿又完成了一项重要的光学实验,从而证明了白光是由以赤、橙、黄、绿、青、蓝、紫的顺序排列的合成光。1687年,牛顿出版了有史以来最伟大的科学著作《自然哲学的数学原理》。在这里,他钻研了伽利略的理论,并归纳出著名的运动三大定律。除此之外,他发现的二项式定理,在数学界也有一席之地。1704年,出版《光学》一书,总结了他对光学研究的成果。牛顿61岁那年被选为英国皇家学会会长,此后年年连任直至逝世。作为举世公认的、最卓越的科学巨匠,他仍谦逊地说:“如果说我比别人看得远些,那是因为我站在了巨人的肩上。”1727年3月20日,84岁的牛顿逝世了。作为有功于国家的伟人,他被葬在了英国国家公墓,受到世人的瞻仰。欧拉(1707~1783)欧拉瑞士数学家,英国皇家学会会员。欧拉从小着迷数学,是一位不折不扣的数学天才。他13岁便成为著名的巴塞尔大学的学生,16岁获硕士学位,23岁就晋升为教授。1727年,他应邀去俄国圣彼得堡科学院工作。过度的劳累,致使他双目失明。但是,这并没有影响他的工作。欧拉具有惊人的记忆力。氢说,1771年圣彼德堡的一场大火,把他的大量藏书和手稿化为灰烬。他就凭着惊人的记忆,口授发表了论文400多篇、论著多部。欧拉这们18世纪数学巨星,在微积分、微分方程、几何、数论、变分学等领域都作出了巨大贡献,从而确定了他作为变分法的奠基人、复变函数先驱者的地位。同时,他还是一位出色的科普作家,他发表的科普读物,在长达90年内不断重印。欧拉是古往今来最多产的数学家,据说他留下的宝贵的文化遗产够当时的圣彼得堡所有的印刷机同时忙上几年。欧拉作为历史上对数学贡献最大的四位数学家之一(另外三位是阿基米德、牛顿、高斯),被誉为"数学界的莎士比亚"。高斯(1777~1855)高斯是德国数学家、物理学家和天文学家,英国皇家学会会员。高斯是一个农民的儿子,幼年时,他在数学方面就显示出了非凡的才华。3岁能纠正父亲计算中的错误;10岁便独立发现了算术级数的求和公式;11岁发现了二项式定理。少年高斯的聪颖早慧,得到了很有名望的布瑞克公爵的垂青与资助,使他得以不断深造。19岁的高斯在进大学不久,就发明了只用圆规和直尺作出正17边形的方法,解决了两千年来悬而未决的几何难题。1801年,他发表的<<算术研究>>,阐述了数论和高等代数的某些问题。他对超几何级数、复变函数、统计数学、椭圆函数论都有重大贡献。作为一个物理学家,他与威廉.韦伯合作研究电磁学,并发明了电极。为了进行实验,高斯还发明了双线磁力计,这是他对电磁学问题研究的一个很有实际意义的成果。高斯30岁时担任了德国著名高等学府天文台台长,并一直在天文台工作到逝世。他平生还喜欢文学和语言学,懂得十几门外语。他一生共发表323篇(种)著作,提出了404项科学创见,完成了4项重要发明。高斯去世后,人们在他出生的城市竖起了他的雕像。为了纪念他发现做出17边形的方法,雕像的底座修成17边形。世人公认他是一位和牛顿、阿基米德、欧拉齐名的数学家。祖冲之(429~500)中国南北朝时代南朝数学家、天文学家、物理学家。范阳遒(今河北涞水)人祖冲之(429-500)的祖父名叫祖昌,在宋朝做了一个管理朝廷建筑的长官。祖冲之长在这样的家庭里,从小就读了不少书,人家都称赞他是个博学的青年。他特别爱好研究数学,也喜欢研究天文历法,经常观测太阳和星球运行的情况,并且做了详细记录。宋孝武帝听到他的名气,派他到一个专门研究学术的官署“华林学省”工作。他对做官并没有兴趣,但是在那里,可以更加专心研究数学、天文了。我国历代都有研究天文的官,并且根据研究天文的结果来制定历法。到了宋朝的时候,历法已经有很大进步,但是祖冲之认为还不够精确。他根据他长期观察的结果,创制出一部新的历法,叫做“大明历”(“大明”是宋孝武帝的年号)。这种历法测定的每一回归年(也就是两年冬至点之间的时间)的天数,跟现代科学测定的相差只有五十秒;测定月亮环行一周的天数,跟现代科学测定的相差不到一秒,可见它的精确程度了。公元462年,祖冲之请求宋孝武帝颁布新历,孝武帝召集大臣商议。那时候,有一个皇帝宠幸的大臣戴法兴出来反对,认为祖冲之擅自改变古历,是离经叛道的行为。祖冲之当场用他研究的数据回驳了戴法兴。戴法兴依仗皇帝宠幸他,蛮横地说:“历法是古人制定的,后代的人不应该改动。”祖冲之一点也不害怕。他严肃地说:“你如果有事实根据,就只管拿出来辩论。不要拿空话吓唬人嘛。”宋孝武帝想帮助戴法兴,找了一些懂得历法的人跟祖冲之辩论,也一个个被祖冲之驳倒了。但是宋孝武帝还是不肯颁布新历。直到祖冲之死了十年之后,他创制的大明历才得到推行。尽管当时社会十分动乱不安,但是祖冲之还是孜孜不倦地研究科学。他更大的成就是在数学方面。他曾经对古代数学著作《九章算术》作了注释,又编写一本《缀术》。他的最杰出贡献是求得相当精确的圆周率。经过长期的艰苦研究,他计算出圆周率在3.1415926和3.1415927之间,成为世界上最早把圆周率数值推算到七位数字以上的科学家。祖冲之在科学发明上是个多面手,他造过一种指南车,随便车子怎样转弯,车上的铜人总是指着南方;他又造过“千里船”,在新亭江(在今南京市西南)上试航过,一天可以航行一百多里。他还利用水力转动石磨,舂米碾谷子,叫做“水碓磨”。祖冲之晚年的时候,掌握宋朝禁卫军的萧道成灭了宋朝。华罗庚(1910~1985)中国数学家、数学教育家,中国科学院院士,江苏金坛人。华罗庚的父亲是经营杂货店的小业主,由于经营惨淡,家境每况愈下,致使上中学不久的华罗庚辍学,当了杂货店的记账员。在繁琐、单调的劳作中,他并没有放弃最大的嗜好---数学研究。正在他发奋自学时,灾难从天而降---他染上了可怕的伤寒症,被医生判了“死刑”。然而,他竟然奇迹般地活了过来,但左腿却落下了终生残疾。他常挂在嘴边的是这样一句话:“所谓天才,就是靠坚持不断的努力。”这位没有大学文凭的数学家,凭着坚持不懈的努力,刻苦自学,于1930年,以《苏家驹之代数五次方程式不能成立的理由》的论文,而使中国数学界刮目相看。后被熊庆来教授推荐到清华大学数学系任助教 。在这里,他得益于熊庆来、杨武之的指导,学术上得以长足进步,并逐渐树立起他在世界数学界的地位。1948年应美国一所大学骋请任教。新中国成立后,他毅然放弃优越的工作和生活条件,携妻儿回国,担任清华大学数学系教授,后任中国科学院数学研究所所长。他十分重视和倡导把数学理论应用到生产实践中,并亲自组织和推广“优选法”、“统筹法”,使之在社会主义现代化建设中显示出了巨大的威力。他一生勤奋耕耘,共发表200余篇学术论文、10部专著。作为数学教育家,他培养出陈景润、王元、陆启铿等一批优秀的数学家,并形成了中国数学学派,有的人已成为世界级的数学家。1985年6月12日,华罗庚在日本讲学时,因突发心肌梗塞而去世,终年75岁。一生以“最大希望就是工作到生命的最后一刻”自勉的华罗庚,将永远活在人民的心中。陈景润(1933~1966)中国数学家、中国科学院院士。福建闽候人。陈景润出生在一个小职员的家庭,上有哥姐、下有弟妹,排行第三。因为家里孩子多,父亲收入微薄,家庭生活非常拮据。因此,陈景润一出生便似乎成为父母的累赘,一个自认为是不爱欢迎的人。上学后,由于瘦小体弱,常受人欺负。这种特殊的生活境况,把他塑造成了一个极为内向、不善言谈的人,加上对数学的痴恋,更使他养成了独来独往、独自闭门思考的习惯,因此竟被别人认为是一个 “怪人”。陈景润毕生后选择研究数学这条异常艰辛的人生道路,与沈元教授有关。在他那里,陈景润第一次知道了哥德巴赫猜想,也就是从那里,陈景润第一刻起,他就立志去摘取那颗数学皇冠上的明珠。1953年,他毕业于厦门大学,留校在图书馆工作,但始终没有忘记哥德巴赫猜想,他把数学论文寄给华罗庚教授,华罗庚阅后非常赏识他的才华,把他调到中国科学院数学研究所当实习研究员,从此便有幸在华罗庚的指导下,向哥德巴赫猜想进军。1966年5月,一颗耀眼的新星闪烁于全球数学界的上空------陈景润宣布证明了哥德巴赫猜想中的"1+2";1972年2月,他完成了对"1+2"证明的修改。令人难以置信的是,外国数学家在证明"1+3"时用了大型高速计算机,而陈景润却完全靠纸、笔和头颅。如果这令人费解的话,那么他单为简化"1+2"这一证明就用去的6麻袋稿纸,则足以说明问题了。1973年,他发表的著名的"陈氏定理",被誉为筛法的光辉顶点。对于陈景润的成就,一位著名的外国数学家曾敬佩和感慨地誉:他移动了群山!诺伊曼诺伊曼(1903~1957),美籍匈牙利数学家,美国科学院院士。诺伊曼出生在一个犹太银行家的家庭,是位罕见的神童。他8岁掌握微积分,12岁读懂《函数论》。在他成长的道路上,曾有这样一段有趣的故事:1913年夏天,银行家马克斯先生登出一则启示,愿以10倍于一般教师的聘金,为11岁的长子诺伊曼聘请一位家庭教师。尽管这诱人的启示,曾使许多人怦然心动,但终没有人敢去教导这样倾城皆知的神童……他在21岁获得物理-数学博士之后,开始了多学科的研究,先是数学、力学、物理学,又转到经济学、气象学,而后转向原子弹工程,最后,又致力于电子计算机的研究。这一切,使他成为不折不扣的科学全才。他的主要成就是数学研究。他在高等数学的许多分支中都作出了重要贡献,其最卓越的工作是开辟了数学的一个新分支------对策论。1944年出版了他的杰出著作《对策论与经济行为》。第二次世界大战期间,为第一颗原子弹的研制作出重要贡献。战后 ,运用他的数学才能指导制造大型电子计算机,被人们誉为电子计算机之父。

大小和多少是人类认识外界的一个基本需求,如土地大小,家畜多少等。这种基本需求从计数开始,各民族都发明了各自的计数方法,通过交流和比较,阿拉伯数字的十进制最简便(如果再考虑计算机的使用,8进制才是最方便的,不过已经无法更改了),在十进制的基础上,自然就会想出加减乘除的运算方法,大大方便计数。发现使用数的好处后,人们就把各种概念转化为大小和多少的描述,从而实现量化描述,先定义单位,然后用单位的数量描述大小,这样就可以用数量精确描述某个属性。随着数的使用越来越多,必然发现新种类的数,同时为了统一的计算法则,就不断地定义了这些新种类的数,这样整个数系就逐渐建立起来。下面分别简述:自然数:通过最简单的计数需求就能想到,无论是用手指对应,还是用石头对应,1,2,3..这种最基本的数都能自然发明出来,这种基本数也是人脑天生就有的功能。负数:引入负数的概念一是为了计算的统一和方便,二是负数也有实际的物理意义。举例说明:某公司1月份赚了100万,2月份亏了10万,那1,2月总共赚了多少?我们可以计数为: 1月份赚了+100万,二月份赚了-10万,两个月总共赚了 +100 + (-10) = +90 。这样财务做账就统一计数为赚多少钱,亏的就计为赚 –x,总共赚的都用加法。这就是使得计数和计算都统一起来。负数还有实际的物理意义。例如物体高度的计量,人们必须首先定义某参考物为0高度,上面的就为正的高度多少,下面的就为负的高度多少。再例如温度计数,人们首先把冰点定义为0度,那高于冰点就是正多少度,低的就是负多少度。这样才能把这些物理属性统一量化。整数:人们把自然数,零和负整数定义成整数,这个没什么特别意义,仅仅是定义。分数和小数:计数稍微进一步就会涉及到不是整数的问题,1头羊两个人分,2个苹果3个人分,测量土地不是整步数,这些问题就自然使人们发展出分数和小数的概念。分数是将一份或几份的物体平分成若干份,即两数相除,标记为 n/m。小数是把某数平分成10份,100份,1000份等,即1/10, 1/100, 1/1000,12/100,标记为0.1, 0.01,0.001,0.12,所以1/10 =0.1, 1/100 = 0.01。根据分数和小数的定义,自然就能推理出它们间的转化方法。有理数:希腊文或英文都是指比例数,能用整数和整数比表示的数即为有理数,整数相除,要么为有限小数,要么为循环小数(可理解为两个固定整数相除余数一定是有规律的,所以会循环)。是不是所有的自然界中的数量都能用有理数表示?似乎是可以的,因为任何无限接近的两有理数之间都可以找到个 (x + y)/2的有理数与两数更接近。但自然界中的量为什么一定可以用整数比表示呢?为什么一定用有限或无限循环数表示呢?这个没任何理由。恰好相反更多的数应该是无限不循环的数。无理数:通过勾股定理算三角形斜边长度时就发现现实中的有些量无法用有理数表示,这就引出了无理数。无理数是指无限不循环数,绝不是仅仅某数的平方根。只有极少部分无理数可以表示为某数的某次根,更多的无限不循环数是无法用根表示的。实数:有限数,无限循环数,无限不循环数一起构成实数,他们一个比一个更多,共同反应现实中的所有量,现实中所有量也都可以用实数表示。所以就取名为实数。它们,要么是整数,要么是比例数,要么是无限不循环数,没有其他可能,所以实数是连续的,这个结论可以用反证法证明。实数连续的属性决定了可微和可积,从而为微积分奠定了基础。数轴:为形象地表示实数,引入数轴概念,,规定一个原点为0,经过该点画直线,0的一方为正实数,另一方为负实数,取适当长度为单位长度,直线上每个点代表一个实数,所有实数也是直线上的某点,一一对应。实数的运算:加减乘除的法则,按实际的物理意义去理解,很容易想到,唯一有点绕弯的是两负数相乘,两个负数相乘为什么变成了正数呢?可以用具有物理意义的例子去理解,例如衰变物质,每年的的质量增加为负值,求解1万年前的质量增加了多少,就可以把1万年前也记为负值,这样就可统一为物质负1万年后,质量增加了多少,两个负值相乘即变成了正。交换律,分配率,结合律也要按现实中的物理意义去理解。指数,幂,根,对数等就是一些特定的数字运算,记住他们的定义和标注方法自然就知道怎么运算。虚数和复数:虚数的发明来源于解方程,没有实际物理意义,仅仅是为了计算统一和方便,有些方程运算过程中出现负数根的问题,但最终可以互相抵消或相乘而得出实数解,于是就引入了定义:-1的平分根i。 进而引入复数的概念 a + bi,实数是复数的子集,复数运算也使用实数的运算法则,运算结果也一定是 a + bi的形式。后来高斯又用直角坐标系来形象表示复数,而物理学中的矢量也可用坐标系表示,进而很容易发现矢量运算时用复数来表示矢量,然后按四则规则运算符合物理结果。从而确定了复数的价值。但在量子力学中,复数超出了工具的属性,似乎具有了物理意义,用复数定义,运算和描述量子现象,复数把量子力学变成了纯粹的数学世界,客观世界和心智世界在量子世界已经分不清楚区别。综合上面各种数的发明历史可以看出,数首先是人们针对现实事物抽象出的数量概念,接着十进制的发明大大简化计数和运算,然后是发明自然数,之后为了运算的统一又发明0,负数,实际的应用中进一步发现小数和无理数。虚数的定义是为了方程的求解发明出来的。这样整个数系就完整建立起来了。

数学史论文发表小说app

写论文需要一个好的软件来帮助你进行组织和撰写,下面列出几款比较常用的软件:

写论文可以使用以下软件:

写论文可以使用许多不同的软件,这些软件具有不同的优点和适用场景,以下是一些常用的论文写作软件:

以上是一些常见的论文写作软件,根据自己的需求选择适合自己的工具即可。

数学史选讲的新课标要求:通过生动、丰富的事例,了解数学发展过程中若干重要事件、重要人物与重要成果,初步了解数学产生与发展的过程,体会数学对人类文明发展的作用,提高学习数学的兴趣,加深对数学的理解,感受数学家的严谨态度和锲而不舍的探索精神。教师应鼓励学生对数学发展的历史轨迹、自己感兴趣的历史事件与人物,写自己的研究报告。为此,结合新课程内容,我简要总结了中国数学史的发展过程,主要分为以下七个阶段: 第一时期:中国数学的萌芽(远古~春秋) 古希腊学者毕达哥拉斯有这样一句名言:“凡物皆数”。在7000年以前,我们的祖先甚至连2以上的数字还数不上来,在逐步摸索中,先是结绳记数,然后又发展到“书契”,五六千年前就会写1~30的数字,到了2000多年前的春秋时代,祖先们不但能写3000以上的数学,还有了加法和乘法的意识。《周髀算经》是周代传下来有关测量的理论和方法,其中就有中国最早的勾股定理。 春秋时代,诸子百家中的墨家的思想《墨经》中的几何学与逻辑、无限分割思想,体现出理性思维。孔子修改过的古典书籍之一《周易》中含有组合学知识,坐标系思想,二进制思想,还出现了八卦,这神奇的八卦至今在中国和外国仍然是人们努力研究和对象,它在数学、天文、物理等多方面都发挥着不可低估和作用。 第二时期: 中国古代数学框架的形成(战国~秦汉) 到了战国时期,在算术、几何,甚至在现代应用数学的领域,都开始了耕耘播种。算术领域,四则运算在这一时期内得到了确立,乘法中诀已经在《管子》、《荀子》、《周逸书》等著作中零散出现,分数计算也开始被应用于种植土地、分配粮食等方面。几何领域,出现了勾股定理。代数领域,出现了负数概念的萌芽。 秦汉时期在算术方面乘除法算例明显增多,还出现了多步乘除法和趋于完整的九九乘法中诀。在几何方面,对于长方形面积的计算以及体积计算的知识也具备了。 《九章算术》集先秦到西汉数学知识之大成,确定了中国古代数学的框架、内容、形式、风格和思想方法的特点。全书有90余条抽象性算法、公使,246道例题及其解法,基本上采用算法统率应用题的形式,包括丰富的算术、代数和几何。从体系方面,归纳的,开放的,以计算为中心的算法体系,体现实用性,如“出南北门求邑方”。 第三时期:数学理论的奠基(魏晋~唐初) 在这一时期,数学教育的正规化和数学人才辈出,为数学理论奠定了基础。 赵爽,三国时代吴国人,全面注《周髀算经》,其中的“勾股圆方图注”是对勾股定理的最早证明。 刘徽,三国时代魏国人,是中国古代最伟大的数学家之一。他为《九章算术》做注,《九章算术注》集中了秦汉以来的创造发明,把中国古代数学提高到了一个新的水平,奠定了中国数学教育体系的坚实的基础.其中主要成果:(1)求得圆周率为157/50,(2)出入相补法,棋验法,齐同原理等;(3)数学概念的严格定义.例如幂,率,方程,正负数等;(4)割圆术,反映了数学的极限思想.(5)“重差”之法.他认为数学方法起源于空间形式和数量关系的统一,这正反映了中国古算的特色——几何与算术、代数的统一.他认为数学方法起源于空间形式和数量关系的统一,这正反映了中国古算的特色——几何与算术、代数的统一.祖冲之是我国南北朝时期杰出的数学家、天文学家。他从小就阅读了许多天文、数学方面的书籍,勤奋好学,刻苦实践。他在数学上的杰出成就是关于圆周率的计算。祖冲之还与他的儿子祖暅(也是我国著名的数学家)一起,用巧妙的方法解决了球体体积的计算.他们当时采用的一条原理是:"幂势既同,则积不容异."这一原理,在西文被称为卡瓦列利原理,但这是在祖氏以后一千多年才由卡氏发现的.为了纪念祖氏父子发现这一原理的重大贡献,大家也称这原理为"祖暅原理". 中国从隋建立起数学专科教育,开设算学馆.学习内容主要是算经十数;学制七年;三位一体(读书,考试,做官)的体制;学生来源整个大众,任何人可以报。 第四时期:中国传统数学的高潮(宋元时期) 数学内容在宋元达到高峰:数学教育家出现,专门研究数学教育制度。在日趋完善的数学教育制度下,涌现出了一代名垂青史的数学泰斗,如宋元五大数学家是:贾宪、秦九韶、杨辉、李冶、朱世杰。 贾宪,北宋数学家。他继承了《九章算术》以来的诸多方法,扬弃了他们的不足,在算法机械化方面做出了贡献。他构造贾宪三角的“增乘方求廉法”,把中国古代数学的程序化思想又提高到一个新的阶段。 秦九韶,南宋著名数学家。他在数学上的贡献主要有:1、一般高次方程的解法;2、建立一般线性方程组严整规范的算法;3、一次同余式组完整解法程序的建立;4、三斜求积公式(等价于海伦公式)。 杨辉,南宋末年著名的数学家和数学教育家。在教学过程中,他搜集、阅读了大量数学著作,先后完成数学著作15种21卷。为普及日常所用的数学知识,他专门写了《日用算法》一书,书中的题目全部取自社会生活,多为简单的商业问题,也有土地丈量、建筑和手工业问题。他还为初学者制定了《习算纲目》,主要数学教育思想有:由浅入深,循序渐进;重视解题能力的培养,强调精讲多练,举一反三;充分利用直观材料,抽象与具体相结合;理论结合实际,注重应用能力的培养;循循善诱,指导学生学法。他的现金的教育思想和数学方法对后世也有深刻的影响。 元代著名数学家李冶和朱世杰私人传授数学的教育实践。李冶以《益古演段》教材,从最简单的方程,不等式,算术一直到四元术;朱世杰著有《算学启蒙》和《四元玉鉴》传世。 第五时期:中国传统数学的衰落(明初~清中1840年) 满清统治者为了维护其部族的统治压抑民智,如同黑暗的欧洲中世纪一样,思想领域实行强控制,不光政治文化的书籍要禁,就连包括数学在内的科学技术也不放过。《几何原本》、《天工开物》大批明代的科技成果或毁或弃,只要和官方的程朱理学不统一的,都要禁止。满清统治不支持西方传教士向中国的学者介绍西方科学知识和数学知识,不鼓励中国学人参与中西文化交流。学习西方科技不是国策,也没有形成社会风气。中国数学日渐衰落。 第六时期:中西数学的合流(清中~清末1911年) 自明末西方数学开始大规模传入中国以来,直到20世纪初中国数学与西方数学合流,这300多年间中国数学的发展实际上就是中国数学由传统走向近代的过程。以三角学、天元术和垛积术为纲具体研究数学研究内容的西化过程,中国数学家对西方数学的“拒斥”与“吸纳”之间的微妙关系在改变。中国数学家在幂级数、尖锥术等方面已独立地得到了一些微积分成果,在不定分析和组合分析方面也获得了出色的成绩。然而,即使是这样,在世界的同行们之中,我国也仍然没达到领先的地位。 第七时期:现代数学的奠基与发展(公元1911年~公元1976年) 19世纪末20世纪初,中国数学界发生了很大的变化,派出大批留学生,创办新式学校,组织学术团体,有了专门的期刊,中国从此进入了现代数学研究阶段。从1847年,形成了一个出国留学的高潮。这样一批海外学子归来之后,在科研、教育、学术交流等方面都有了新转变。其中在数学方面做出突出成就的有:苏步青、陈建功、陈省身、周炜良、许宝、华罗庚、林家翘等人。 1949年,新中国成立之初,国家虽然正处于资金匮乏、百废待兴的困境,然而政府却对科学事业给予了极大关注。1949年11月成立了中国科学院,1952年7月数学研究所正式成立,接着,中国数学会及其创办的学报恢复并增创了其他数学专刊,一些科学家的专著也竞相出版,这一切都为数学研究铺平了道路。正当数学家们奋起直追,力图恢复中国数学在世界上的先进地位时,一场无情的风暴席卷了中国。在文化大革命的十年中,社会失控,人心混乱,科学衰落,在数学的园地里除了陈景润、华罗庚、张广厚等几个数学家挣扎着开了几朵花,几乎是满目凋零,一片空白。 中华民族历来就有自强不息的光荣传统和坚韧不拔的耐力。浩劫以后,随着郭沫若先生那篇文采横溢的《科学的春天》的发表,数学园地里又迎来了万物复苏的春天。1977年,在北京制订了新的数学发展规划,恢复数学学会工作,复刊、创刊学术杂志,加强数学教育,加强基础理论研究…

数学史论文发表小说文案

数学论文范文参考

数学论文范文参考,说到论文相信大家都不陌生,在生活中或多或少都有接触过一些论文,很多时候论文的撰写是不容易的,写一份论文要参考很多的文献,接下来我和大家分享数学论文范文参考。

论文题目: 学生自主学习能力培养提升小学数学课堂教学效果

摘要: 在新课程理念的指引下,小学数学课堂呈现充满教育契机的、富有挑战性的新气象,在注重小学生全面发展的能力培养下,对小学生自主学习能力、交流合作能力和创新思维能力的培养成为教育重点,这要求教师具有教学的智慧,对学生有深入的了解,在这样的教育氛围之下,才可以培养出学生的创意想象和创造性、探究性思维,在自主学习的过程中增强知识性的体验,创设出最佳的课堂效果。

关键词: 自主学习能力;创新思维;小学数学

在全新的教育理念下,教育视角由原来的“要我学习”转为了“学会学习”,教师在对小学生能力培养的过程中,注重小学生全面素质的培养,包括自主学习能力和创新思维能力,使小学数学的教学课堂展现出主动参与的学习过程,数学课堂在学生的主体行为下显露出智慧的光芒,这就需要教师在教学过程中要采用适合小学生的方式和策略,注重学生学习的过程,而不是学习的结果,发挥出小学生自主探索和自由发现的天性,促进学生健康全面的发展。

一、小学数学教学中的现状及反思

小学生由于其年龄特点和个性特征,呈现出对新异、生动的事物有强烈好奇的兴趣,而且大多数小学生都有强烈的求知欲、自尊心和好胜心。教师在教学过程中要根据小学生的年龄特点和个性,培养学生的自主学习能力,但是,目前小学数学教学尚存在些许不足,需要我们加以反思。

(一)情境教学中过多地引入情境,丧失了教学目标

一些数学教师在课堂引入时,过多地运用了情境,而分散了小学生的注意力。如:在课堂导入时,教师突发奇想,要用“喜羊羊与灰太狼”作为课堂导入情境,学生睁大眼睛,竖起耳朵,开展了斗智斗勇的想象,却忘记了教师是在上数学课。又如:在一年级《加减混合》的数学计算中,教师想用“春游”作为情境导入数学课堂,可是在运用情境时过多地介绍了风景,使学生沉溺于风景的想象中而偏离了数学课堂的传授目标,缺失了数学教学目的。

(二)成人化的想象对小学生缺乏新奇的吸引性

数学教师在进行教学课堂的情境创设时,用成人的眼光和视角去进行设想,忽视了童趣和纯真的眼睛,简单的情境创设平淡无奇,缺乏挑战性。例如:在小学数学教学中《7的乘法口诀》一课,教师用“一个星期有几天”来进行问题式的课堂导入,这对于学生而言缺乏新奇,对乘法口诀也缺乏记忆。

(三)课堂教学中“数学味”的弱化和缺失

在小学数学的教学课堂中,教师利用各种情境创设导入教学,却没有及时地将情境引入到数学知识的学习当中,弱化了数学学科所应有的“数学味”,使学生自主性学习的兴趣降低。如:在《统计》的数学知识教学中,教师通过分组教学的形式,让学生开展讨论和记录,可是学生们却停留在小组成员间体重的比较讨论等内容,而没有真正进入到数学统计知识的学习之中来。

二、自主学习的概念及其重要性

在小学数学的教学中,学生要通过能动的创造性活动,在教师的指导为前提下实现以学生为主体的良性发展。学生可以通过多种途径和手段,自主地有选择地学习,并创造性对所学的知识进行整合和内化,从而达到自主学习能力水平。小学生进行自主学习的重要性主要体现在以下几方面。

(一)提高数学知识吸收的质量

自主学习的方式是积极主动的方式,是小学生进行自主习惯的培养方式,它在激起求知欲望的前提下,转化为认知的内驱力,激发出学习的内在动机,并将之内化为学习习惯,真正提高数学知识吸收的主动性。

(二)为后续的数学知识学习奠定基础

小学阶段是数学知识学习的起始阶段,在这一关键阶段中,要培养学生的自主学习习惯,用他们自发的数学学习兴趣和自主发现的能力,掌握学习数学知识的策略,为后续数学更高层次的学习奠定基础。

(三)自主发现和自主学习能力的培养

小学生多数都有一双好奇的眼睛,他们对周围的世界很好奇,也拥有自主发现的能力,在这一过程中,对其自主发现的能力挖掘越多,那么,学生自主学习的能力就越强,自主学习的习惯就容易产生知识性的迁移。

三、自主性学习的小学数学课堂教学策略

小学数学的自主性学习课堂教学充分发挥了学生的主体性,以学生的自主探究和实践能力和创新思维能力为宗旨,在良好的教学氛围和自主参与的环境下,实现多种形式的自主性学习,在不同的活动中获取数学知识,掌握小学数学知识学习的一般规律和学习方法。

(一)数学课堂有效导入,激发学生的自主参与性

合适而有效的数学情境导入,是进行高效数学课堂的有效方法和途径,要在课堂导入的过程中创造良好的氛围,用宽松、愉悦、智慧的方式激发学生对数学知识的自主性学习过程,其具体方法如下。

1、以生活为教学情境进行数学知识的迁移。生活是无痕的,生活对学生的体验是最深刻的体验,而“生活中的数学”与“数学中的生活”又是紧密相联和息息相关的,学生在生活的体验中感知到数学的价值,可以在身临其境的体会中感受到数学的奥妙,数学情境的生活度越高,学生内在的生活体验越容易被激活,数学知识掌握的程度就越深。例如:在“人民币的认识”教学中,让学生们进行分组进行人民币的购买情境,把不同的物品贴上不同的价格标签,再由分组的学生进行不同面值的假人民币的购买情境,使学生在购买的过程中体会到数字的变换。[1]

2、 以游戏为教学情境激发学生的自主性参与意识。游戏环节是小学生最乐于参与和互动的环节,数学教学可以适当地引入游戏环节,使小学生增强对数学知识的学习兴趣,感受到数学探索的成功体验。如:在小学50以内的加法练习中,不是单纯让学生进行数字的相加,而可以采用“邮递员送信”游戏的形式,增添学生的学习自主性,教师可以事先准备好标有不同两位数的信箱,并准备不同加法练习题的信封,选择几名学生作“送信邮差”,将这些信封和信箱匹配,学生在争先恐后的选择中掌握了数学知识,它犹如一块无形的磁石,深深地吸引着小学生的数学知识的注意力,增强了趣味性和主动性。

3、以故事导入引导学生进行自主性的学习。小学生都酷爱故事,因此教学中可以利用故事增加数学的趣味性,引导学生用创意的思维想象,进行自主性的学习。例如:在一年级的数学“10以内的数字”的教学中,为了让学生建立起数字的相关概念的学习,可以引入故事进行形象的学习:在0~9的数字王国里,数字9发现自己是最大的,于是就很神气和骄傲,它对其他数字说:“你们都是小不点儿,都比我小,所以你们都要听我的。”其他的数字为了消灭它的嚣张气焰,商量好让数字1和0组成一个新的两位数,数字9看到后低下了头,意识到了自己的错误,于是,再也不狂妄自大了,和大家成为了好朋友。学生们在教师故事的讲述中,也展开了对数字的思维和想象,认识到了10以内数字的基数、序数意义,进行自主性的认知学习。[2]

作为工科类大学公共课的一种,高等数学在学生思维训练上的培养、训练数学思维等上发挥着重要的做用。进入新世纪后素质教育思想被人们越来越重视,如果还使用传统的教育教学方法,会让学生失去学习高等数学的积极性和兴趣。以现教育技术为基础的数学建模,在实际问题和理论之间架起沟通的桥梁。在实际教学的过程中,高数老师以课后实验着手,在高等数学教学中融入数学建模思想,使用数学建模解决实际问题。

一、高等数学教学的现状

( 一) 教学观念陈旧化

就当前高等数学的教育教学而言,高数老师对学生的计算能力、思考能力以及逻辑思维能力过于重视,一切以课本为基础开展教学活动。作为一门充满活力并让人感到新奇的学科,由于教育观念和思想的落后,课堂教学之中没有穿插应用实例,在工作的时候学生不知道怎样把问题解决,工作效率无法进一步提升,不仅如此,陈旧的教学理念和思想让学生渐渐的失去学习的兴趣和动力。

( 二) 教学方法传统化

教学方法的优秀与否在学生学习的过程中发挥着重要的作用,也直接影响着学生的学习成绩。一般高数老师在授课的时候都是以课本的顺次进行,也就意味着老师“由定义到定理”、“由习题到练习”,这种默守陈规的教学方式无法为学生营造活跃的学习氛围,让学生独自学习、思考的能力进一步下降。这就要求教师致力于和谐课堂氛围营造以及使用新颖的教育教学方法,让学生在课堂中主动参与学习。

二、建模在高等数学教学中的作用

对学生的想象力、观察力、发现、分析并解决问题的能力进行培养的过程中,数学建模发挥着重要的作用。最近几年,国内出现很多以数学建模为主体的赛事活动以及教研活动,其在学生学习兴趣的提升、激发学生主动学习的积极性上扮演着重要的角色,发挥着突出的作用,在高等数学教学中引入数学建模还能培养学生不畏困难的品质,培养踏实的工作精神,在协调学生学习的知识、实际应用能力等上有突出的作用。虽然国内高等院校大都开设了数学建模选修课或者培训班,但是由于课程的要求和学生的认知水平差异较大,所以课程无法普及为大众化的教育。如今,高等院校都在积极的寻找一种载体,对学生的整体素质进行培养,提升学生的创新精神以及创造力,让学生满足社会对复合型人才的需求,而最好的载体则是高等数学。

高等数学作为工科类学生的一门基础课,由于其必修课的性质,把数学建模引入高等数学课堂中具有较广的影响力。把数学建模思想渗入高等数学教学中,不仅能让数学知识的本来面貌得以还原,更让学生在日常中应用数学知识的能力得到很好的培养。数学建模要求学生在简化、抽象、翻译部分现实世界信息的过程中使用数学的语言以及工具,把内在的联系使用图形、表格等方式表现出来,以便于提升学生的表达能力。在实际的学习数学建模之后,需要检验现实的信息,确定最后的结果是否正确,通过这一过程中的锻炼,学生在分析问题的过程中可以主动地、客观的辩证的运用数学方法,最终得出解决问题的最好方法。因此,在高等数学教学中引入数学建模思想具有重要的意义。

三、将建模思想应用在高等数学教学中的具体措施

( 一) 在公式中使用建模思想

在高数教材中占有重要位置的是公式,也是要求学生必须掌握的内容之一。为了让教师的教学效果进一步提升,在课堂上老师不仅要让学生对计算的技巧进一步提升之余,还要和建模思想结合在一起,让解题难度更容易,还让课堂氛围更活跃。为了让学生对公式中使用建模思想理解的更透彻,老师还应该结合实例开展教学。

( 二) 讲解习题的时候使用数学模型的方式

课本例题使用建模思想进行解决,老师通过对例题的讲解,很好的讲述使用数学建模解决问题的方式,让学生清醒的认识在解决问题的过程中怎样使用数学建模。完成每章学习的内容之后,充分的利用时间为学生解疑答惑,以学生所学的专业情况和学生水平的高低选择合适的例题,完成建模、解决问题的全部过程,提升学生解决问题的效率。

( 三) 组织学生积极参加数学建模竞赛

一般而言,在竞赛中可以很好地锻炼学生竞争意识以及独立思考的能力。这就要求学校充分的利用资源并广泛的宣传,让学生积极的参加竞赛,在实践中锻炼学生的实际能力。在日常生活中使用数学建模解决问题,让学生独自思考,然后在竞争的过程中意识到自己的不足,今后也会努力学习,改正错误,提升自身的能力。

四、结束语

高等数学主要对学生从理论学习走向解决实际问题的能力进行培养,在高等数学中应用建模思想,促使学生对高数知识更充分的理解,学习的难度进一步降低,提升应用能力和探索能力。当前,在高等教学过程中引入建模思想还存在一定的不足,需要高校高等数学老师进行深入的研究和探索的同时也需要学生很好的配合,以便于今后的教学中进一步提升教学的质量。

参考文献:

〔1〕 谢凤艳,杨永艳. 高等数学教学中融入数学建模思想〔J〕. 齐齐哈尔师范高等专科学校学报,2014 ( 02) : 119 -120.

〔2〕 李薇. 在高等数学教学中融入数学建模思想的探索与实践〔J〕. 教育实践与改革,2012 ( 04) : 177 -178,189.

〔3〕 杨四香. 浅析高等数学教学中数学建模思想的渗透 〔J〕.长春教育学院学报,2014 ( 30) : 89,95.

〔4〕 刘合财. 在高等数学教学中融入数学建模思想 〔J〕. 贵阳学院学报,2013 ( 03) : 63 -65.

浅谈高中数学文化的传播途径

一、结合数学史,举办文化讲座

数学史教育对于了解数学这一门学科起着重要作用、数学史不仅仅是单纯的数学成就的编年记录,因为数学的发展绝不是一帆风顺的,在更多的情况下是充满犹豫、徘徊,要经历艰难曲折,甚至会面临危机;数学史也是数学家们克服困难和战胜危机的斗争记录,讲座中介绍重要的数学思想,优秀的数学成果,相关人事,使学生了解数学发展中每一步艰辛的历程,有助于培养学生坚忍不拔、不懈努力的意志和正直诚实的品质、比如,通过举办文化讲座向学生介绍“数学历史上三次危机”、“百牛定理”的来历、“哥德巴赫猜想与进展”、“数学悖论产生的原因及解决”、杨辉三角及中国古代数学成就、概率的发展、数学思想方法史等;向学生介绍一些数学大奖、数学界的名题,如数学界的“诺贝尔奖”———菲尔兹奖、沃尔夫奖、华罗庚数学奖、波利亚数学奖、高斯数学奖等,这种润物细无声的教育将激励学生个人的发展愿望、此外,介绍数学史上的重大事件,如无理数的产生引起的争论及代价、无穷小量是零非零的争论、康托尔集合论的论争等等,启发学生体会到,坚持学术争论有利于促进科学理论的完善与发展、

二、结合教学内容,穿插数学故事

数学故事引人入胜,能激起学生的某种情感、兴趣,激励学生积极向上、教师平时应注意收集与数学内容有关的数学故事,在讲到相关内容时,穿插到课堂教学中,通过向学生展现数学知识产生的背景、数学的思想方法、数学家追求真理的科学精神,让数学文化走进课堂,不失时机地通过数学家的故事来启迪学生、激励学生,对学生进行人文价值教育;在新课引入中,可以从概念、定理、公式的发展和完善过程,数学名人趣闻轶事,概念的起源,定理的发现,历史上数学进展中的曲折历程,以及提供一些历史的、现实的真实“问题”引入新课,一个精彩的引入不仅能够活跃课堂气氛,激发学生的学习情趣,降低数学学习的难度,还可以拓宽学生的视野,培养学生全方位的思维能力和思考弹性,使数学成为一门不再是枯燥呆板,而是生动有趣的学科、例如在讲欧拉公式时,介绍欧拉传奇的一生,欧拉解决该问题时的奇思妙想,特别是其双目失明后的贡献,用数学大师的人格魅力感染学生;讲解析几何时介绍“笛卡尔和费马”两位数学家在创立这门学科过程中的主要贡献,学生可以从中了解解析几何学产生的历史背景,数学家的成长经历,感受数学名人的执着信念,汲取宝贵的数学精神;在讲到相关内容时,介绍华罗庚、陈景润、苏步青、杨乐、陈省身、丘成桐等中国近现代数学家的奋斗历程和数学成就,让学生在感受数学家艰辛劳动的同时激发起民族自豪感、

三、结合生活实际,例解数学问题

作为工具学科的数学与日常生活息息相关,数学教师必须考虑数学与生活之间的联系,要把数学与现实生活联系在一起,将某个生活中的问题数学化,才能使数学知识的运用得到升华,帮助学生获得富有生命力的数学知识,引导学生用数学的眼光观察世界,进而使学生认识到学习数学的重要性和必要性、教学活动中可以引用贴近学生生活的事例,创设接近学生的认知水平和生活实际的数学问题情境,让学生认识到数学就在我们身边,在我们的生活中、例如,在讲等比数列求和公式时,可以列举其在贷款购房中的应用;从“条形码”、“指纹”等学生熟悉的`生活实例深入浅出地解释抽象的映射概念,同时引导学生寻找生活中的映射,钥匙对应锁、学号对应学生等;在讲概率时,列举其在彩票方面的应用等;在讲“指数函数”时让学生了解考古学家是怎样利用合金的比例来测量青铜器的年代;在讲“双曲线方程”时,可结合工业生产中的双曲线型冷却塔、北京市修建的双曲线型通道和法国标志性建筑埃菲尔铁塔,让学生体验双曲线方程的应用价值;另外,分期付款问题、数学成绩与近视眼镜片度数的关系、银行存款与购买保险哪个收益更高、住房按揭、股市走势图、价格分析表等与人们的生活密切相关的问题,通过对这些问题的解答,使学生感受到数学是有用的,它源于生活用于生活,学会用数学的眼光看待生活中的问题,用数学的头脑分析生活中的问题、

四、结合其他学科,共享文化精华

科技发展迎来了各学科间的相互渗透、交叉与融合,尤其在当代,数学的影响已经遍及人类活动的各个领域、数学教师要注重数学和其他学科的联系,在教学活动中,努力寻找数学与其他学科的结合点,实现数学领域向非数学领域的迁移,最大限度地达到文化共享、可以通过以人物为线索、以数学题材为线索、以史料书籍为线索、以数学符号为线索、以现实生活为线索等多种途径挖掘数学文化资源;可以将封闭的教材内容开放化,把封闭的概念、公式、法则等分解成若干“小板块”,设计一些开放性的问题让学生探索,将书本知识拓宽到书外,与其他文化知识融为一体、实践证明,当老师讲些“活数学”或者把数学与哲学、美学、经济以及其他文化艺术相联系时,学生就表现出极大的兴趣和热情、例如,讲“统计”时,可结合遗传学和法庭依据DNA、指纹印或性格分析等;讲解三角函数内容时,可以介绍三角学的起源与发展,说明对航海、历法推算以及天文观测等实践活动的作用;讲反证法时,向学生详细讲述伽利略是如何更正延续了1800多年的亚里士多德关于物体下落运动的错误断言;在理解仰角、俯角的概念时,可与“举头望明月,低头思故乡”联系;在理解直线与圆的位置关系时,可与“大漠孤烟直,长河落日圆”相联系;讲三视图的概念时,可与“横看成岭侧成峰,远近高低各不同、不识庐山真面目,只缘身在此山中”相联系;在理解随机事件、必然事件和不可能事件时,可与成语相联系(“守株待兔、滴水成冰、飞来横祸”是随机事件,“种瓜得瓜、种豆得豆、黑白分明、瓮中捉鳖”是必然事件,“水中捞月、海枯石烂、画饼充饥”是不可能事件),使学生体会到数学与其他学科的密切联系、

五、结合课外活动,小组合作探究

由于课堂时间有限而数学文化的内容包罗万象,单靠课堂时间进行数学文化教学是不足够的,课外活动也要凸显数学文化、要充分利用课外、校外的自然资源和社会资源,利用网络、报刊等各种渠道了解丰富的数学文化内容,以某种形式拓展到学生的课余生活中、可以通过举办数学文化知识竞赛,推荐与数学相关的有价值的作品,供学生课外阅读,拓宽他们的数学视野,再通过撰写读后感、数学作文并组织学生交流等多种形式,使数学文化的点点滴滴如春风化雨,滋润学生的心田、书籍类有美国数学家西奥妮帕帕斯写的《数学的奇妙》,陈诗谷、葛孟曾著的《数学大师启示录》,李心灿等著的《当代数学精英(菲尔兹奖得主及其建树与见解)》,张景中院士著的《数学家的眼光》《新概念几何》《漫话数学》《数学与哲学》等这些作品通俗易懂,都是传播数学文化,教学展现数学魅力的好书、还可以将学生分成小组,教师就某块内容或专题提供一些参考文献或选题,让学生利用课余时间从课外读物、因特网查找古今中外数学家的事迹,了解他们的成才过程、对数学的贡献及他们严谨治学、勇攀科学高峰的事迹,然后将收集到的故事编印后分发给学生交流,体会数学文化、例如就“多面体欧拉公式的发现”这一专题,由“直观———验证———猜想———证明———应用”层层推进,步步深入,追随着大数学家欧拉的足迹进行探索研究,不仅能掌握关于多面体的欧拉公式的来龙去脉,了解欧拉传奇的一生,还可以体会发现的艰辛,学习治学的态度,掌握研究的方法,提升学生的人文素质、这样,学生在小组合作中增长了数学文化知识,体验合作探究的乐趣,让数学充满智慧与生命、

六、结合教学评价,纳入数学考试

虽然高中数学教材已经进一步改进,更大程度上体现数学文化内容,实验教材在每一章节或模块的始尾都有数学文化方面的介绍,但还都是阅读材料,教师认为学生能看明白,而学生认为考试不考,在教学中,往往是“考什么,教什么,学什么”,师生对此部分内容都未给予足够重视、平时注重的是对掌握知识、技能方面的情况进行考核和评价,呈现重数学知识,轻文化素养;重显性知识,轻隐性知识;重结果,轻过程等弊端、要让师生切实地感受到数学文化的重要性,应该以评价的方式促进高中数学文化的教学,可以把数学文化的相关内容根植于高考的试题之中,常规的考试中适当涉及常识性的数学文化内容、这样,高中教师在教学的同时就会自觉地将数学文化的内容尽可能与高中各模块的内容相结合,逐步地、系统地进行数学文化的传授、高中数学课程标准要求我们不仅要注重对学生数学知识的传递,还要重视数学文化内涵的传播,要树立数学文化观:充分发挥数学教育的两个功能即科学技术教育功能和文化教育功能、与数学知识和技能的教学不同,数学文化在数学教学中的体现形式应更为多样化和灵活化,这关键在于教师、首先,教师要提高自身的数学文化素养;其次,挖掘数学的文化内涵,努力营造数学文化氛围;再次,提升数学文化品位,在整合资源和优化课堂与活动方面下功夫、教师要善于在各个教学环节中合适而巧妙地渗透和传播数学文化,让数学文化走进课堂,努力使学生在学习数学过程中真正受到文化熏陶,让学生不但是一个科学人,还是一个文化人,形成和发展数学品质,全面提高学生的数学素养。

数学史是研究数学科学发生发展及其规律的科学,简单地说就是研究数学的历史。下文是我为大家整理的关于大学数学史论文的范文,欢迎大家阅读参考!

数学史的教育功能

摘要数学史作为数学学科中的一部分,它不仅揭示了数学知识发展的来源,也揭示了数学学科对于人们发展科学文化知识的巨大作用。数学史的教学已经成为了目前学校教育工作中的一部分,利用数学史的教学可以引导学生们提高对数学学科学习的兴趣,培养创新思维,从了解数学史的根源开始,主动发现数学学科中的奥秘。针对这一系列问题,本文从四大方面分析了数学史对于数学教育工作中的功能体现,从而引起数学教育工作者的高度重视。

关键词数学史教育功能创新思维功能体现

1 数学史的教育功能之一 ——提高学生们学习数学的兴趣

兴趣是最好的老师,有了兴趣学生才会对数学冰冷的美丽产生出火热的激情。然而,为了提高学生们学习数学的兴趣,不仅仅是鼓励和题海战术这么简单,我们应该采取引导与教育相结合的方式,青少年时期正是疑问多、想法多的阶段,我们应该抓住学生们的这一特点,从解除疑问的角度来引导学生们接受和爱好数学的学习。让学生们在了解数学史的基础上,深刻记忆数学定义、定理的模型与应用。

例如:数学老师在课堂上讲授无理数的概念时,若只是将无理数的概念硬性地传授给学生,学生们似乎已经记住了无理数的特征,也能够正确判断哪些数是无理数,哪些数不是无理数,然而,这只是课堂中的短暂记忆,无法给学生们留下深刻的印象,无法在学生们的脑子里留下长久的烙印。因此,我们可以从介绍无理数的历史发展入手,将生动的无理数来源的历史背景讲授给学生们,引起学生们学习无理数的兴趣,加深对这一知识点的记忆。

2 数学史的教育功能之二——培养学生们的数学应用意识

数学的主要功能是应用科学,数学是一种工具,是所有学科中最具前瞻性和科学性的自然科学,从数学知识的本身来看是十分枯燥乏味的,表面来看,学生们在课堂中所接受的是已经由大量科学家所发现和证明了的科学结晶,这些结果的产生是具有强大科学依据的,每一个结晶诞生的背后都有一个久远的历史故事,它不仅验证了科学的可靠性,同时也说明了世界奥秘的可知性。二十一世纪的青少年是与新时代接轨的一代,在学习的过程中只是了解学科的表面是不够的,我们要从数学史的教育抓起,深入探讨数学学科的伟大,从根本上培养学生们的数学应用意识,加大学习数学知识的深度与广度。

例如:我国古代名著 《孙子算经》上有这样一道题:今有鸡兔同笼,从上面看有三十五头,从下面看有九十四足,问笼子里鸡有几只?兔有几只?这道题对学生来说是十分有趣的,既让他们掌握了方程的基本思想,又让他们感觉到学习的新知识的价值所在;

又例如:在《九章算术》中记载了一道有趣的数学题:有一个边长为一丈的正方形水池,在池中央长着一根芦苇,芦苇露出水面1尺,若将芦苇拉到池边中点处,芦苇的顶端恰好到达水面。问水有多深?芦苇有多长?这是一道作为《探索勾股定理》的习题,通过练习,同学们可以在熟练应用勾股定理的同时,体会到勾股定理在实际问题中的应用。

再例如:公元三世纪我国数学家赵爽证明了勾股定理的弦图。老师在课堂上对于这种验证方法的介绍,可以通过数学知识重组再创造,分析当年数学家赵爽的探索过程,使其证明思路逐渐展现在如今的课堂中,帮助学生们理解与掌握勾股定理的内容与应用。

从以上例子中可以看出,数学史的诸多命题历史悠久,具有说服力和兴趣性,我们在利用数学史知识讲授数学课程的时候,既能够为学生们介绍大量的数学历史故事,让学生们深入了解数学中各种定理、模型的来源,加深对其的记忆,又能够扩大学生们的知识面,让学生们了解到数学(下转第189页)(上接第139页)学科的科学性和前瞻性,从认识历史、认识科学家、认识世界的角度学习科学文化知识是现如今加强学生们素质教育的关键。

3 数学史的教育功能之三——提高学生们的数学素养

对于任何一门学科的学习,都应该拥有这门学科的学习精神,数学是一门体现人类文明发展史的学科,它融汇了人类智慧的结晶,在历史悠久的中国,有着成千上万的科学家前仆后继,为数学学科的发展作出了卓越的贡献。数学史作为数学学科中的一部分,是如今提高学生们的素质、普及数学科学知识、增强个人科学素养的关键学科。老师应该在传授数学知识的同时,将数学的发展、科学家的成就、每一项成果的来之不易一并传授给学生们,让学生们认识到数学知识的可贵、数学知识的力量、数学知识的魅力。例如:在浙教版《义务教育课程标准实验教科书-数学》的六册书的阅读材料中,介绍了法国的笛卡尔、费马;中国的杨辉;德国的卢道夫等不少历史上的数学家及其重要成果。提高了学生们的学习兴趣,扩大了学生们的知识面,从实际案例中启发学生们学习科学文化知识的重要性。从而提高了学生们的数学素养。

4 数学史的教育功能之四——培养学生们对世界观的正确认知

从数学悠久的历史来看,中国从古至今涌现出了一批优秀的数学家,刘徽、祖冲之、祖咂、杨辉、秦九韶、李冶、朱世杰等,他们的数学成就流传至今,为中国的科学事业奠定了坚实的基础,为后代人对认识世界、改造世界的观念提供了强有力的科学依据。数学是一门自然科学,是上千万科学家智慧的结晶,是科学的真理体现,是对大千世界正确的认识,它是客观存在的科学,是唯物主义的认证。因此,作为数学教育工作者,有责任、有义务在传授知识的同时,培养学生们正确的世界观、人生观、价值观,相信科学,杜绝唯心主义,摆脱迷信思想,利用数学史的介绍勉励学生们对科学文化知识的正确认知,对世界观的正确理解。

总之,数学史在数学教学中的渗透,从提高学生们学习数学的兴趣,培养学生们的数学应用意识,提高学生们的数学素养,培养学生们对世界观的正确认知这四个方面来看是十分重要的。将数学的抽象运算方法融入到数学史的介绍当中,开阔学生们的思路,增强学生们科学知识结构的形成,是目前提高青少年素质教育的关键。我们要加大力度完善数学教学的模式,增加数学史教学的课程安排,有效实施文化教育与素质教育的适当结合,从而提高数学教学的整体质量。

参考文献

[1]范良火.义务教育课程标准实验教科书.数学(七年级上册~九年级下册)浙江教育出版社,2005.

[2]全日制义务教育数学课程标准解读(实验稿).北京师范大学出版社,2008.

[3]李正银.数学史与数学教育[J].海南师范学院学报,2003.16(3):98-10.

[4]王鹏飞.尝试错误数学教法[J].中学数学参考,1998(7).

[5]高慧明.在暴露思维过程中培养探究能力[J].数学教学通讯,2004(7).

[6]叶莉.浅谈小学数学课堂教学总结的价值和方法.理工,2012(3).

数学史在大学数学教学中的意义与价值

摘 要: 如今,越来越多的教育工作者对数学史教育在数学教学中的多方面作用给予了充分认可。本文结合大学数学教学的特点,着重探讨了数学史在大学数学教学中的意义与价值。

关键词: 数学史 高等数学 教学改革

1.数学史

数学史是研究数学概念、数学方法和数学思想的起源与发展,以及其与社会政治、经济和一般文化的联系的一门科学,蕴涵了丰富的数学思想的历史。它不仅追溯数学内容、思想和方法的演变、发展过程,而且探索影响这种过程的各种因素,以及历史上数学科学的发展对人类文明所带来的影响。数学的发展绝不是一帆风顺的,数学的发展在不同的历史阶段,受到政治、宗教等各种社会因素的干扰。历史上无理量的发现,微积分和非欧几何的创立,乃至费马大定理的证明,等等,无一不是数学家们经历了曲折艰难最终探索出来的。因此,数学史研究对象不仅包括具体的数学内容,而且涉及历史学、哲学、文化学、宗教等社会科学与人文科学内容,是一门交叉性学科。

2.数学史在大学数学教学中的意义与价值

我国的数学教学一直注重形式化的演绎数学思维的训练,而忽视了培养学生对数学作为一门科学的思想体系、文化内涵和美学价值的认识。但由于受传统教学课时和内容上的安排的影响,大学数学的教学往往存在课时少,内容多的矛盾。广大教师为了完成教学任务,达到“会考试”的效果,往往在课堂上只注重数学知识的传授,而忽视了数学的思想性和趣味性。目前数学史的教育价值也早已被一些学者所认识。2005年在中国召开了“第一届数学史与数学教育会议”,由此看出,充分发掘数学史在数学教学中的作用越来越受到重视。要发展数学史教育首先要提高人们对数学史教育重要性的认识,虽然目前学术界对数学史教育在数学教学的功效引起一定的重视,但这并不够。数学并不是一些枯燥定理的堆砌,而是人类文明、人类文化高度发展的结晶。

数学家庞加莱说:“若欲预见数学的将来,正确的方法是研究它的历史和现状。”数学史是人类文明给后人留下的路标,具有独特的教育功能。数学史的学习在大学数学教学中的意义与价值主要体现在以下几个方面。

(1)数学史是数学文化的最佳载体

传统的数学教学一般只涉及数学的两个层面:数学的概念、命题,数学的思想和方法。现如今,数学作为一种文化现象,早已是常识,那么,我们就应该用较为宽泛的眼光来看数学或数学文化。数学作为人类创造的文化之一,它并不是超文化的。数学课程应适当反映数学的历史、应用和发展趋势。数学文化除了数学知识本身,还包括数学对推动社会发展的作用,数学的社会需求,社会发展对数学发展的推动作用,数学科学的思想体系,数学的美学价值,数学家的创新精神,等等。数学史正是数学文化教育的最佳载体。

(2)数学史是激发兴趣的有效途径

几乎所有学科都强调激发学生学习兴趣的重要性,而数学学科尤为突出,在著名数学家成才规律的探索中,中外学者不约而同地将“对数学浓厚的兴趣”列为第一位要素。在教学过程中,要善于激发学生对数学学科的兴趣,正如爱因斯坦所言:“兴趣是最好的老师。”大学阶段的学生无论是逻辑思维能力还是自控能力都已经基本发展成熟,且大学阶段的数学知识内容已经非常注重体系的严密性和完整性,学习方式也从中学时期的“要我学”变成“我要学”,学习兴趣显得尤为重要。

纵观数学发展史,许多数学名家并非一开始就是从事数学研究的,很多人是因偶然的机会而对数学产生了兴趣,才走上了专业化发展道路。解析几何的创始人笛卡尔,从小游手好闲,偶遇一次街头数学问题悬赏解答,强烈的兴趣使他对数学入了迷,那年他已经近二十岁了。

数学史上的许多经典问题,仍然吸引了一代又一代数学学习者投入其中,如欧拉研究过的七桥问题,我国的七巧板游戏等,都是激发学生学习兴趣的良好素材,在教学中要有意识地发掘其教育价值。

(3)数学史是理解数学的必由之路

数学课程通常给出的是一个系统的逻辑论述,好像从这一结论到那一个定理是很自然的事情,其实历史的发展并非一帆风顺,通过数学史的学习可以使同学们认识到,一个学科的发展是从点滴积累开始的,有的甚至需要几百年时间。比如我们熟悉的四色原理从产生到最终解决花了三百多年,在解决问题过程中,衍生出了众多应用数学的分支,从不同侧面影响着社会生活。

从数学史看,数学成果的流传主要是数学思想方法的流传,所以我们在学习知识的过程中,只有了解数学研究的历史背景,分析前人的方法,才能透过现象看本质,得到有益的启示,激发出思想的火花,并真正学会“像数学家那样思考”。

(4)数学史是思想教育的良好素材

数学史在课本中的反映是经过提炼的,自然淡化了发展中艰苦漫长的历程。通过数学史的学习,同学们会获得学习的勇气,不会因为学习中的挫折而沮丧。中外数学家刻苦钻研,严谨创新和为了科学事业而勇于献身的例子比比皆是,在解决数学史上的三大危机时,许多数学家甚至为此付出了生命,这些都是极好的思想教育的材料。

欧拉终身为数学奋斗,所有的领域都留下欧拉研究的痕迹,长期的劳累使他双目失明,在此以后的17年,仍忘我地献身于数学研究。牛顿出身于农民家庭,1661年考入剑桥大学。1665年,伦敦地区流行鼠疫,剑桥大学暂时关闭。牛顿回到了家乡,在乡村幽居了两年,终日思考各种问题、探索大自然的奥秘。他平生的三大发明――微积分、万有引力、光谱分析都萌发于此。后来牛顿在追忆这段峥嵘的青春岁月时,深有感触地说:“我的成功当归功于精力的探索。”“没有大胆的猜想就做不出伟大的发现。”学生听了数学家的事迹,必然会备受鼓舞,从而认识到只有经过自己奋斗,才能取得成就。通过这些数学史实和事例能够帮助学生树立超越世界数学先进水平的胆识,培养学生的科学态度和优良品质。

3.结语

数学史是人类的认识史、发明史和创造史,其中蕴涵着可供后人借鉴的巨大思想财富,广大教育工作者已经认识到它的重要作用。数学史可以将逻辑推理还原为合情推理,将逻辑演绎追溯到归纳演绎,通过挖掘历史上数学家解决问题的真谛学生不仅可以学到具体的现成的数学知识,而且可以学到“科学的方法”,更深刻地领略数学文化。在大学数学教学中融入数学史对强化课堂效果是一种很行之有效的做法,会起到良好的作用。最后引用19世纪英国数学家格莱舍的一句话作为结语:“任何企图将一种科目和它的历史割裂开来,我确信,没有哪一种科目比数学的损失更大。”

参考文献

[1]靳玉乐.现代教育学[M].四川教育出版社,2006.

[2]张奠宙,李士,李俊.数学教育学导论[M].高等教育出版社,2003.

[3]杨泰良.以史为鉴 注重反思[J].数学通报.2004.2.

[4]J.N.Kapur.数学家谈数学本质[M].北京大学出版社,1989.

[5]李心灿.微积分的创立者及其先驱[M].高等教育出版社,2002.

论文参考题目

1、非10进制记数的利和弊。

2、数的概念的发展与人类认识能力提高的关系。

3、比较古代埃及人和古代巴比伦人解方程的方法,探讨他们各自对后来的数学发展的启迪作用。

4、为什么毕达哥拉斯学派关于不可公度量的发现会在数学中产生危机?

5、欧几里得《原本》中的代数。

6、欧几里德《几何原本》与公理化思想;

7、在几何学中有没有“王者之路”。

8、无所不在的斐波那契数列。

9、文艺复兴时期数学发展的重要因素。

10、达•芬奇与数学。

11、十进制小数的历史。

12、圆周率的历史作用。

13、“圆”中的数学文化。

14、明代中国商业算术处于突出地位的原因。

15、近代中国数学落后的原因。

16、芝诺悖论与微积分的关系。

17、未解决的问题在数学中的重要性。

17、黄金分割引出的数学问题。

18、试论数学悖论对数学发展的影响。

19、第一次数学危机及其克服。

20、第二次数学危机及其克服。

21、第三次数学危机及其克服。

22、数学对当代社会文化的影响。

23、试论数学的发展对人类社会的进步的推动作用。

24、从历史观看数学。

25、数学符号的价值。

26、谈对数学本质的认识。

27、试论数学科学的价值。

28、函数概念的发展。

29、空间概念的发展。

30、曲线概念的发展。

31、数学对天文学的推动。

32、数学中无穷思想的发展。

33、数学中的美。

34、音乐中的数学。

35、艺术中的数学。

36、浅谈数学语言的特点。

37、论数学的抽象性。

38、关于数学的严谨性。

39、关于数学的真理性。

40、数学家的不幸。

41、数学家的幸运。

42、从数学史中扩展的数学知识。

43、从程大位的《算法统宗》“首篇”河图、洛书等看《易经》与珠算之联44、梵语的盛行——十进制的发明之谜 45、中国古代数学发展缓慢的启示

46、从矩阵的萌芽论中国传统数学的文化底蕴

47、《九章算术》刘徽注中的算法分析工作与算法分析思想

48、《费马大定理》读后感 49、黎曼猜想浅谈

50、再论《巧排九方》——一个传统的数字推理趣题之详解及其推广

51.、数学史上的三次危机

52、笛卡儿解析几何思想的文化内涵 53、理性数学的哲学起源

54、中国数学教育史研究进展

希望对你有帮助。

数学的发展史世界数学发展史 数学,起源于人类早期的生产活动,为中国古代六艺之一,亦被古希腊学者视为哲学之起点。数学的希腊语Μαθηματικ? mathematikós)意思是“学问的基础”,源于ματθημα(máthema)(“科学,知识,学问”)。 数学的演进大约可以看成是抽象化的持续发展,或是题材的延展。第一个被抽象化的概念大概是数字,其对两个苹果及两个橘子之间有某样相同事物的认知是人类思想的一大突破。 除了认知到如何去数实际物质的数量,史前的人类亦了解如何去数抽象物质的数量,如时间-日、季节和年。算术(加减乘除)也自然而然地产生了。古代的石碑亦证实了当时已有几何的知识。 更进一步则需要写作或其他可记录数字的系统,如符木或于印加帝国内用来储存数据的奇普。历史上曾有过许多且分歧的记数系统。 从历史时代的一开始,数学内的主要原理是为了做税务和贸易等相关多计算,为了了解数字间的关系,为了测量土地,以及为了预测天文事件而形成的。这些需要可以简单地被概括为数学对数量、结构、空间及时间方面的研究。 到了16世纪,算术、初等代数、以及三角学等初等数学已大体完备。17世纪变量概念的产生使人们开始研究变化中的量与量的互相关系和图形间的互相变换。在研究经典力学的过程中,微积分的方法被发明。随着自然科学和技术的进一步发展,为研究数学基础而产生的集合论和数理逻辑等也开始慢慢发展。 数学从古至今便一直不断地延展,且与科学有丰富的相互作用,并使两者都得到好处。数学在历史上有着许多的发现,并且直至今日都还不断地发现中。依据Mikhail B. Sevryuk于美国数学会通报2006年1月的期刊中所说,“存在于数学评论数据库中论文和书籍的数量自1940年(数学评论的创刊年份)现已超过了一百九十万份,而且每年还增加超过七万五千份的细目。此一学海的绝大部分为新的数学定理及其证明。”就这些了!O(∩_∩)O~

数学史论文发表小说图片

还有更全的:卡尔·弗里德里希·高斯(Johann Carl Friedrich Gauss),德国数学家、物理学家和天文学家。 高斯学习非常勤奋,11岁时发现了二项式定理,17岁时发明了二次互反律,18岁时发明了用圆规和直尺作正17边形的方法,解决了两千多年来悬而未决的难题。21岁大学毕业,22岁时获博士学位。1804年被选为英国皇家学会会员。从1807年到1855年逝世,一直担任格丁根大学教授兼格丁根天文台台长。他还是法国科学院和其他许多科学院的院士,被誉为历史上最伟大的数学家之一。他善于把数学成果有效地应用于天文学、物理学等科学领域,又是著名的天文学家和物理学家,是与阿基米德、牛顿等同享盛名的科学家。 高斯出生于德国布伦兹维克的一个贫苦家庭。父亲格尔恰尔德•迪德里赫先后当过护堤工、泥瓦匠和园丁,第一个妻子和他生活了10多年后因病去世,没有为他留下孩子。迪德里赫后来娶了罗捷雅,第二年他们的孩子高斯出生了,这是他们唯一的孩子。父亲对高斯要求极为严厉,甚至有些过分,常常喜欢凭自己的经验为年幼的高斯规划人生。高斯尊重他的父亲,并且秉承了其父诚实、谨慎的性格。1806年迪德里赫逝世,此时高斯已经做出了许多划时代的成就。 在成长过程中,幼年的高斯主要是力于母亲和舅舅。高斯的外祖父是一位石匠,30岁那年死于肺结核,留下了两个孩子:高斯的母亲罗捷雅、舅舅弗利德里希。弗利德里希富有智慧,为人热情而又聪明能干投身于纺织贸易颇有成就。他发现姐姐的儿子聪明伶利,因此他就把一部分精力花在这位小天才身上,用生动活泼的方式开发高斯的智力。若干年后,已成年并成就显赫的高斯回想起舅舅为他所做的一切,深感对他成才之重要,他想到舅舅多产的思想,不无伤感地说,舅舅去世使“我们失去了一位天才”。正是由于弗利德里希慧眼识英才,经常劝导姐夫让孩子向学者方面发展,才使得高斯没有成为园丁或者泥瓦匠。 在数学史上,很少有人象高斯一样很幸运地有一位鼎力支持他成才的母亲。罗捷雅直到34岁才出嫁,生下高斯时已有35岁了。她性格坚强、聪明贤慧、富有幽默感。高斯一生下来,就对一切现象和事物十分好奇,而且决心弄个水落石出,这已经超出了一个孩子能被许可的范围。当丈夫为此训斥孩子时,她总是支持高斯,坚决反对顽固的丈夫想把儿子变得跟他一样无知。 罗捷雅真诚地希望儿子能干出一番伟大的事业,对高斯的才华极为珍视。然而,她也不敢轻易地让儿子投入当时尚不能养家糊口的数学研究中。在高斯19岁那年,尽管他已做出了许多伟大的数学成就,但她仍向数学界的朋友W.波尔约问道:高斯将来会有出息吗?W.波尔约说她的儿子将是“欧洲最伟大的数学家”,为此她激动得热泪盈眶。 7岁那年,高斯第一次上学了。头两年没有什么特殊的事情。1787年高斯10岁,他进入了学习数学的班次,这是一个首次创办的班,孩子们在这之前都没有听说过算术这么一门课程。数学教师是布特纳,他对高斯的成长也起了一定作用。 在全世界广为流传的一则故事说,高斯最出名的故事就是他十岁时,小学老师出了一道算术难题:“计算1+2+3…+100=?” 。这可难为初学算术的学生,但是高斯却在几秒后将答案解了出来,他利用算术级数(等差级数)的对称性,然后就像求得一般算术级数和的过程一样,把数目一对对的凑在一起:1+100,2+ 99,3+98,……49+52,50+51 而这样的组合有50组,所以答案很快的就可以求出是: 101×50=5050。不过,这很可能是一个不真实的传说。据对高斯素有研究的著名数学史家E•T•贝尔(E.T.Bell)考证,布特纳当时给孩子们出的是一道更难的加法题:81297+81495+81693+…+100899。 当然,这也是一个等差数列的求和问题。当布特纳刚一写完时,高斯也算完并把写有答案的小石板交了上去。E•T•贝尔写道,高斯晚年经常喜欢向人们谈论这件事,说当时只有他写的答案是正确的,而其他的孩子们都错了。高斯没有明确地讲过,他是用什么方法那么快就解决了这个问题。数学史家们倾向于认为,高斯当时已掌握了等差数列求和的方法。一位年仅10岁的孩子,能独立发现这一数学方法实属很不平常。贝尔根据高斯本人晚年的说法而叙述的史实,应该是比较可信的。而且,这更能反映高斯从小就注意把握更本质的数学方法这一特点。 高斯的计算能力,更主要地是高斯独到的数学方法、非同一般的创造力,使布特纳对他刮目相看。他特意从汉堡买了最好的算术书送给高斯,说:“你已经超过了我,我没有什么东西可以教你了。”接着,高斯与布特纳的助手巴特尔斯建立了真诚的友谊,直到巴特尔斯逝世。他们一起学习,互相帮助,高斯由此开始了真正的数学研究。 1788年,11岁的高斯进入了文科学校,他在新的学校里,所有的功课都极好,特别是古典文学、数学尤为突出。经过巴特尔斯等人的引荐,布伦兹维克公爵召见了14岁的高斯。这位朴实、聪明但家境贫寒的孩子赢得了公爵的同情,公爵慷慨地提出愿意作高斯的资助人,让他继续学习。 布伦兹维克公爵在高斯的成才过程中起了举足轻重的作用。不仅如此,这种作用实际上反映了欧洲近代科学发展的一种模式,表明在科学研究社会化以前,私人的资助是科学发展的重要推动因素之一。高斯正处于私人资助科学研究与科学研究社会化的转变时期。 1792年,高斯进入布伦兹维克的卡罗琳学院继续学习。1795年,公爵又为他支付各种费用,送他入德国著名的格丁根大学,这样就使得高斯得以按照自己的理想,勤奋地学习和开始进行创造性的研究。1799年,高斯完成了博士论文,回到家乡布伦兹维克,正当他为自己的前途、生计担忧而病倒时----虽然他的博士论文顺利通过了,已被授予博士学位,同时获得了讲师职位,但他没有能成功地吸引学生,因此只能回老家,又是公爵伸手救援他。公爵为高斯付诸了长篇博士论文的印刷费用,送给他一幢公寓,又为他印刷了《算术研究》,使该书得以在1801年问世;还负担了高斯的所有生活费用。所有这一切,令高斯十分感动。他在博士论文和《算术研究》中,写下了情真意切的献词:“献给大公”,“你的仁慈,将我从所有烦恼中解放出来,使我能从事这种独特的研究”。 1806年,公爵在抵抗拿破仑统帅的法军时不幸阵亡,这给高斯以沉重打击。他悲痛欲绝,长时间对法国人有一种深深的敌意。大公的去世给高斯带来了经济上的拮据,德国处于法军奴役下的不幸,以及第一个妻子的逝世,这一切使得高斯有些心灰意冷,但他是位刚强的汉子,从不向他人透露自己的窘况,也不让朋友安慰自己的不幸。人们只是在19世纪整理他的未公布于众的数学手稿时才得知他那时的心态。在一篇讨论椭圆函数的手搞中,突然插入了一段细微的铅笔字:“对我来说,死去也比这样的生活更好受些。” 慷慨、仁慈的资助人去世了,因此高斯必须找一份合适的工作,以维持一家人的生计。由于高斯在天文学、数学方面的杰出工作,他的名声从1802年起就已开始传遍欧洲。彼得堡科学院不断暗示他,自从1783年欧拉去世后,欧拉在彼得堡科学院的位置一直在等待着象高斯这样的天才。公爵在世时坚决劝阻高斯去俄国,他甚至愿意给高斯增加薪金,为他建立天文台。现在,高斯又在他的生活中面临着新的选择。 为了不使德国失去最伟大的天才,德国著名学者洪堡(B.A.Von Humboldt)联合其他学者和政界人物,为高斯争取到了享有特权的格丁根大学数学和天文学教授,以及格丁根天文台台长的职位。1807年,高斯赴格丁根就职,全家迁居于此。从这时起,除了一次到柏林去参加科学会议以外,他一直住在格丁根。洪堡等人的努力,不仅使得高斯一家人有了舒适的生活环境,高斯本人可以充分发挥其天才,而且为哥丁根数学学派的创立、德国成为世界科学中心和数学中心创造了条件。同时,这也标志着科学研究社会化的一个良好开端。 高斯的学术地位,历来为人们推崇得很高。他有“数学王子”、“数学家之王”的美称、被认为是人类有史以来“最伟大的三位(或四位)数学家之一”(阿基米德、牛顿、高斯或加上欧拉)。人们还称赞高斯是“人类的骄傲”。天才、早熟、高产、创造力不衰、……,人类智力领域的几乎所有褒奖之词,对于高斯都不过份。 高斯的研究领域,遍及纯粹数学和应用数学的各个领域,并且开辟了许多新的数学领域,从最抽象的代数数论到内蕴几何学,都留下了他的足迹。从研究风格、方法乃至所取得的具体成就方面,他都是18----19世纪之交的中坚人物。如果我们把18世纪的数学家想象为一系列的高山峻岭,那么最后一个令人肃然起敬的巅峰就是高斯;如果把19世纪的数学家想象为一条条江河,那么其源头就是高斯。 虽然数学研究、科学工作在18世纪末仍然没有成为令人羡慕的职业,但高斯依然生逢其时,因为在他快步入而立之年之际,欧洲资本主义的发展,使各国政府都开始重视科学研究。随着拿破仑对法国科学家、科学研究的重视,俄国的沙皇以及欧洲的许多君主也开始对科学家、科学研究刮目相看,科学研究的社会化进程不断加快,科学的地位不断提高。作为当时最伟大的科学家,高斯获得了不少的荣誉,许多世界著名的科学泰斗都把高斯当作自己的老师。 1802年,高斯被俄国彼得堡科学院选为通讯院士、喀山大学教授;1877年,丹麦政府任命他为科学顾问,这一年,德国汉诺威政府也聘请他担任政府科学顾问。 高斯的一生,是典型的学者的一生。他始终保持着农家的俭朴,使人难以想象他是一位大教授,世界上最伟大的数学家。他先后结过两次婚,几个孩子曾使他颇为恼火。不过,这些对他的科学创造影响不太大。在获得崇高声誉、德国数学开始主宰世界之时,一代天骄走完了生命旅程。 在处理相片的软件photoshop中,有一种菜单叫高斯模糊,这种功能对模糊一些不必要的地方很有作用。高斯生于Brunswick,位于现在德国中北部。他的祖父是农民,父亲是泥水匠,母亲是一个石匠的女儿,有一个很聪明的弟弟,高斯这位舅舅,对小高斯很照顾,偶尔会给他一些指导,而父亲可以说是一名大老粗,认为只有力气能挣钱,学问这种劳什子对穷人是没有用的。 高斯很早就展现过人才华,三岁时就能指出父亲帐册上的错误。七岁时进了小学,在破旧的教室里上课,老师对学生并不好,常认为自己在穷乡僻壤教书是怀才不遇。高斯十岁时,老师考了那道著名的「从一加到一百」,终於发现了高斯的才华,他知道自己的能力不足以教高斯,就从汉堡买了一本较深的数学书给高斯读。同时,高斯和大他差不多十岁的助教Bartels变得很熟,而Bartels的能力也比老师高得多,后来成为大学教授,他教了高斯更多更深的数学。 老师和助教去拜访高斯的父亲,要他让高斯接受更高的教育,但高斯的父亲认为儿子应该像他一样,作个泥水匠,而且也没有钱让高斯继续读书,最后的结论是--去找有钱有势的人当高斯的赞助人,虽然他们不知道要到哪里找。经过这次的访问,高斯免除了每天晚上织布的工作,每天和Bartels讨论数学,但不久之后,Bartels也没有什么东西可以教高斯了。 1788年高斯不顾父亲的反对进了高等学校。数学老师看了高斯的作业后就要他不必再上数学课,而他的拉丁文不久也凌驾全班之上。 1791年高斯终于找到了资助人--布伦斯维克公爵费迪南,答应尽一切可能帮助他,高斯的父亲再也没有反对的理由。隔年,高斯进入Braunschweig学院。这年,高斯十五岁。在那里,高斯开始对高等数学作研究。并且独立发现了二项式定理的一般形式、数论上的「二次互逆定理」、质数分布定理、及算术几何平均。 1795年高斯进入格丁根大学,因为他在语言和数学上都极有天分,为了将来是要专攻古典语文或数学苦恼了一阵子。到了1796年,十七岁的高斯得到了一个数学史上极重要的结果。最为人所知,也使得他走上数学之路的,就是正十七边形尺规作图之理论与方法。 希腊时代的数学家已经知道如何用尺规作出正 2m×3n×5p 边形,其中 m 是正整数,而 n 和 p 只能是0或1。但是对於正七、九、十一边形的尺规作图法,两千年来都没有人知道。而高斯证明了: 一个正 n 边形可以尺规作图若且唯若 n 是以下两种形式之一:1、n = 2^k,k = 2, 3,… 2、n = 2^k × (几个不同「费马质数」的乘积),k = 0,1,2,… 费马质数是形如 Fk = 2^(2^k)+1 的质数。像 F0 = 3,F1 = 5,F2 = 17,F3 = 257, F4 = 65537,都是质数。高斯用代数的方法解决二千多年来的几何难题,他也视此为生平得意之作,还交待要把正十七边形刻在他的墓碑上,但后来他的墓碑上并没有刻上十七边形,而是十七角星,因为负责刻碑的雕刻家认为,正十七边形和圆太像了,大家一定分辨不出来。 1799年高斯提出了他的博士论文,这论文证明了代数一个重要的定理: 任一多项式都有根。这结果称为「代数学基本定理」。 事实上在高斯之前有许多数学家认为已给出了这个结果的证明,可是没有一个证明是严密的。高斯把前人证明的缺失一一指出来,然后提出自己的见解,他一生中一共给出了四个不同的证明。 在1801年,高斯二十四岁时出版了《算学研究》(Disquesitiones Arithmeticae),这本书以拉丁文写成,原来有八章,由于钱不够,只好印七章。 这本书除了第七章介绍代数基本定理外,其余都是数论,可以说是数论第一本有系统的著作,高斯第一次介绍「同余」(Congruent)的概念。「二次互逆定理」也在其中。 二十四岁开始,高斯放弃在纯数学的研究,作了几年天文学的研究。 当时的天文界正在为火星和木星间庞大的间隙烦恼不已,认为火星和木星间应该还有行星未被发现。在1801年,意大利的天文学家Piazzi,发现在火星和木星间有一颗新星。它被命名为「谷神星」。现在我们知道它是火星和木星的小行星带中的一个,但当时天文学界争论不休,有人说这是行星,有人说这是彗星。必须继续观察才能判决,但是Piazzi只能观察到它9度的轨道,再来,它便隐身到太阳后面去了。因此无法知道它的轨道,也无法判定它是行星或彗星。 高斯这时对这个问是产生兴趣,他决定解决这个捉摸不到的星体轨迹的问题。高斯自己独创了只要三次观察,就可以来计算星球轨道的方法。他可以极准确地预测行星的位置。果然,谷神星准确无误的在高斯预测的地方出现。这个方法--虽然他当时没有公布--就是「最小平方法」(Method of Least Square)。 1802年,他又准确预测了小行星二号--智神星的位置,这时他的声名远播,荣誉滚滚而来,俄国圣彼得堡科学院选他为会员,发现Pallas的天文学家Olbers请他当哥廷根天文台主任,他没有立刻答应,到了1807年才前往哥廷根就任。 1809年他写了《天体运动理论》二册,第一册包含了微分方程、圆椎截痕和椭圆轨道,第二册他展示了如何估计行星的轨道。高斯在天文学上的贡献大多在1817年以前,但他仍一直做着观察的工作到他七十岁为止。虽然做着天文台的工作,他仍抽空做其他研究。为了用积分解天体运动的微分力程,他考虑无穷级数,并研究级数的收敛问题,在1812年,他研究了超几何级数,并且把研究结果写成专题论文,呈给哥廷根皇家科学院。 1820到1830年间,高斯为了测绘汗诺华公国的地图,开始做测地的工作,他写了关於测地学的书,由於测地上的需要,他发明了日观测仪。为了要对地球表面作研究,他开始对一些曲面的几何性质作研究。 1827年他发表了《曲面的一般研究》,涵盖一部分现在大学念的「微分几何」。 在1830到1840年间,高斯和一个比他小廿七岁的年轻物理学家-韦伯(Withelm Weber) 一起从事磁的研究,他们的合作是很理想的:韦伯作实验,高斯研究理论,韦伯引起高斯对物理问题的兴趣,而高斯用数学工具处理物理问题,影响韦伯的思考工作方法。 1833年高斯从他的天文台拉了一条长八千尺的电线,跨过许多人家的屋顶,一直到韦伯的实验室,以伏特电池为电源,构造了世界第一个电报机。 1835年高斯在天文台里设立磁观测站,并且组织「磁协会」发表研究结果,引起世界广大地区对地磁作研究和测量。 高斯已经得到了地磁的准确理,他为了要获得实验数据的证明,他的书《地磁的一般理论》拖到1839年才发表。 1840年他和韦伯画出了世界第一张地球磁场图,而且定出了地球磁南极和磁北极的位置。1841年美国科学家证实了高斯的理论,找到了磁南极和磁北极的确实位置。 高斯对自己的工作态度是精益求精,非常严格地要求自己的研究成果。他自己曾说:宁可发表少,但发表的东西是成熟的成果。许多当代的数学家要求他,不要太认真,把结果写出来发表,这对数学的发展是很有帮助的。其中一个有名的例子是关于非欧几何的发展。非欧几何的的开山祖师有三人,高斯、 罗巴切乌斯基,波埃伊。其中Bolyai的父亲是高斯大学的同学,他曾想试着证明平行公理,虽然父亲反对他继续从事这种看起来毫无希望的研究,小Bolyai还是沉溺於平行公理。最后发展出了非欧几何,并且在1832~1833年发表了研究结果,老Bolyai把儿子的成果寄给老同学高斯,想不到高斯却回信道: to preise it would mean to praise myself. 我无法夸赞他,因为夸赞他就等于夸奖我自己。 早在几十年前,高斯就已经得到了相同的结果,只是怕不能为世人所接受而没有公布而已。美国的著名数学家贝尔,在他着的《数学工作者》一书里曾经这样批评高斯: 在高斯死后,人们才知道他早就预见一些十九世的数学,而且在1800年之前已经期待它们的出现。如果他能把他所知道的一些东西泄漏,很可能现在数学早比目前还要先进半个世纪或更多的时间。阿贝尔和雅可比可以从高斯所停留的地方开始工作,而不是把他们最好的努力花在发现高斯早在他们出生时就知道的东西。而那些非欧几何学的创造者,可以把他们的天才用到其他力面去。 在1855年二月23日清晨,高斯在他的睡梦中安详的去世了。

不好写。数学史是研究数学的发生、发展过程及其规律的一门学科,难度等级高。毕业论文是指高等学校(或某些专业)为对本科学生集中进行科学研究训练而要求学生在毕业前撰写的论文。一般安排在修业的最后一学年(学期)进行。学生须在教师指导下,选定课题进行研究,撰写并提交论文。目的在于培养学生的科学研究能力;加强综合运用所学知识、理论和技能解决实际问题的训练;从总体上考查学生本科阶段学习所达到的学业水平。

数学史是研究数学科学发生发展及其规律的科学,简单地说就是研究数学的历史。下文是我为大家整理的关于大学数学史论文的范文,欢迎大家阅读参考!

数学史的教育功能

摘要数学史作为数学学科中的一部分,它不仅揭示了数学知识发展的来源,也揭示了数学学科对于人们发展科学文化知识的巨大作用。数学史的教学已经成为了目前学校教育工作中的一部分,利用数学史的教学可以引导学生们提高对数学学科学习的兴趣,培养创新思维,从了解数学史的根源开始,主动发现数学学科中的奥秘。针对这一系列问题,本文从四大方面分析了数学史对于数学教育工作中的功能体现,从而引起数学教育工作者的高度重视。

关键词数学史教育功能创新思维功能体现

1 数学史的教育功能之一 ——提高学生们学习数学的兴趣

兴趣是最好的老师,有了兴趣学生才会对数学冰冷的美丽产生出火热的激情。然而,为了提高学生们学习数学的兴趣,不仅仅是鼓励和题海战术这么简单,我们应该采取引导与教育相结合的方式,青少年时期正是疑问多、想法多的阶段,我们应该抓住学生们的这一特点,从解除疑问的角度来引导学生们接受和爱好数学的学习。让学生们在了解数学史的基础上,深刻记忆数学定义、定理的模型与应用。

例如:数学老师在课堂上讲授无理数的概念时,若只是将无理数的概念硬性地传授给学生,学生们似乎已经记住了无理数的特征,也能够正确判断哪些数是无理数,哪些数不是无理数,然而,这只是课堂中的短暂记忆,无法给学生们留下深刻的印象,无法在学生们的脑子里留下长久的烙印。因此,我们可以从介绍无理数的历史发展入手,将生动的无理数来源的历史背景讲授给学生们,引起学生们学习无理数的兴趣,加深对这一知识点的记忆。

2 数学史的教育功能之二——培养学生们的数学应用意识

数学的主要功能是应用科学,数学是一种工具,是所有学科中最具前瞻性和科学性的自然科学,从数学知识的本身来看是十分枯燥乏味的,表面来看,学生们在课堂中所接受的是已经由大量科学家所发现和证明了的科学结晶,这些结果的产生是具有强大科学依据的,每一个结晶诞生的背后都有一个久远的历史故事,它不仅验证了科学的可靠性,同时也说明了世界奥秘的可知性。二十一世纪的青少年是与新时代接轨的一代,在学习的过程中只是了解学科的表面是不够的,我们要从数学史的教育抓起,深入探讨数学学科的伟大,从根本上培养学生们的数学应用意识,加大学习数学知识的深度与广度。

例如:我国古代名著 《孙子算经》上有这样一道题:今有鸡兔同笼,从上面看有三十五头,从下面看有九十四足,问笼子里鸡有几只?兔有几只?这道题对学生来说是十分有趣的,既让他们掌握了方程的基本思想,又让他们感觉到学习的新知识的价值所在;

又例如:在《九章算术》中记载了一道有趣的数学题:有一个边长为一丈的正方形水池,在池中央长着一根芦苇,芦苇露出水面1尺,若将芦苇拉到池边中点处,芦苇的顶端恰好到达水面。问水有多深?芦苇有多长?这是一道作为《探索勾股定理》的习题,通过练习,同学们可以在熟练应用勾股定理的同时,体会到勾股定理在实际问题中的应用。

再例如:公元三世纪我国数学家赵爽证明了勾股定理的弦图。老师在课堂上对于这种验证方法的介绍,可以通过数学知识重组再创造,分析当年数学家赵爽的探索过程,使其证明思路逐渐展现在如今的课堂中,帮助学生们理解与掌握勾股定理的内容与应用。

从以上例子中可以看出,数学史的诸多命题历史悠久,具有说服力和兴趣性,我们在利用数学史知识讲授数学课程的时候,既能够为学生们介绍大量的数学历史故事,让学生们深入了解数学中各种定理、模型的来源,加深对其的记忆,又能够扩大学生们的知识面,让学生们了解到数学(下转第189页)(上接第139页)学科的科学性和前瞻性,从认识历史、认识科学家、认识世界的角度学习科学文化知识是现如今加强学生们素质教育的关键。

3 数学史的教育功能之三——提高学生们的数学素养

对于任何一门学科的学习,都应该拥有这门学科的学习精神,数学是一门体现人类文明发展史的学科,它融汇了人类智慧的结晶,在历史悠久的中国,有着成千上万的科学家前仆后继,为数学学科的发展作出了卓越的贡献。数学史作为数学学科中的一部分,是如今提高学生们的素质、普及数学科学知识、增强个人科学素养的关键学科。老师应该在传授数学知识的同时,将数学的发展、科学家的成就、每一项成果的来之不易一并传授给学生们,让学生们认识到数学知识的可贵、数学知识的力量、数学知识的魅力。例如:在浙教版《义务教育课程标准实验教科书-数学》的六册书的阅读材料中,介绍了法国的笛卡尔、费马;中国的杨辉;德国的卢道夫等不少历史上的数学家及其重要成果。提高了学生们的学习兴趣,扩大了学生们的知识面,从实际案例中启发学生们学习科学文化知识的重要性。从而提高了学生们的数学素养。

4 数学史的教育功能之四——培养学生们对世界观的正确认知

从数学悠久的历史来看,中国从古至今涌现出了一批优秀的数学家,刘徽、祖冲之、祖咂、杨辉、秦九韶、李冶、朱世杰等,他们的数学成就流传至今,为中国的科学事业奠定了坚实的基础,为后代人对认识世界、改造世界的观念提供了强有力的科学依据。数学是一门自然科学,是上千万科学家智慧的结晶,是科学的真理体现,是对大千世界正确的认识,它是客观存在的科学,是唯物主义的认证。因此,作为数学教育工作者,有责任、有义务在传授知识的同时,培养学生们正确的世界观、人生观、价值观,相信科学,杜绝唯心主义,摆脱迷信思想,利用数学史的介绍勉励学生们对科学文化知识的正确认知,对世界观的正确理解。

总之,数学史在数学教学中的渗透,从提高学生们学习数学的兴趣,培养学生们的数学应用意识,提高学生们的数学素养,培养学生们对世界观的正确认知这四个方面来看是十分重要的。将数学的抽象运算方法融入到数学史的介绍当中,开阔学生们的思路,增强学生们科学知识结构的形成,是目前提高青少年素质教育的关键。我们要加大力度完善数学教学的模式,增加数学史教学的课程安排,有效实施文化教育与素质教育的适当结合,从而提高数学教学的整体质量。

参考文献

[1]范良火.义务教育课程标准实验教科书.数学(七年级上册~九年级下册)浙江教育出版社,2005.

[2]全日制义务教育数学课程标准解读(实验稿).北京师范大学出版社,2008.

[3]李正银.数学史与数学教育[J].海南师范学院学报,2003.16(3):98-10.

[4]王鹏飞.尝试错误数学教法[J].中学数学参考,1998(7).

[5]高慧明.在暴露思维过程中培养探究能力[J].数学教学通讯,2004(7).

[6]叶莉.浅谈小学数学课堂教学总结的价值和方法.理工,2012(3).

数学史在大学数学教学中的意义与价值

摘 要: 如今,越来越多的教育工作者对数学史教育在数学教学中的多方面作用给予了充分认可。本文结合大学数学教学的特点,着重探讨了数学史在大学数学教学中的意义与价值。

关键词: 数学史 高等数学 教学改革

1.数学史

数学史是研究数学概念、数学方法和数学思想的起源与发展,以及其与社会政治、经济和一般文化的联系的一门科学,蕴涵了丰富的数学思想的历史。它不仅追溯数学内容、思想和方法的演变、发展过程,而且探索影响这种过程的各种因素,以及历史上数学科学的发展对人类文明所带来的影响。数学的发展绝不是一帆风顺的,数学的发展在不同的历史阶段,受到政治、宗教等各种社会因素的干扰。历史上无理量的发现,微积分和非欧几何的创立,乃至费马大定理的证明,等等,无一不是数学家们经历了曲折艰难最终探索出来的。因此,数学史研究对象不仅包括具体的数学内容,而且涉及历史学、哲学、文化学、宗教等社会科学与人文科学内容,是一门交叉性学科。

2.数学史在大学数学教学中的意义与价值

我国的数学教学一直注重形式化的演绎数学思维的训练,而忽视了培养学生对数学作为一门科学的思想体系、文化内涵和美学价值的认识。但由于受传统教学课时和内容上的安排的影响,大学数学的教学往往存在课时少,内容多的矛盾。广大教师为了完成教学任务,达到“会考试”的效果,往往在课堂上只注重数学知识的传授,而忽视了数学的思想性和趣味性。目前数学史的教育价值也早已被一些学者所认识。2005年在中国召开了“第一届数学史与数学教育会议”,由此看出,充分发掘数学史在数学教学中的作用越来越受到重视。要发展数学史教育首先要提高人们对数学史教育重要性的认识,虽然目前学术界对数学史教育在数学教学的功效引起一定的重视,但这并不够。数学并不是一些枯燥定理的堆砌,而是人类文明、人类文化高度发展的结晶。

数学家庞加莱说:“若欲预见数学的将来,正确的方法是研究它的历史和现状。”数学史是人类文明给后人留下的路标,具有独特的教育功能。数学史的学习在大学数学教学中的意义与价值主要体现在以下几个方面。

(1)数学史是数学文化的最佳载体

传统的数学教学一般只涉及数学的两个层面:数学的概念、命题,数学的思想和方法。现如今,数学作为一种文化现象,早已是常识,那么,我们就应该用较为宽泛的眼光来看数学或数学文化。数学作为人类创造的文化之一,它并不是超文化的。数学课程应适当反映数学的历史、应用和发展趋势。数学文化除了数学知识本身,还包括数学对推动社会发展的作用,数学的社会需求,社会发展对数学发展的推动作用,数学科学的思想体系,数学的美学价值,数学家的创新精神,等等。数学史正是数学文化教育的最佳载体。

(2)数学史是激发兴趣的有效途径

几乎所有学科都强调激发学生学习兴趣的重要性,而数学学科尤为突出,在著名数学家成才规律的探索中,中外学者不约而同地将“对数学浓厚的兴趣”列为第一位要素。在教学过程中,要善于激发学生对数学学科的兴趣,正如爱因斯坦所言:“兴趣是最好的老师。”大学阶段的学生无论是逻辑思维能力还是自控能力都已经基本发展成熟,且大学阶段的数学知识内容已经非常注重体系的严密性和完整性,学习方式也从中学时期的“要我学”变成“我要学”,学习兴趣显得尤为重要。

纵观数学发展史,许多数学名家并非一开始就是从事数学研究的,很多人是因偶然的机会而对数学产生了兴趣,才走上了专业化发展道路。解析几何的创始人笛卡尔,从小游手好闲,偶遇一次街头数学问题悬赏解答,强烈的兴趣使他对数学入了迷,那年他已经近二十岁了。

数学史上的许多经典问题,仍然吸引了一代又一代数学学习者投入其中,如欧拉研究过的七桥问题,我国的七巧板游戏等,都是激发学生学习兴趣的良好素材,在教学中要有意识地发掘其教育价值。

(3)数学史是理解数学的必由之路

数学课程通常给出的是一个系统的逻辑论述,好像从这一结论到那一个定理是很自然的事情,其实历史的发展并非一帆风顺,通过数学史的学习可以使同学们认识到,一个学科的发展是从点滴积累开始的,有的甚至需要几百年时间。比如我们熟悉的四色原理从产生到最终解决花了三百多年,在解决问题过程中,衍生出了众多应用数学的分支,从不同侧面影响着社会生活。

从数学史看,数学成果的流传主要是数学思想方法的流传,所以我们在学习知识的过程中,只有了解数学研究的历史背景,分析前人的方法,才能透过现象看本质,得到有益的启示,激发出思想的火花,并真正学会“像数学家那样思考”。

(4)数学史是思想教育的良好素材

数学史在课本中的反映是经过提炼的,自然淡化了发展中艰苦漫长的历程。通过数学史的学习,同学们会获得学习的勇气,不会因为学习中的挫折而沮丧。中外数学家刻苦钻研,严谨创新和为了科学事业而勇于献身的例子比比皆是,在解决数学史上的三大危机时,许多数学家甚至为此付出了生命,这些都是极好的思想教育的材料。

欧拉终身为数学奋斗,所有的领域都留下欧拉研究的痕迹,长期的劳累使他双目失明,在此以后的17年,仍忘我地献身于数学研究。牛顿出身于农民家庭,1661年考入剑桥大学。1665年,伦敦地区流行鼠疫,剑桥大学暂时关闭。牛顿回到了家乡,在乡村幽居了两年,终日思考各种问题、探索大自然的奥秘。他平生的三大发明――微积分、万有引力、光谱分析都萌发于此。后来牛顿在追忆这段峥嵘的青春岁月时,深有感触地说:“我的成功当归功于精力的探索。”“没有大胆的猜想就做不出伟大的发现。”学生听了数学家的事迹,必然会备受鼓舞,从而认识到只有经过自己奋斗,才能取得成就。通过这些数学史实和事例能够帮助学生树立超越世界数学先进水平的胆识,培养学生的科学态度和优良品质。

3.结语

数学史是人类的认识史、发明史和创造史,其中蕴涵着可供后人借鉴的巨大思想财富,广大教育工作者已经认识到它的重要作用。数学史可以将逻辑推理还原为合情推理,将逻辑演绎追溯到归纳演绎,通过挖掘历史上数学家解决问题的真谛学生不仅可以学到具体的现成的数学知识,而且可以学到“科学的方法”,更深刻地领略数学文化。在大学数学教学中融入数学史对强化课堂效果是一种很行之有效的做法,会起到良好的作用。最后引用19世纪英国数学家格莱舍的一句话作为结语:“任何企图将一种科目和它的历史割裂开来,我确信,没有哪一种科目比数学的损失更大。”

参考文献

[1]靳玉乐.现代教育学[M].四川教育出版社,2006.

[2]张奠宙,李士,李俊.数学教育学导论[M].高等教育出版社,2003.

[3]杨泰良.以史为鉴 注重反思[J].数学通报.2004.2.

[4]J.N.Kapur.数学家谈数学本质[M].北京大学出版社,1989.

[5]李心灿.微积分的创立者及其先驱[M].高等教育出版社,2002.

高斯生于布伦瑞克,卒于哥廷根。德国著名数学家、物理学家、天文学家、几何学家,大地测量学家。享有“数学王子”的美誉。

高斯在数个领域进行研究,但只把他认为已经成熟的理论发表出来。他经常对他的同事表示,该同事的结论已经被自己以前证明过了,只是因为基础理论的不完备而没有发表。批评者说他这样做是因为喜欢抢出风头。事实上高斯把他的研究结果都记录起来了。他死后,他的20部纪录着他的研究结果和想法的笔记被发现,证明高斯所说的是事实。一般人认为,20部笔记并非高斯笔记的全部。

下萨克森州和哥廷根大学图书馆已经将高斯的全部著作数位化,并放置于互联网上。

高斯的肖像曾被印刷在从1989年至2001年流通的10元德国马克纸币上。

扩展资料

虽然高斯作为一个数学家而闻名于世,但这并不意味着他热爱教书。尽管如此,他越来越多的学生成为有影响的数学家,如后来闻名于世的戴德金和黎曼。

高斯非常信教且保守。他的父亲死于1808年4月14日,晚些时候的1809年10月11日,他的第一位妻子Johanna也离开人世。次年8月4日高斯迎娶第二位妻子Friederica Wilhelmine (1788-1831)。

18岁的高斯发现了质数分布定理和最小二乘法。通过对足够多的测量数据的处理后,可以得到一个新的、概率性质的测量结果。在这些基础之上,高斯随后专注于曲面与曲线的计算,并成功得到高斯钟形曲线(正态分布曲线)。其函数被命名为标准正态分布(或高斯分布),并在概率计算中大量使用。

在高斯19岁时,仅用尺规便构造出了17边形。并为流传了2000年的欧氏几何提供了自古希腊时代以来的第一次重要补充。

参考资料来源:百度百科-约翰·卡尔·弗里德里希·高斯

数学史论文发表小说平台

论文参考题目

1、非10进制记数的利和弊。

2、数的概念的发展与人类认识能力提高的关系。

3、比较古代埃及人和古代巴比伦人解方程的方法,探讨他们各自对后来的数学发展的启迪作用。

4、为什么毕达哥拉斯学派关于不可公度量的发现会在数学中产生危机?

5、欧几里得《原本》中的代数。

6、欧几里德《几何原本》与公理化思想;

7、在几何学中有没有“王者之路”。

8、无所不在的斐波那契数列。

9、文艺复兴时期数学发展的重要因素。

10、达•芬奇与数学。

11、十进制小数的历史。

12、圆周率的历史作用。

13、“圆”中的数学文化。

14、明代中国商业算术处于突出地位的原因。

15、近代中国数学落后的原因。

16、芝诺悖论与微积分的关系。

17、未解决的问题在数学中的重要性。

17、黄金分割引出的数学问题。

18、试论数学悖论对数学发展的影响。

19、第一次数学危机及其克服。

20、第二次数学危机及其克服。

21、第三次数学危机及其克服。

22、数学对当代社会文化的影响。

23、试论数学的发展对人类社会的进步的推动作用。

24、从历史观看数学。

25、数学符号的价值。

26、谈对数学本质的认识。

27、试论数学科学的价值。

28、函数概念的发展。

29、空间概念的发展。

30、曲线概念的发展。

31、数学对天文学的推动。

32、数学中无穷思想的发展。

33、数学中的美。

34、音乐中的数学。

35、艺术中的数学。

36、浅谈数学语言的特点。

37、论数学的抽象性。

38、关于数学的严谨性。

39、关于数学的真理性。

40、数学家的不幸。

41、数学家的幸运。

42、从数学史中扩展的数学知识。

43、从程大位的《算法统宗》“首篇”河图、洛书等看《易经》与珠算之联44、梵语的盛行——十进制的发明之谜 45、中国古代数学发展缓慢的启示

46、从矩阵的萌芽论中国传统数学的文化底蕴

47、《九章算术》刘徽注中的算法分析工作与算法分析思想

48、《费马大定理》读后感 49、黎曼猜想浅谈

50、再论《巧排九方》——一个传统的数字推理趣题之详解及其推广

51.、数学史上的三次危机

52、笛卡儿解析几何思想的文化内涵 53、理性数学的哲学起源

54、中国数学教育史研究进展

希望对你有帮助。

从算法教学管窥中国古代数学史俞 昕( 浙江湖州市第二中学 313000) 关于算法的涵义, 人们有着不同的界定. 普通高中数学课程标准( 实验) 在学生算法目标达成度上,重在算法思想的理解与应用,界定现代算法的意义就是解决某一类问题的办法. 确切地说,就是对于某一类特定的问题,算法给出了解决问题的一系列(有穷) 操作, 即每一操作都有它的确定性的意义( 使计算机能够按照它的指令工作) ,并在有限时间( 有穷步骤)内计算出结果.普通高中数学课程标准( 实验) 对! 算法部分∀进行说明时,突出强调! 需要特别指出的是, 中国古代数学中蕴涵了丰富的算法思想∀. 吴文俊先生曾经说过! 我们崇拜中国传统数学,决非泥古迷古、 为古而古. 复古是没有出路的. 我们的目的不仅是要显示中国古算的真实面貌, 也不仅是为了破除对西算的盲从,端正对中算的认识,我们主要的也是真正的目的, 是在于古为今用. ∀算法教学中蕴涵着丰富的数学史教育价值, 作为新时代的高中数学教师是有必要了解这一点的.1 中国古代数学的特点古代数学思想分为两大体系, 一个是以欧几里得的几何原本 为代表的西方数学思想体系,这个体系以公理化的思想、 抽象化的方法、 封闭的演绎体系为特色. 另一个则是以我国的九章算术 为代表的东方数学思想体系,这个体系以算法化的思想、 构造性的方法、 开放的归纳体系为特色.我国传统数学在从问题出发,以解决问题为主旨的发展过程中, 建立了以构造性与机械化为其特色的算法体系, 这与西方数学以欧几里得几何原本 为代表的所谓公理化演绎体系正好遥遥相对.中国古代数学中的! 术∀相当于现代数学术语中的! 公式∀,两者虽有相同点(都可以用来解决一类有关问题) , 其差异也非常之大. 主要表现在,! 公式∀只提供了几个有关的量之间的关系, 指明通过哪些运算可由已知量求出未知量,但并没有列出具体的运算程序,一般地,认为这种程序是已知的了. 但! 术∀则由怎样运算的详细程序构成的,可以说它是为完成公式所指出的各种运算的具体程序,即把! 公式∀展开为使用某种计算工具的具体操作步骤. 从这点看, ! 术∀正是现代意义上的算法, 是用一套! 程序语言∀所描写的程序化算法,可以照搬到现代计算机上去. 我国古代数学包括了今天初等数学中的算术、 代数、 集合和三角等多方面的内容.由于受实用价值观的影响, 中国传统数学的研究遵循着一种算法化思想,这种思想从九章算术 开始一直是中国古代数学著作大都沿袭的模式:实际问题# # # 归类# # # 筹式模型化# # # 程序化算法即将社会生产生活中的问题,先编成应用问题,按问题性质分类, 然后概括地近似地表述出一种数学模型, 借助于算筹, 得到这一类问题的一般解法. 把算法综合起来, 得到一般原理, 分别隶属于各章,人们按照书中的方法、 原理和实例来解决各种实际问题. 可以说,中国传统数学以确定算法为基本内容,又以创造和改进算法为其发展的方向.受九章算术 的影响,在之后的几个世纪,一些数学家的著作都以算法为主要特点,包括王孝通的辑古算经 、 贾宪的黄帝九章算法细草 、 刘益的议古根源 、 秦九韶的数书九章 、 李冶的测圆海镜 和益古演段 、 杨辉的详解九章算法 、 日用算法 和杨辉算法 , 这些著作中包括了增乘开方术、 贾宪三角、 高次方程数值解法、 内插法、 一次同余式组解法等一些著名的算法,进一步发展了中国古代数学算法化的特点,使得算法的特点得到了进一步的强化和发展.1 1 中国古代数学的算法化思想算法化的思想是中国古代数学的重要特点,并贯穿于中国古算整个发展过程之中.即使是与24 数学通报 2010 年 第49 卷 第2 期图形有关的几何问题也不例外,中算家们将几何方法与算法有机地结合起来,实现了几何问题的算法化.这样,从问题出发建立程序化的算法一直是古代中国数学研究的传统,也是中算家们努力的方向.这种算法化的思想着重构造实践,更强调! 经验∀、 ! 发现∀和构造性思维方式下从无到有的发明,对今天的算法教学与研究具有重要的启迪作用.中国古代数学算法化的思想具体表现如下:第一步,把实际中提出的各种问题转化为数学模型;第二步,把各种数学模型转化为代数方程; 第三步,把代数方程转化为一种程序化的算法; 第四步,设计( 并逐步改进)、 归纳、 推导(寓推理于算法之中)出各种算法; 第五步,通过计算回溯逐步达到解决原来的问题.1 2 中国古代数学的构造性方法所谓构造性方法是解决数学问题的一种方法,是创造性思维方式直接作用的结果.按照现代直觉主义者,特别是构造主义者的观点,对于一个数学对象,只有当它可以通过有限次的操作而获得,并且在每步操作之后都能有效地确定下一步所需要采取的操作, 才能说它是存在的.按照这种思维方式,可以使概念和方法按固定的方式在有限步骤内进行定义或得以实施,或给出一个行之有效的过程使之在有限步骤内将结果确定地构造出来.换言之,就是能用有限的手段刻画数学对象并针对问题提出具体的解法.中国古代数学的算法化思想与构造性的方法紧密相连.由于古代中算家所关心的大多是较为实用的问题,他们在解决问题时首先考虑是如何得到可以直接应用的、 可以方便操作的解,而不会满足于仅仅知道解在理论上的存在性. 因为这种纯粹的理论解对于受实用价值观影响的中算家来说是没有多大意义的.从而我们推断,构造性方法的产生是算法化思想直接作用的结果.从我国许多经典算书中可以发现, 数学构造性方法在算法中有许多精彩的体现. 例如就! 方程∀的筹算图阵及其程序设计而言,首先, ! 群物总杂,各列有数,总言其实∀,这是对每行中未知数的系数和常数项的安排,其次, ! 令每行为率,二物者再程,三物者三程,皆如物数程之∀,这是对诸行关系的安排, ! 并列为行∀又说明了什么叫! 方程∀. 这为中国古代数学的构造性方法提供了一个具有说服力的样板.由于构造性的方法特别强调运算的可操作程度, 所以构造出的! 术∀可以通过一系列有限的运算求出解来, 具有一般性.时至今日我国古算家所设计的许多算法几乎都可以整套照搬到现代的电子计算机上实现.这也是我国古算在算法上长期居于领先地位的一个重要原因.2 中国古代数学中的优秀算法案例2. 1 中国古代的代数学代数学是中国传统数学中一个值得骄傲和自豪的领域.中小学数学中的算术、 代数内容, 从记数以至解联立的线性方程组, 实质上都是中国古代数学家的发明创造.结合新课程的算法教学,笔者选取我国古代著名算法进行分析.2. 1. 1 求最大公约数的算法(更相减损术)中国古代数学中,未曾出现素数、 因数分解等概念,但是发明了求两整数的最大公约数的方法# # # 更相减损术: ! 可半者半之,不可半者,副置分母子之数, 以少减多, 更相减损,求其等也.以等数约之. ∀事实上此术中包含了三个步骤:第一步, ! 可半者半之∀, 即进行观察, 若分子、分母都是偶数,可先取其半;第二步, ! 不可半者, 副置分母、 子之数, 以少减多,更相减损,求其等也∀;第三步, ! 以等数约之∀.其中第二步! 以少减多, 更相减损∀是关键,又是典型的机械化程序.在中国古代数学中, 将最大公约数称作! 等∀.由于! 更相减损∀过程终可以在有限步骤内实现, 所以它是一种构造性的方法.若用现代语言翻译即为:第一步,任意给定两个正整数, 判断它们是否都是偶数. 若是,用2 约减,若不是, 执行第二步. 第二步, 以较大的数减去较小的数, 接着把所得的差与较小的数比较, 并以大数减小数.继续这个操作, 直到所得的数相等为止, 则这个数( 等数)或这个数与约简的数的乘积就是所求的最大公约数.下面运用 QBA SIC 语言来编写相应的程序( 见程序1) .25 2010 年 第49 卷 第2 期 数学通报程序 1INPUT! m, n= ∀ ; m, nIF m< n T HEN a= m m= n n= aEND IFk= 0WHILE m MOD 2= 0 AND n MOD2= 0 m= m/ 2 n= n/ 2 k= k+ 1WENDd= m- nWHILE d< > n IF d> n TH EN m= d ELSE m= n n= d END IF d = m- nWENDd= 2 ∃ k * dPRINT dEND程序 2INPUT A, BWHILE A < > B IF A> B T H EN A = A- B ELSE B= B - A END IFWENDPRINT BEND程序 3INPUT ! M, N (M> N )∀ ; M, NDOR= M- N IF R> N TH EN M= R ELSE M= N N= R END IFLOOP UNTIL R= 0PRINT MEND程序 4INPUT ! n= ∀ ; nINPUT! an= ∀; aINPUT! x= ∀ ; xv= ai= n- 1WH ILE i> = 0 PRINT ! i= ∀; i INPUT! ai= ∀ ; a v= v * x+ a i= i- 1WENDPRINT vEND程序 2和 3 是两个简化的参考程序, 是从不同的角度来实现更相减损的过程.! 更相减损术∀提供了一种求两数最大公约数的算法, 这是九章算术 的一个重要成就, 与古希腊欧几里得的几何原本 中用来求最大公约数的! 欧几里得算法∀, 即辗转相除法, 有异曲同工之妙. 欧几里得在几何原本 中针对这个问题引入了许多概念, 给出了冗长的逻辑证明. 尽管如此,他还是暗用了一条未加说明的公理, 即如果 a, b都被c 整除, 则a- mb也能被c 整除.中国古算采用的! 更相减损∀方法,实际上也暗用了一条未加说明的公理, 即若 a- b 可以被c 整除,则 a, b 都能被c 整除. 正如刘徽在九章算术注 中! 其所以相减者, 皆等数之重叠∀. 从形式上看! 更相减损术∀比! 辗转相除法∀更复杂, 循环次数要比辗转相除法多, 但对于计算机来说, 作乘除运算要比作加减运算慢得多, 因此更相减损术在计算机上更为好用.26 数学通报 2010 年 第49 卷 第2 期2. 1. 2 求一元 n 次多项式值的算法(秦九韶算法)秦九韶,南宋著名数学家,其学术思想充分体现在数书九章 这一光辉名著中,该著作不仅继承了九章算术 的传统模式, 对中算的固有特点发扬光大,而且完全符合宋元社会的历史背景, 是中世纪世界数学史上的光辉篇章. 书中记载了! 正负开方术∀、 ! 大衍求一术∀等著名算法.在数书九章 卷五第 17 个问题以! 尖田求积∀为例的算法程序中,可以看出秦九韶对于求一元n 次多项式f ( x ) = anxn+ an- 1 xn- 1+ %+ a1x+ a0 的值所提出的算法.秦九韶算法的特点在于通过反复计算n 个一次多项式,逐步得到原多项式的值. 在欧洲, 英国数学家霍纳( Horner ) 在1819 年才创造了类似的方法, 比秦九韶晚了572年.秦九韶算法把求f ( x ) = anxn+ an- 1 xn- 1+ %+ a1x + a0 的 值 转 化 为 求 递 推 公 式v0= anvk= vk- 1x+ an- k k= 1, 2, %, n中 v n 的值. 通过这种转化, 把运算的次数由至多( 1+ n) n2次乘法运算和n 次加法运算,减少为至多 n 次乘法运算和n 次加法运算,大大提高了运算效率.这种算法的QBASIC 语言程序如程序 4 所示.算法步骤是如下的五步: 第一步, 输入多项式次数 n、 最高次项的系数an 和x 的值;第二步,将 v 的值初始化为a v ,将i 的值初始化为n- 1; 第三步, 输入 i次项的系数ai ;第四步, v= v x+ ai , i= i- 1; 第五步,判断i 是否大于或等于 0, 若是, 则返回第三步,否则输出多项式的值v .2. 2 中国古代的几何学中国古代的几何学从田亩丈量等生产生活中的一些实际问题中产生, 并为生产生活服务. 基于传统实用价值观的影响, 中国古代的几何学并没有发展成为像欧氏几何那样严密的公理化演绎体系,所以中国古代几何学在整个数学史上的地位并不突出,但在许多几何问题的处理上也突出了算法化这一特色. 下面以! 割圆术∀为例作简要分析.中国古代数学家刘徽创立! 割圆术∀来求圆的面积及其相关问题. 刘徽! 瓤而裁之∀,即对与圆周合体的正多边形进行无穷小分割,分成无穷多个以正多边形每边为底、 圆心为顶点的小等腰三角形, 这无穷多个小三角形的面积之和就是圆的面积. 这样通过对直线形的无穷小分割, 然后求其极限状态的和的方式证明了圆的面积公式.刘徽的算法! 割之弥细,所失弥少,割之又割, 以至于不可割, 则与圆合体而无所失矣∀体现出程序化的过程, 可以看出圆内接正多边形逐渐逼近圆的变化趋势,并且刘徽依此开创了求圆周率精确近似值的方法, 将这种极限思想用于近似计算.其中包含有迭代过程和子程序,是一种典型的循环算法,充分体现了程序化的特点.中算家的几何学,并不追求逻辑论证的完美,而是着重于实际计算问题的解决, ! 析理以辞, 解体用图∀, 以建立解决问题的一般方法和一般原则. 但另一方面,这种几何学又是以面积、 体积、 勾股相似等为基本概念,以长方形面积算法、 长方形体积算法、 相似勾股形的性质为出发点的, 整个几何理论建立在! 出入相补原理∀等基本原理之上.例如,由勾股定理自然地引起平方根的计算问题,而求平方根和立方根的方法, 其步骤就是以出入相补原理为几何背景逐步索骥而得.这方面内容的介绍, 不仅可以丰富学生的算法知识,而且可以通过揭示蕴藏其中的数学背景和文化内涵, 激发学生学习算法的兴趣,体会算法在人类发展史中的作用.3 中国古代数学算法的教学价值3. 1 培养正确数学观的良好平台中国传统算法尽管与现代算法在具体形式上差别很大,但是重要的是形式后面的认识论发展线索可以为现代算法教学的体系、 教学层次提供依据.它的具体数学知识载体也是现代算法教学的重要源泉. 各种算法的创立就是创造性劳动的产物,即是创造思维的一种! 凝固∀和! 外化∀. 其次, 通过把一部分问题的求解归结为对于现成算法的! 机械应用∀, 这就为人们积极地去从事新的创造性劳动提供了更大的可能性. 从而算法化也就意味着由一个平台向更高点的跳跃.吴文俊先生的研究使中国传统数学的算法重见天日, 开拓了数学机械化的新领域, 吴先生提出! 数学教育的现代化就是机械化∀.他在研究中这样写道: 数学问题的机械化, 就要求在运算和证明过程中, 每前进一步之后,都有一个确定的必须选27 2010 年 第49 卷 第2 期 数学通报择的下一步, 这样沿着一条有规律的, 刻板的道路,一直达到结论.证明机械化的实质在于, 把通常数学证明中所固有的质的困难,转化为计算的量的复杂性.计算的量的复杂性在过去是人力不可能解决的,而计算机的出现解决了这种复杂性.吴先生的理论和实践已经表明,证明和计算是数学的两个方面, 且又是统一的,这在数学教育中具有重要意义.我们应当引导学生了解古人对问题思考的角度,学会站在巨人的肩膀上,比如按照中国古代开方术的思路就可以编造程序在现代计算机上实现开方.培养学生在学习数学知识的同时更多地关心所学知识的社会意义和历史意义,力图在面向未来的同时,通过同传统上的哲学、 历史和社会学的思想结合起来, 形成正确的数学观.算法教学就为此搭建了一个良好的平台, 并且承载丰富的历史底蕴.3. 2 渗透爱国主义教育的最佳契机与西方相比, 中算理论具有高度概括与精练的特征, 中算家经常将其依据的算理蕴涵于演算的步骤之中, 起到! 不言而喻, 不证自明∀的作用,可以认为中国传统数学乃是为建立那些在实际中有直接应用的数学方法而构造的最为简单, 精巧的理论建筑物. 因此, 中算理论可以说是一种! 纲目结构∀:目是组成理论之网的眼孔;纲是联结细目的总绳.以术为目, 以率为纲,即是依算法划分理论单元,而用基本的数量关系把它们连结成一个整体. 纲举目张,只有抓住贯串其中的基本理论与原理, 才能看清算法的来龙去脉.下面是吴文俊先生总结的! 关于算术代数部分发明创造的一张中外对照表∀.从算法教学管窥中国古代数学史中国 外国位值制十进位记 最迟在九章算术 成书时已十分成熟 印度最早在 6 世纪末才出现分数运算 周髀算经 中已有, 在九章算术 成书时已成熟 印度最早在 7 世纪才出现十进位小数 刘徽注中引入, 宋秦九韶 1247年时已通行 西欧 16 世纪时始有之, 印度无开平方、 立方 周髀算经 中已有开平方, 九章算术 中开平、 立方已成熟西方在 4 世纪末始有开平方, 但还无开立方, 印度最早在 7 世纪算术应用 九章算术 中有各种类型的应用问题 印度 7 世纪后的数学书中有某些与中国类似的问题与方法正负数 九章算术 中已成熟 印度最早见于 7 世纪,西欧至 16 世纪始有之联立一次方程组 九章算术 中已成熟 印度 7 世纪后开始有一些特殊类型的方程组, 西方迟至 16 世纪始有之二次方程 九章算术 中已隐含了求数值解法,三国时有一般解求法 印度在 7 世纪后,阿拉伯在 9世纪有一般解求法三次方程 唐初( 公元 7 世纪初) 有列方程法, 求数值解已成熟西欧至 16 世纪有一般解求法, 阿拉伯 10 世纪有几何解高次方程 宋时( 12 # 13 世纪)已有数值解法 西欧至 19 世纪初始有同样方法联立高次方程组与消元法 元时( 14 世纪初) 已有之 西欧甚迟,估计在 19 世纪28 数学通报 2010 年 第49 卷 第2 期3. 3 品位数学美学思想的美妙境界中国古代数学不但具有实用性特征, 还蕴涵着丰富的美学思想. 比如九章算术 中列方程的方式,相当于列出其增广矩阵,其消元过程相当于矩阵变换,而矩阵是数学美学方法中对称最典型的表现形式之一; 九章算术 中用几何方法巧妙地解决了很多代数问题, 这是数形结合的统一: 把数学问题改编成歌诀,以便于掌握和传授,这是文学艺术与数学的统一. 总之, 在算法教学中, 应努力把握和利用自己文化传统中的积极因素进行教学,这对数学教育的发展具有重要的意义.参考文献1 中学数学课程教材研究开发中心. 普通高中课程标准实验教材书(数学) [ M] . 北京: 人民教育出版社, 20072 中华人民共和国教育部. 普通高中数学课程标准(实验) [ M] .北京: 人民教育出版社, 20033 李文林. 数学史概论(第二版) [ M ] . 北京: 高等教育出版社, 20024 王鸿钧, 孙宏安. 中国古代数学思想方法[ M] . 南京: 江苏教育出版社, 19885 张维忠. 数学, 文化与数学课程[ M] . 上海: 上海教育出版社, 19996 吴文俊. 吴文俊论数学机械化[ M ] . 济南: 山东教育出版社, 19957 代钦. 儒家思想与中国传统数学[ M] . 北京: 商务印书馆, 20038 费泰生. 算法及其特征[ J] . 数学通讯, 2004, 79 张奠宙. 算法[ J] . 科学, 2003, 55( 2)10 李建华. 算法及其教育价值[ J ] . 数学教育学报, 2004, 311 李亚玲. 算法及其学习的意义[ J ] . 数学通报, 2004, 2(上接第23 页) 实验教师对课改实验进行探索、 总结、 反思、 调整, 推广比较成熟的经验,同时纠正实验过程中的偏颇与极端行为,教学过程逐步进入新的稳定阶段.教学过程逐步过渡到以问题为主线、 以活动为主线的! 无环节∀模式.( 2)受不同的教学理念影响, 教师角色、 学生角色、 教学目标、 教学过程关注点等方面, 在教学过程中有很大差异.教师角色 学生角色 教学目标 教学过程关注领导者(权威)接 受 者(被动)让 学 生 掌握 数 学 知识技能知识 引入, 讲 解本质, 巩固练习主导者(决定)观 察 者(协助)让 学 生 观摩 数 学 产生过程展示 过程, 注 重建构, 强化训练引导者(组织)参 与 者(主动)让 学 生 参与 探 究 数学 生 成 过程问题 情境, 提 出问题, 学生活动( 3) 2004 年高中数学课程改革后, 课堂教学发生一定的变化,广泛地进行! 创设情境∀! 提出问题∀!引导学生探究探索∀, 出现了以! 问题主线∀、! 活动主线∀为主的课堂, 出现了! 问题情境学生活动建立数学运用数学同顾反思∀的整体课堂构思.这些改变对于揭示数学的内在本质, 发展学生的思维能力起到积极的作用.( 4) 由于受多种因素制约(特别是高考) ,与初中相比, 本次课改后高中数学课堂教学变化幅度不大,近半数的课堂教学模式仍然以五环节为主.对于课改倡导的教学理念, 只是渗透在传统的教学模式中,目前高中数学课堂教学改革的力度、 深度与课改的预期目标还有一定的距离.我们看到2008 年的赛课教案的创新、 探索力度, 远没有1990 年的名师授课录 大, 那时还没有明确提出课改理念,但他们却进行积极的探索, 关注学生主体. 而今天,课改的理念已经系统培训 5 年, 许多教师仍停留在形式层面,未能变成自觉的行为.参考文献1 李善良. 我国数学教学设计的探索与评析# # # 兼及十年初中数学教师说课评比活动[ J ] . 中国数学教育(初中版) , 2007, 92 编委会. 名师授课录(中学数学高中版) [ M] , 上海教育出版社, 19913 2000 年全国首届高中青年数学教师优秀课观摩与评比的教案(会议资料)4 2008 年全国第四届高中青年数学教师优秀课观摩与评比的教案(会议资料)5 李善良. 关于数学教学中问题的设计[ J] . 高中数学教与学,2008, 129 2010 年 第49 卷 第2 期 数学通报

我可以写,私信

相关百科

热门百科

首页
发表服务