1、微分早期
早在公元前7世纪,古希腊科学家、哲学家泰勒斯就对球的面积、体积、与长度等问题的研究就含有微积分思想。古希腊数学家、力学家阿基米德(公元前287~前212)的著作《圆的测量》和《论球与圆柱》中就已含有积分学的萌芽。
2、极限思想
早在公元前7世纪,古希腊科学家、哲学家泰勒斯就对球的面积、体积、与长度等问题的研究就含有微积分思想。公元前4世纪《墨经》中有了有穷、无穷、无限小(最小无内)、无穷大(最大无外)的定义和极限、瞬时等概念。
3、微积分思想
微积分思想虽然可追溯到古希腊,但它的概念和法则却是16世纪下半叶,开普勒、卡瓦列利等求积的不可分量思想和方法基础上产生和发展起来的。而这些思想和方法从刘徽对圆锥、圆台、圆柱的体积公式的证明到公元5世纪祖恒求球体积的方法中都可找到。
扩展资料:
关于微积分发明权的最初争议:
牛顿早在1676年就知道莱布尼兹的工作,但此时的他并没有表现出任何对优先权问题的担心或竞争心理。直到1687年以前,他都没有公开发表任何关于流数术的论文或专著,哪怕是在1684年莱布尼兹抢先发表了论文以后。
反倒是在1687年,他首次在《自然哲学之数学原理》第一版中透露出关于流数术的一鳞半爪时,特意在下方注释道:
十年前在我与最权威的几何学家G.G.莱布尼兹进行的后来被中断的系列通信中,我展示了我提出的定义最大和最小的方法……阁下回信说他也在研究这样一种方法,他的方法除了用词及其众所周知的形式以外,和我的几乎没有什么不同。
牛顿在这段话中用 “最权威的”来形容莱布尼兹,并尊称其为“阁下”,对与莱布尼兹英雄所见略同的得意之情跃然纸上。
不过牛顿本人的态度并不能代表他的全部英国同胞。曾作为牛顿微积分思想启发者之一的老一代数学家沃利斯就对此很不以为然。作为一位狂热的不列颠沙文主义者,沃利斯一生热衷于证明不列颠民族相对于其他民族在智力上的优越性。
随着“莱布尼兹微积分”在欧洲大陆声望日隆,而牛顿更早的工作却迟迟不见发表,本应属于英国数学家的学术荣誉眼见着正被德国人 “窃取”殆尽,为此,沃利斯不但多次以师长和朋友的身份致信牛顿,措辞颇有些严厉地敦促牛顿尽快发表关于流数术的论文;
而且身体力行,在自己的著作中不断为牛顿及其流数术摇旗呐喊。特别是在1695年出版的著作中,在谈到牛顿流数术与莱布尼兹微积分的内在一致性时,老数学家意味深长地提及:
1676年牛顿发给包括他在内的几位英国数学家介绍流数术的两封最初的信件,“也被 (几乎一字不易地)传递给了莱布尼兹,他(牛顿)在信中向莱布尼兹讲解了他在十多年前就已经发明的方法”——这是关于莱布尼兹剽窃牛顿成果的第一次暗示。
参考资料来源:中国社会科学网-关于微积分的恩恩怨怨(下)
参考资料来源:百度百科-微积分学
在印象中一直以为是牛顿创立的微积分,这样高深的理论除了牛顿外还有谁能如此牛逼?而且高数课本不是有一个牛顿—XXXX公式,就是用来演算微积分的,后面那个XXXX只怕没有几个人记得。然而,前不久在网上看了一本叫《牛顿的新装》(更名为《算》出版)的推理小说,里面有许多稀奇古怪的理论与科学史上的轶事,才了解到微积分的创始人存在争议,同时代与牛顿齐名的莱布尼茨才是我们现代微积分的创始人。而且至今仍存在巨大争议。17世纪,至少有10多位大数学家探索过微积分,而牛顿、莱布尼兹,则处于当时的顶峰。牛顿、莱布尼兹的最大功绩在于能敏锐的从孕育微积分的各种"个例形态中"洞察和清理出潜藏着的共性的东西枣无穷小分析,并把它提升和确立为数学理论。1665年5月20日,牛顿在他的手稿里第一次提出"流数术",这一天可作为微积分诞生的日子,形成牛顿流数术理论的主要有三个著作:《应用无穷多位方程的分析学》,《流数术和无穷级数》和《曲边形的面积》。尤其是 1687年牛顿出版了划时代的名著《自然哲学的数学》,这本三卷著作虽然是研究天体力学的,但对数学史有极大的重要性,这不仅因为这本著作提出的微积分问题激励着他自己去研究和探索,而且书中对许多问题提出的新课题和研究方式,也为下世纪微积分的研究打下了基础。莱布尼兹在1672年到1677年间引进了常量,变量与参变量等概念,从研究几何问题入手完成了微积分的基本理论,他创造了微分符号dx,dy与积分符号ò,现在使用的"微分学"、"积分"、"函数"、"导数"等名称也是他创造的,他给出了复合函数,幂函数,指数函数,对数函数以及和、差、积、商、幂,方根的求导法则,还给出了用微积分求旋转体体积的公式,1684年,莱布尼兹在自己创造的期刊上发表了一篇标题很长的论文:《一种求极大极小和切线的新方法,此方法对分式和无理式能通行无阻,且为此方法中的独特方法》,具有划时代的意义1686年,莱布尼兹发表了另一篇题为《论一种深邃的几何学和不可分量解析及...》的论文,应用他的方法,不仅能代数曲线的方程,而且也能给出非代数曲线即所谓超越曲线的方程。牛顿和莱布尼兹几乎同时进入微积分的大门,他们的工作是互相独立的,正如笛卡儿和费马二人基本同时而又独立地创立了解析几何一样,经过二人的努力,微积分不再象希腊那样,所有的数学都是几何学的一个分支或几何学的延伸,而成为一门崭新的独立学科。牛顿与莱布尼茨的支持者一直相互猜疑指责。据一些科学史记载,这两个好朋友最后发展到英国科学家在伦敦王家学会会刊上公开指控。当时王家学会会长的牛顿还成立了一个由其支持者组成的委员会调查此事,调查结果也认定莱布尼茨剽窃。这个调查结果据说是牛顿自己起草的,他还匿名写了一篇攻击莱布尼茨的长篇文章。
微积分概念发展史_[美]卡尔·B.波耶(CarlB.Boyer)著_复旦大学出版社_2007.6古今数学思想1-4函数和极限的故事——中国科普名家名作
中国科学技术大学教授陈秀雄、王兵在微分几何学领域取得重大突破,成功证明了“哈密尔顿-田”和“偏零阶估计”这两个国际数学界20多年悬而未决的核心猜想。日前,国际顶级数学期刊《微分几何学杂志》发表了这一成果,论文篇幅超过120页,从写作到发表历时11年。
微分几何学起源于17世纪,主要用微积分方法研究空间的几何性质,对物理学、天文学、工程学等产生巨大推动作用。“里奇流”诞生于20世纪80年代,是一种描述空间演化的微分几何学研究工具。
“大到宇宙膨胀,小到热胀冷缩,诸多自然现象都可以归结到空间演化。”王兵教授比喻说,比如说我们吹一个气球,气球不断膨胀,可以用“里奇流”来研究它空间的变化,最后得到一个“尽善尽美”的理想结果。
陈秀雄与王兵团队长期研究微分几何中“里奇流”的收敛性,运用新思想和新方法,他们在国际上率先证明了“哈密尔顿-田”和“偏零阶估计”这两个困扰数学界20多年的核心猜想。
据了解,他们的研究耗时5年,论文篇幅长达120多页。王兵说,就像在写一篇小说,“不同之处在于,靠的是逻辑推导而不是故事情节推动。”
值得一提的是,由于篇幅浩繁、审稿周期漫长,这篇论文从投稿到正式发表又花了6年。不过,这么长的发表周期在数学界并不鲜见,因为审稿人需要足够多的时间去了解新的概念和方法。
《微分几何学杂志》审稿人评论认为,这篇论文是几何分析领域的重大进展,将激发诸多相关研究。菲尔兹奖获得者西蒙·唐纳森称赞说,这是“几何领域近年来的重大突破”。
在发布这篇论文之前,王兵还只是个“平平无奇”的几何学研究者。2003年与恩师陈秀雄的相遇,为他打开了里奇流的大门。
里奇流是什么呢?按照定义,里奇流即是用微积分的方式描述空间演化。王兵用肥皂泡解释了这种“描述”:“吹一个肥皂泡,一开始吹出来可能是哑铃状的,但在空中飘一会儿之后,形状会慢慢变化,直到变成了一个球之后不再演化了,这个‘球’就是泡泡的一种稳定状态。”里奇流的作用,就是研究“肥皂泡”的空间变化,最后得到一个“稳定”的理想结果。
2003年,俄国人佩雷尔曼宣称自己解决了庞加莱猜想,依据的就是里奇流方法。这让他成了当时里奇流研究中毋庸置疑的No.1。然而这项解决了微分几何学“百年悬案”的划时代成果,却被刚刚赴美读研的王兵抓到了“把柄”。
在研究佩雷尔曼论文的过程中,王兵觉得其中有一个步骤他怎么都想不通。反复思考之后,王兵有了个大胆的猜测:佩雷尔曼错了。
年轻的研究生为了给学术大牛“挑错”,特地写了一封邮件。令王兵惊喜的是,这封“纠错贴”三天内就得到了佩雷尔曼的回复,学术大牛坦率地承认了行文中的错误,并很惊讶这个错误一直无人向他指出,虽然文章广为流传已经两年多了。
这次“书信往来”和佩雷尔曼的肯定,让王兵对里奇流的兴趣更浓了,他也期待和佩雷尔曼能有更多学术上的互动。
佩雷尔曼却没有给王兵这个机会。解决庞加莱猜想后,佩雷尔曼“看破红尘”,直接退出数学界。这让相关研究都陷入了停滞状态。而导师陈秀雄告诉王兵:“好的数学必然是有强大生命力的,佩雷尔曼的数学是一定要追随的,应该找到一个合适的切入点,继续深挖”。
佩雷尔曼曾在他的文章中提到,他的方法可以用来研究凯勒里奇流。佩雷尔曼下一步打算用自己的方法破解哈密尔顿-田猜测。
虽然佩雷尔曼的隐退让这个“打算”变得遥遥无期,但哈密尔顿-田猜测的发展前途还是被陈秀雄看到了。把里奇流和凯勒几何结合起来,解决复二维哈密尔顿-田猜测,成了陈秀雄王兵师徒俩随后五年的工作重心。
2013年年底,陈秀雄、王兵终于理清了证明思路,之后用了半年时间整理内容,2014年夏天,这篇凝结5年研究成果、师徒共同署名的证明被张贴到了预印本网站arXiv上。在这篇长达120页的文章中,师徒俩利用自行设计的辅助工具,搞定了哈密尔顿-田猜测中的空间紧性问题,还“顺手”解决了1990年提出的偏零阶估计猜测。
莱布尼茨(1646-1716)20岁时写了一本关于推理方法的著作《论组合的艺术》作为他的哲学博士论文并凭此获得教授席位。1670-1671年他写了第一篇力学论文,随后他到巴黎当大使,认识了一些数学家、科学家,其中惠更斯激发了他对数学的兴趣。莱布尼茨自称,他在1672年之前基本不懂数学。1673年他到英国又认识了一些数学家、科学家,一边当外交官一边搞科研。(想起胡适拿了经费去太平洋对面撸了三十几个学位)1716年他悄无声息地去世。 虽然他是法学教授,但是他在逻辑学、力学、光学、数学、流体静学力、气体学、航海学和计算机方面做了重要贡献。他的社交远至锡兰和中国,力图调和旧教与新教的争论,呼吁建立德国科学院。他重视知识应用,批评大学只注意细枝末节的知识而不培养判断。在他看来,手艺人的技术比学者的深奥知识有用,德文比拉丁文易于理解便于思维。 莱布尼茨从1684年起发表微积分论文,不过他的许多智慧结晶在一本从未发表的笔记本里。1714年他写了《微分学的历史和起源》,不过因为隔了太久,且处于洗脱剽窃罪名的目的,文本不够可靠。莱布尼茨的笔记本记录,1673年他看到求曲线切线正问题和反问题的重要性,反方法等价于用求和求面积体积;1675他有了系统性的发展,这与他的博士论文也有一定联系,对于平方的序列0,1,4,9……,他观察到第一阶差1,3,5,……的和是序列最后一项。第二阶差2,2,2,……之后的第三阶差消失。他把次序看成x,序列看成y,前后两项序列差为dy,dy的积分=y,ydy的积分=y^2/2。他又通过几何得到了另一个定理:xdy的积分=xy-ydx的积分。他的困难是要把这个概念从离散的数列扩展到任意函数上。 在1675年的手稿中,他创造了积分符号,来自于sum首字母拉长、可能因为他研究巴罗的著作,所以很早意识到微分和积分是逆运算。在手稿中他认为积分是和,微分是差,尽管巴罗和牛顿也利用反微分求面积,但莱布尼茨第一个断言了这一关系,但他不清楚怎样利用一组矩形得到曲面下面积(因为当时缺少清楚的极限概念)。 1676年的手稿中,他意识到求切线的最好办法是求dy/dx,半年后给出了dx^n=nx^(n-1)dx和对应积分函数。他说这个序列是普遍的,不管x的序列是怎样的。 1677年,莱布尼茨又给出了微分两个函数的和、差、积、商以及幂和方根的法则,但没有证明。他在1684年发表的文章里公开了微分两个函数的和、积、商法则和dx^n=nx^(n-1)dx,并给出求切线、极值、拐点的应用,但因为写得不清晰,伯努利兄弟称“与其说是解释,不如说是迷”。(詹姆斯伯努利和约翰伯努利两兄弟把莱布尼茨未成体系的工作做了许多加工,带来了许多新发展) 1680年,dx成为横坐标的差,dy成为纵坐标的差,并被取为无穷小,把dy称为纵坐标沿x轴移动时y的瞬间的增长。对于弧,他给出dz=dx方和dy方的和开根号(可以认为z是以x、y为直角边的三角形的斜边),对于绕x轴的旋转体体积,V=π(y^2)dx的积分。 1686年,他给出了带积分形式的摆线方程,意图说明他的方法和符号可以把一些曲线表示为方程,包括韦达和笛卡尔认为没有方程的曲线。他给出了对数函数和指数函数的微分,并承认指数函数是一类函数。 莱布尼茨精挑细选了一些符号,如dx,dy,logx,d^n。
起因就是关于微积分的发现权之争,后面逐渐演变成英国和德国科学系统之争,方舟子在他的文章中有详细的阐述:原文如下1665年夏天,因为英国爆发鼠疫,剑桥大学暂时关闭。刚刚获得学士学位、准备留校任教的牛顿被迫离校到他母亲的农场住了一年多。这一年多被称为“奇迹年”,牛顿对三大运动定律、万有引力定律和光学的研究都开始于这个时期。在研究这些问题过程中他发现了他称为“流数术”的微积分。他在1666年写下了一篇关于流数术的短文,之后又写了几篇有关文章。但是这些文章当时都没有公开发表,只是在一些英国科学家中流传。 首次发表有关微积分研究论文的是德国哲学家莱布尼茨。莱布尼茨在1675年已发现了微积分,但是也不急于发表,只是在手稿和通信中提及这些发现。1684年,莱布尼茨正式发表他对微分的发现。两年后,他又发表了有关积分的研究。在瑞士人伯努利兄弟的大力推动下,莱布尼茨的方法很快传遍了欧洲。到1696年时,已有微积分的教科书出版。起初没有人来争夺微积分的发现权。1699年,移居英国的一名瑞士人一方面为了讨好英国人,另一方面由于与莱布尼茨的个人恩怨,指责莱布尼茨的微积分是剽窃自牛顿的流数术,但此人并无威望,遭到莱布尼茨的驳斥后,就没了下文。1704年,在其光学著作的附录中,牛顿首次完整地发表了其流数术。当年出现了一篇匿名评论,反过来指责牛顿的流数术是剽窃自莱布尼茨的微积分。于是究竟是谁首先发现了微积分,就成了一个需要解决的问题了。1711年,苏格兰科学家、英国王家学会会员约翰·凯尔在致王家学会书记的信中,指责莱布尼茨剽窃了牛顿的成果,只不过用不同的符号表示法改头换面。同样身为王家学会会员的莱布尼茨提出抗议,要求王家学会禁止凯尔的诽谤。王家学会组成一个委员会调查此事,在次年发布的调查报告中认定牛顿首先发现了微积分,并谴责莱布尼茨有意隐瞒他知道牛顿的研究工作。此时牛顿是王家学会的会长,虽然在公开的场合假装与这个事件无关,但是这篇调查报告其实是牛顿本人起草的。他还匿名写了一篇攻击莱布尼茨的长篇文章。当然,争论并未因为这个偏向性极为明显的调查报告的出笼而平息。事实上,这场争论一直延续到了现在。没有人,包括莱布尼茨本人,否认牛顿首先发现了微积分。问题是,莱布尼茨是否独立地发现了微积分?莱布尼茨是否剽窃了牛顿的发现?1673年,在莱布尼茨创建微积分的前夕,他曾访问伦敦。虽然他没有见过牛顿,但是与一些英国数学家见面讨论过数学问题。其中有的数学家的研究与微积分有关,甚至有可能给莱布尼茨看过牛顿的有关手稿。莱布尼茨在临死前承认他看过牛顿的一些手稿,但是又说这些手稿对他没有价值。此外,莱布尼茨长期与英国王家学会书记、图书馆员通信,从中了解到英国数学研究的进展。1676年,莱布尼茨甚至收到过牛顿的两封信,信中概述了牛顿对无穷级数的研究。虽然这些通信后来被牛顿的支持者用来反对莱布尼茨,但是它们并不含有创建微积分所需要的详细信息。莱布尼茨在创建微积分的过程中究竟受到了英国数学家多大的影响,恐怕没人能说得清。后人在莱布尼茨的手稿中发现他曾经抄录牛顿关于流数术的论文的段落,并将其内容改用他发明的微积分符号表示。这个发现似乎对莱布尼茨不利。但是,我们无法确定的是,莱布尼茨是什么时候抄录的?如果是在他创建微积分之前,从某位英国数学家那里看到牛顿的手稿时抄录的,那当然可以做为莱布尼茨剽窃的铁证。但是他也可能是在牛顿在1704年发表该论文时才抄录的,此时他本人的有关论文早已发表多年了。后人通过研究莱布尼茨的手稿还发现,莱布尼茨和牛顿是从不同的思路创建微积分的:牛顿是为解决运动问题,先有导数概念,后有积分概念;莱布尼茨则反过来,受其哲学思想的影响,先有积分概念,后有导数概念。牛顿仅仅是把微积分当做物理研究的数学工具,而莱布尼茨则意识到了微积分将会给数学带来一场革命。这些似乎又表明莱布尼茨像他一再声称的那样,是自己独立地创建微积分的。即使莱布尼茨不是独立地创建微积分,他也对微积分的发展做出了重大贡献。莱布尼茨对微积分表述得更清楚,采用的符号系统比牛顿的更直观、合理,被普遍采纳沿用至今。因此现在的教科书一般把牛顿和莱布尼茨共同列为微积分的创建者。实际上,如果这个事件发生在现在的话,莱布尼茨会毫无争议地被视为微积分的创建者,因为现在的学术界遵循的是谁先发表谁就拥有发现权的原则,反对长期对科学发现秘而不宣。至于两人之间私下的恩怨,谁说得清呢?尤其是在有国家荣耀、民族情绪参与其中时,更难以达成共识。牛顿与莱布尼茨之争,演变成了英国科学界与德国科学界、乃至与整个欧洲大陆科学界的对抗。英国数学家此后在很长一段时间内不愿接受欧洲大陆数学家的研究成果。他们坚持教授、使用牛顿那套落后的微积分符号和过时的数学观念,使得英国的数学研究停滞了一个多世纪,直到1820年才愿意承认其他国家的数学成果,重新加入国际主流。牛顿与莱布尼茨之争无损于莱布尼茨的名声,对英国的科学事业却是一场灾难。虽然说“科学没有国界,但是科学家有祖国”(巴斯德语),但是让民族主义干扰了科学研究,就很容易变成了科学也有国界,被排斥于国际科学界之外,反而妨碍了本国的科学发展。
微积分是高等数学的一部分知识,关于微积分的论文有哪些?接下来我为你整理了数学微积分论文的 范文 ,一起来看看吧。
摘要:初等微积分作为高等数学的一部分,属于大学数学内容。在新课程背景下,几进几出中学课本。可见初等微积分进入中学是利是弊已见分晓,其重要性不言而喻。但对很多在岗教师而言,还很陌生,或是理解不透彻。这样不利于这方面的教学。我将对初等微积分进入中学数学背景,作用及教学作简单研究.
关键词:微积分;背景;作用;函数
一、微积分进入高中课本的背景及必要性
在数学发展史上,自从牛顿和莱布尼茨创建微积分以来,数学中的很多问题都得以解决。微积分已成为我们学习数学不可或缺的知识。其在经济、物理等领域的大量运用也使之成为解决生活实际问题的重要工具。但牛顿和莱布尼茨创建的微积分为“说不清”的微积分,也就是连他们自己也说不清微积分的理论依据,只是会应用。这使得很多人学不懂微积分,更不用说让中学生来学习微积分。
柯西和维尔斯特拉斯等建立了严谨的极限理论,巩固了微积分基础,这是第二代微积分,但概念和推理繁琐迂回,对高中生更是听不明白。近十年来,在大量的数学家如:张景中,陈文立,林群等的不懈努力下,第三代微积分出现了相比前两代说得清楚,对高中生而言,也更容易理解。这为其完全进入高中课本奠定了基础。从内容来看,新一轮的课改数学教材在微积分部分增加了定积分的 概念及应用(求曲边梯形面积,旋转体体积,以及在物理中的应用),可能考虑到中学生的认知能力,人教版新教材与北师大版在这方面有所不同。即利用定积分求简单旋转体体积在北师大版教材中出现了,但人教版没有。
从课标和考试大纲(参考2011年高考考试大纲)上看,初等微积分所占比重也是越来越重。回顾历届高考,微积分相关题型分值越来越高。但就我个人观点,初等微积分在中学数学中的作用还没有真正全面发挥。我认为,它是学生中学数学和教师教学的一条线索,它是我们研究中学函数问题的统一 方法 ,也是联系中学与大学数学知识的纽带!
二、微积分在中学数学中的作用
1.衔接性与后继作用。微积分本是大学高等数学范畴,是大学开设的课程。让现在中学生提前学习部分微积分知识,这便为其以后升入大学学习微积分打下良好的基础,这也使数学知识从小学到大学从内容上衔接得更加紧密。也不会再出现很多大学生认为的大学数学知识在高中数学教学中没有任何作用的观点.
2.解决数学相关知识的作用。高中数学函数在整个中学数学内容中,不论从高考所占比重还是自身难度来说都应该排在首位。对学生来说永远是最难学的,得分率也相对比较低。很多学生讨厌数学就是讨厌函数,提到数学中的函数就头晕。由于应试 教育 的关系,学生又不得不学习函数,而函数思想本身也是高中数学学习的一条线索。微积分的进入对学生学习函数问题找到了统一的方法。高中阶段我们所研究的函数问题一般是以一些基本初等函数为媒介研究函数的定义,图像和性质,当然也有应用。但随着课改的深入,函数应用问题逐渐在淡化。而初等微积分知识即研究函数的重要工具,如:微积分可以求函数的单调性,最值。最重要的是它可以画出函数的图像,其实,当函数图像画好后,几乎函数所有性质都可以解决。学生只要学好微积分便掌握了研究函数的统一方法,那么高中阶段的二次函数,指数函数,对数函数,三角函数等所有初等函数的学习就可以统一,既节约了教学时间又学习了先进的数学思想。对提高学生的数学修养打下坚实的基础。我相信还可以激发其学习数学的兴趣。另外,在高中阶段,初等微积分还可以解决不等式问题,求二次曲线的切线问题,求曲边梯形的面积等很多数学问题。利用微积分不仅可以使问题简化,并能使问题的研究更为深入、全面。
3.提高数学在其他学科的应用能力。作为自然学科的数学本身已应用于社会经济、技术等各个领域。而作为中学数学,它对中学 其它 学科的推动作用也是毋庸置疑的。如物理,化学,地理等学科也离不开数学。在高中阶段往往会因为数学的教学进度而影响其它学科的进度。如地理中要学习地球的经度,纬度等知识就需要先学习数学中球体相关知识和解三角形相关知识。当微积分进入中学数学后,数学这个学科的作用就更加重要了。特别像物理中匀加速直线运动位移,瞬时速度,加速度等问题利用微积分的导数求解起来更加简单,容易理解。新课程人教版数学教材选修2-2中专门加入了利用定积分求变速直线运动的路程一节。另外,微积分解决生活中的优化问题也进入中学课本。可见,微积分进入中学教材,对促进学科间知识的整合起到了至关重要的作用。
三、国际上一些教材对微积分知识的处理
以苏联中学为例,苏联中小学为十年制,从九年级(1)(相当于我国高中一年级)中讲了数学归纳法和排列组合以后,就介绍无穷数列和极限。然后介绍函数极限和导数,所有这些都在讲解三角函数,幂函数,指数、对数函数之前。随即介绍导数在近似计算,几何(求切线)和在物理中的应用(研究速度,加速度)以及导数在研究函数问题中得应用(求函数极值,最值,单调性等)。到九年级末及十年级(2)再讲三角函数, 利用导数可以研究三角函数的性质。然后介绍不定积分和定积分。接着在指数函数,对数函数和幂函数一章介绍指数函数的导函数,再利用反函数求得对数函数的导函数。在十年级(3)中利用微积分知识研究几何问题,用积分推导锥体,球体等的体积公式。还把球的表面积定义为球的体积V(R)对R的导数,从而立即求得球的表面积公式。可见,苏联课本中及早分散引入导数及积分的概念和计算,而不是到最后整块讲解。这样处理,可以使微积分知识结合研究函数问题,几何问题以及研究物理问题中都得到应用。
当然,还有比如台湾中学教材对微积分处理和我过现行教材区别不大,就不再介绍。而上诉对微积分的处理情况是一种在欧洲中学教材中较普遍的处理方式。其优点主要就是充分发挥了微积分在中学数学教学中的作用。使中学数学知识更加连贯,更加易懂!
摘 要:微积分是高等院校管理类专业的重要数学基础课,第一堂课是上好微积分的关键。通过三个方面就如何上好微积分绪论课做些探讨。
关键词:微积分;起源;内容;方法
微积分是门基础课,这门课的学习直接影响到今后专业课的学习,而绪论课对这门课的学习有着引导的作用,在整门课中有特殊的地位和作用。绪论课应包含下面几个部分的内容:
一、微积分起源的介绍
微积分包括两方面的内容:微分与积分。微积分的创立源于处理17世纪的科学问题。先引入微积分学的创始人之一费马研究的一个问题:假设一个小球正向地面落去,求下落后第5秒时小球的速度?若是匀速运动,则速度等于路程除以时间,然而这里的速度是非均匀的,那能不能把非均匀速度近似看成均匀速度?用什么方法?这就是微分学问题,再引入古希腊人研究的面积问题:计算抛物线y=x2与坐标轴x轴在0≤x≤1间所围成的面积。能不能将面积切割成n个小面积,再将小面积用小矩形来代替,由n个小矩形的面积得到所求面积?这里所用的方法就是积分问题。很早以前就有人研究过微分与积分,而微积分的系统发展是在17世纪开始的,从此逐渐形成了一门系统完整且逻辑严密的学科。微积分通常认为是牛顿和莱布尼茨创立的。这一系统发展关键在于认识到微分和积分这两个过程实际上是彼此互逆地联系着。
介绍提及的人物牛顿和莱布尼茨的相关轶事,例如创建微积分优先权的争论。牛顿于1665~1687年把研究出的微积分相关结果告诉了他的朋友,并将短文《分析学》送给了巴罗,但期间没有正式公开发表过微积分方面的工作。莱布尼茨于1672年访问巴黎,1673年访问伦敦时,和一些知道牛顿工作的人通信。1684年莱布尼茨正式公开发表关于微积分的著作。于是有人怀疑莱布尼茨知道牛顿具体的工作内容,莱布尼茨被指责为剽窃者。在两个人死了很久后,调查证明:牛顿很多工作是在莱布尼茨前做的,但是莱布尼茨是微积分思想的独立发明者。
二、介绍微积分内容及方法
微积分学研究的对象是函数,极限是最主要的推理方法,它是微积分学的基础。微积分内容有四类:一是已知物体移动的距离是时间的函数,怎样由距离得到物体在任意时刻的速度和加速度;反过来,已知物体的加速度是时间的函数,怎样求速度和距离。二是求曲线的切线。三是求函数的最大最小值问题。四是求曲线的长度、平面曲线围成的面积、曲面围成的体积、物体的重心。
三、为什么要学习高等数学
微积分在自然科学、经济管理、工程技术、生命科学等方面都有应用,是各门学科强有力的数学工具。学好微积分,可以增加语言的严密性、精确性,可以从中锻炼人的 理性思维 ,并感受到美的艺术。例如黄金分割,无理数的■与π的表达式:
微积分的绪论课是整个教学的第一课,绪论教学能使学生对这门课有个快速大致的认识与了解,好的绪论课可以引导学生主动、积极地学习。
前言
21世纪,科学、技术和社会都发生了巨大的变化。高等数学作为高等院校的基础课程之一,在其他各个领域及学科中发挥出越来越大的作用。尤其是微积分教学,是目前数学教育的一大课题。
一、我国微积分教学改革的现状
目前的数学实验中,微积分教学改革的现状中仍然存在一些主要问题。
首先,优秀人才的培养重视不够。在微积分教学中,重视的是教育大众化的人才,而一些顶尖的、优秀的人才的培养却重视不够。
其次,过度应试化。过度重视应试教育在微积分教学中越来越明显,轻能力重考试已成为一种倾向。
再次,学生差异大,素质下降。学生人数的激增带来学生差异的强化,面对这一情况,如何规划班级,如何区别对待学生是微积分教学面临的问题。
二、微积分课改的必要性
随着高等数学改革的不断深入,微积分教学的改革成为其中的重要部分。微积分教学的改革并不是空穴来风,而是一种必然。
(1)社会高度发展提出的要求
微积分作为高等数学的一部分,对技术文明的推动有重要作用,许多数学细想和数学的建树都离不开微积分。可以说,微积分在推进数学思想,推进社会进步,推进科学发展上有举足轻重的作用,是不可或缺的,它是人类思维的伟大成果,不仅是高等数学。而且是其他行业,其他专业,在不同范围和不同程度上对微积分的认识都是必要的。设想一下,如果取消对微积分的学习,那么技能的进步只是一句空谈,社会不会发展,智慧不会被充分开掘。所以,微积分教学的改革是十分必要的。
(2)科技的发展提出的需要
当今世界,是一个科学技术突飞猛进的时代,军事、贸易等激烈的竞争和市场经济,如果没有科技的推进,则会落后于他人。如何促进科学的发展呢?微积分起着重要的作用,它不仅为科学提供了精密的数学思想,也为科学的提供了理论支撑,它不但改变了数学面貌,还是其他学科的工具和方法,微积分在自然学科的各个方面都有运用。随着科技发展的时代,提高微积分教学的质量是势在必行的。
(3)人类思维发展的需要
微积分中蕴藏着很多重要思想,比如辩证的思想,常量与变量,孤立与发展,静止变化,有限与无限等,还有“直”与“曲”,“局部”与“整体”的辩证关系,其实。哲学最处就是与数学密切相关的,所以,数学,尤其是微积分思想充满了逻辑与辩证,微积分的学习。不仅是知识、理论的学习,更是一种思维的训练。因此,微积分教学的完善有利于培养人类思维,使人类思维获得一个飞跃,更有效地解决问题。
三、微积分课改的内容
根据新的教学大纲的修改,微积分教学重新设计了课程内容、教学理念、 教学方法 等,以学生为主体,更直观形象,而且在教学方法上也进行了革新。全面促进了微积分教学的改革。
1、课程基本理念的改革
微积分教学的改革能否成功关键在于观念的转变,过去是偏重理论,现在则要注重应用激发初学者的学习兴趣,尽早把握微积分的基础知识,把抽象难懂的微积分理论转变为学生容易接受、容易理解的微积分教学方式,比如说,极限是微积分知识中的难点,极限概念、运动、辩证思想等对于学生来说是十分抽象,不容易理解,从而没有激发学生的学习兴趣,课堂变得枯燥无味,理论严谨,逻辑性很强,学生上手难。微积分教学大纲的修订也体现出教学理念的更新,新的微积分教学中,适当降低了难点知识。重视对微积分本质的认识,以直观、实例来提高学生的微积分学习兴趣和学习效率,使学生学习的主动性回归到自身,体现以人为本的思想,重视学生的情感态度、生活价值的培养,根据学生自身的特点因材施教,为学生提供更好的学习条件和基础。
2、课程内容的改革
根据《标准》大纲的修订,微积分教学首先是对课程内容和教学大纲的精简、增加、删改。修订后的教学内容比原来的教学大纲更精练,更科学。比如,原来12学时的“极限”在修订大纲中被大面积的删减。并在修订大纲中,引入导数这一很有判断意义的概念,因为导数是微积分初步了解的第一个概念,对导数概念的理解起到基础性的作用。而且,修订的课本内容中,对导数的讲解时直观形象的,应用性很强,又有许多实例来帮助学生加深理解。因此,微积分教学的新课改减轻了学生的学习负担,降低了概念的理解难度。
3、课程设计的改革
原来的课程是从极限、连续、导数、导数应用,再到不定积分、定积分这样的次序设计的,并在“导数和微分”的前面一章给“极限”设计了许多定义,以及对“极限”的求法和运算做了讲解。修订后的大纲对课程设计做了调整,尤其是微积分讲解的路线,发生了变化,从瞬间速度,变化率,导数、导数应用再到定积分。对人文社科方面的高校微积分课程的设置,则多数是作为选修课来处理的,并与生活十分贴近,应用性很强,使非数学专业也对数学有一定的基础了解和学习兴趣。
4、教学方法的革新
(1)数学思想方法的渗透与运用。数学思想方法是多种多样的,在生活中也取得有效地运用。微积分耶是高等数学的一个方面,因此,在微积分教学中引入数学思想方法是科学的。其中,数学分析,也叫微积分,是17世纪出现的十分重要的数学思想,不仅在17世纪有非常重要的地位,即使是在今天,这种思想方法在成功解决无限过程的运算方面,即极限运算有很大的帮助。数学思想的运用已成为各国比较重视一项革新项目。
(3)加强实例分析和应用性。数学是一种逻辑推理。但也是来源于生活的,也最终给应用于生活,因此,数学的教学不能和现实相脱离。修订后的微积分教学大纲明显注重了实际应用性。即使是书上一个很简单的概念,也时刻穿插一些实用性的图片,在习题的练习中,也是紧密结合生活实际,不是空中楼阁。比如说,用指数函数来看银行存款和人口问题,还有对数函数中涉及放射性、分贝、地震级的问题。微积分数学应用于生活中实际问题的解决。
5、教学工具的革新。
现代教育技术,尤其是多媒体技术在微积分教学中的应用,对很好的实现教学理念,完善教学思想和教学方法很有意义,例如,作为重点和难点的“极限”概念和理论一直是教学中难以攻克的,因为它的抽象,所以老师再怎么讲解也难免有学生不理解,而多媒体教学的应用解决了这一难题,教师可用直观形象的动画来表现比如“无限逼近”的理论,给学生一个直观、感性的认知,还可运用多媒体设计可变参数的动画,让学生积极参与,自己动手设计,加深理解。又如导数概念的理解需要借助曲线来表现其某个点在某个时刻的瞬时速度,可以充分利用多媒体技术,画具有艺术性的示意图,设计动画,让学生在动画中领悟微积分的实质和导数的概念。值得注意的是,在运用多媒体技术时,要遵循学科本身的规律,反复渗透,循序渐进,结合教材,积极引导。
四、小结
这俩人同时看了一百多年前明朝王文素的书,都是抄袭狗
莱布尼茨最早在论著中被其他人看到的,而牛顿同时领悟到。我们可以说是他们两个人同时提出并共同完善的。
艾萨克·牛顿、莱布尼茨。
十七世纪下半叶,在前人工作的基础上,英国大科学家牛顿和德国数学家莱布尼茨分别在自己的国度里独自研究和完成了微积分的创立工作,虽然这只是十分初步的工作。
他们的最大功绩是把两个貌似毫不相关的问题联系在一起,一个是切线问题(微分学的中心问题),一个是求积问题(积分学的中心问题) 。
牛顿和莱布尼茨建立微积分的出发点是直观的无穷小量,因此这门学科早期也称为无穷小分析,这正是现时数学中分析学这一大分支名称的来源。牛顿研究微积分着重于从运动学来考虑,莱布尼茨却是侧重于几何学来考虑的。
扩展资料:
微积分的应用:
微积分是与应用联系着发展起来的,最初牛顿应用微积分学及微分方程为了从万有引力定律导出了开普勒行星运动三定律。
此后,微积分学极大的推动了数学的发展,同时也极大的推动了天文学、力学、物理学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学各个分支中的发展。
并在这些学科中有越来越广泛的应用,特别是计算机的出现更有助于这些应用的不断发展。微积分作为一门交叉性很强的科目,除了在物理等自然科学上有强实用性外,在经济学上也有很强的推动作用。
参考资料来源:百度百科-微积分
牛顿和莱布尼茨间的故事:
一,1665年夏天,因为英国爆发鼠疫,剑桥大学暂时关闭。刚刚获得学士学位、准备留校任教的
牛顿被迫离校到他母亲的农场住了一年多。这一年多被称为“奇迹年”,牛顿对三大运动定律、万
有引力定律和光学的研究都开始F这个时期。在研究这些问题过程中,他发现了他称为“流数术”的
微积分。
二,他在1666年写下了一篇关于流数术的短文, 之后又写了几篇有关文章。但是这些文章当时
都没有公开发表,只是在一些英国科学家中流传。首次发表有关微积分研究论文的是德国哲学家莱
布尼茨。莱布尼茨在1675年已发现了微积分,但是也不急于发表,只是在手稿和通信中提及这些发
现。
三,1684年,莱布尼茨正式发表他对微分的发现。两年后,他又发表了有关积分的研究。在瑞士
人伯努利兄弟的大力推动下,莱布尼茨的方法很快传遍了欧洲。到1696年时,已有微积分的教科书
出版。起初,并没有人来争夺微积分的发现权。1699 年,移居英国的一名瑞士人一方面为了讨好英
国人,另一方面由于与莱布尼茨的个人恩怨,指责莱布尼茨的微积分是剽窃自牛顿的流数术,但此
人并无威望,遭到莱布尼茨的驳斥后,就没了下文。
四,1704年,在其光学著作的附录中,牛顿首次完整地发表了其流数术。当年出现了一篇匿名评
论,反过来指责牛顿的流数术是剽窃自莱布尼茨的微积分。于是究竟是谁首先发现了微积分,就成
了一个需要解决的问题了。1711 年,苏格兰科学家、英国王家学会会员约翰.凯尔在致王家学会书
记的信中,指责莱布尼茨剽窃了牛顿的成果,只不过用不同的符号表示法改头换面。
五,同样身为王家学会会员的莱布尼茨提出抗议,要求王家学会禁止凯尔的诽谤。王家学会组成一
个委员会调查此事,在次年发布的调查报告中认定牛顿首先发现了微积分,并谴责莱布尼茨有意隐
瞒他知道牛顿的研究工作。此时牛顿是王家学会的会长,虽然在公开的场合假装与这个事件无关,
但是这篇调查报告其实是牛顿本人起草的。他还匿名写了一篇攻击莱布尼茨的长篇文章。
六,当然,争论并未因为这个偏向性极为明显的调查报告的出笼而平息。事实上,这场争论一直延
续到了现在没有人,包括莱布尼茨本人,否认牛顿首先发现了微积分。问题是,莱布尼茨是否独立
地发现了微积分?莱布尼茨是否剽窃了牛顿的发现?
七,1673年,在莱布尼茨创建微积分的前夕,他曾访问伦敦。虽然他没有见过牛顿,但是与一些
英国数学家见面讨论过数学问题。其中有的数学家的研究与微积分有关,甚至有可能给莱布尼茨看
过牛顿的有关手稿。莱布尼茨在临死前承认他看过牛顿的一些手稿,但是又说这些手稿对他没有价
值。
八,1676年,莱布尼茨甚至收到过牛顿的两封信,信中概述了牛顿对无穷级数的研究。虽然这些
通信后来被牛顿的支持者用来反对莱布尼茨,但是它们并不含有创建微积分所需要的详细信息。莱
布尼茨在创建微积分的过程中究竟受到了英国数学家多大的影响,恐怕没人能说得清。后人在莱布
尼茨的手稿中发现他曾抄录牛顿关于流数术的论文的段落,并将其内容改用他发明的微积分符号表
示。这个发现似乎对莱布尼茨不利。
九,但是,我们无法确定的是,莱布尼茨是什么时候抄录的?如果是在他创建微积分之前,从某位
英国数学家那里看到牛顿的手稿时抄录的,那当然可以做为莱布尼茨剽窃的铁证。但是他也可能是
在牛顿于1704年发表该论文时才抄录的,此时他本人的有关论文早已发表多年了。
十,后人通过研究莱布尼茨的手稿还发现,莱布尼茨和牛顿是从不同的思路创建微积分的;牛顿是为
解决运动问题,先有导数概念,后有积分概念;莱布尼茨则反过来,受其哲学思想的影响,先有积分
概念,后有导数概念。牛顿仅仅是把微积分当作物理研究的数学工具,而莱布尼茨则意识到了微积
分将会给数学带来一场革命。这些似乎又表明莱布尼茨像他一再声称的那样,是自己独立地创建微
积分的。
十一,即使莱布尼茨不是独立地创建微积分,他也对微积分的发展做出了重大贡献。莱布尼茨对微
积分表述得更清楚,采用的符号系统比牛顿的更直观、合理,被普遍采纳沿用至今。因此现在的教
科书一般把牛顿和莱布尼茨共同列为微积分的创建者。
一,艾萨克·牛顿(Isaac Newton,1643年1月4日-1727年3月31日):
1,出生于英格兰林肯郡,毕业于剑桥大学,英国著名的物理学家、数学家、天文学家、自然哲学
家,被誉为“近代物理学之父”。
2,1687年,他发表《自然哲学的数学原理》,阐述了万有引力和三大运动定律,奠定了此后三个
世纪里力学和天文学的基础,成为了现代工程学的基础。他通过论证开普勒行星运动定律与他的引
力理论间的一致性,展示了地面物体与天体的运动都遵循着相同的自然定律;为太阳中心学说提供
了强而有力的理论支持,并推动了科学革命。
二,莱布尼兹(Gottfriend Wilhelm Leibniz,1646-1716):
1,出生于德意志联邦共和国东部 莱比锡的一个书香之家,父亲是 莱比锡大学的道德哲学教授,母
亲出生在一个教授家庭。莱布尼兹的父亲在他年仅6岁时便去世了,给他留下了丰富的藏书。莱布尼
兹因此得以广泛接触古希腊罗马文化,阅读了许多著名学者的著作,由此而获得了坚实的文化功底
和明确的学术目标。
2,毕业于阿尔特道夫大学,德国数学家、物理学家和哲学家。是一个举世罕见的科学天才,他博览
群书,涉猎百科,对丰富人类的科学知识宝库做出了不可磨灭的贡献。
数学史上说的是牛顿和莱布尼兹,但是在南北朝时期祖冲之在计算圆周率时就用到了微积分。
牛顿和莱布尼茨两位大师伟大发明的交汇点是微积分。莱布尼茨与牛顿的微积分发明之谁先谁后的争论,在数学界至今还是一桩公案。莱布尼茨于1684年发表第一篇微分论文,定义了微分概念,采用了微分符号dx,dy。1686年他又发表了积分论文,讨论了微分与积分,使用了积分符号 ∫。依据莱布尼茨的笔记本,1674年11月11日他便已完成一套完整的微分学。从史实上看,牛顿确是在1667年就手稿完成了代表了微积分发明的《流数法》(发表时间为1671年),从手稿完成的时间看,牛顿确是比莱布尼茨早了七年。但莱布尼茨的微积分发明比牛氏的更完善,而且囿于当年通迅条件和学术交流条件的限制,莱布尼茨完全是在独立的情况下发明微积分的。或许能给你点启发
微积分的发明优先权之争曾经持续了一百多年。当时连英国和德国的政界也卷入争论,并为此成立了仲裁委员会。在那一百多年里,英国人拒绝使用Lebniz的体系,致使其数学水平落后于欧洲其他各国。现在已经认定,是Newton和Lebniz各自独立地发明了微积分。Newton在1665-1666年之间作出发现,但在1704年才发表结果;Lebniz在1673-1676年之间作出发现,两篇论文分别发表于己于1684年和1686年。他们的发现都得益于Fermat求极值的方法。Newton是从运动学的观点作出这一发现的,他称之为“流数理论(Theory of fluxions)”。在研读Wallis的著作“Arithmetica”时。他把二项式定理推广到了分数次幂与负指数幂的情形,从而发现了二项式级数,由此,他对代数函数和超越函数都建立了流数理论。Newton用字母上带点来表示流数,并解释为“一个速度,一个有限值”。其它不带点的字母均表示“Fluents”,而x’o则表示增量,其中o是无穷小量。他的方法是:对于给定的方程,把每个变量,如x,换为x + x’o,再与原方程相减,两边同除以o;因为o是无穷小量,与其相乘的项均可忽略不计,去掉这些项,就得到了关于流数x’的等式。但是,关于o的性质,Newton未能解释清楚。Lebniz是通过几何方法发现微积分的。他是在Huygens的影响下,通过学习Descartes和Pascal的著作作出发现的。Lebniz关于微积分的第一篇论文发表于1684年。在此论文中,包含了我们现在使用的微分符号,以及微分法则,如d(uv) = udv + vdu,d(u/v) = (vdu - udv)/(vv);他还阐明了dy = 0是极值的条件,而d2y = 0是拐点的条件。在1686年,Lebniz发表了另一篇论文,阐述了积分的微分法则,并引进了积分符号。从此以后,数学就进入了一个成果倍出的时期。首先是Beroulli兄弟完全吸纳了Lebniz的方法,他们共同建立了当今的微积分。关于微积分的第一本教科书在1696年出现。我们现在使用的微积分这一名称以及符号都属于Lebniz。但是,同Newton一样,Lebniz关于微积分基础的解释依然是模糊不清的:dx有时是有限量,有时又可以小于任何非零的给定量。真正为微积分打下严格理论基础的是Cauchy等人。
微积分是高等数学的一部分知识,关于微积分的论文有哪些?接下来我为你整理了数学微积分论文的 范文 ,一起来看看吧。
摘要:初等微积分作为高等数学的一部分,属于大学数学内容。在新课程背景下,几进几出中学课本。可见初等微积分进入中学是利是弊已见分晓,其重要性不言而喻。但对很多在岗教师而言,还很陌生,或是理解不透彻。这样不利于这方面的教学。我将对初等微积分进入中学数学背景,作用及教学作简单研究.
关键词:微积分;背景;作用;函数
一、微积分进入高中课本的背景及必要性
在数学发展史上,自从牛顿和莱布尼茨创建微积分以来,数学中的很多问题都得以解决。微积分已成为我们学习数学不可或缺的知识。其在经济、物理等领域的大量运用也使之成为解决生活实际问题的重要工具。但牛顿和莱布尼茨创建的微积分为“说不清”的微积分,也就是连他们自己也说不清微积分的理论依据,只是会应用。这使得很多人学不懂微积分,更不用说让中学生来学习微积分。
柯西和维尔斯特拉斯等建立了严谨的极限理论,巩固了微积分基础,这是第二代微积分,但概念和推理繁琐迂回,对高中生更是听不明白。近十年来,在大量的数学家如:张景中,陈文立,林群等的不懈努力下,第三代微积分出现了相比前两代说得清楚,对高中生而言,也更容易理解。这为其完全进入高中课本奠定了基础。从内容来看,新一轮的课改数学教材在微积分部分增加了定积分的 概念及应用(求曲边梯形面积,旋转体体积,以及在物理中的应用),可能考虑到中学生的认知能力,人教版新教材与北师大版在这方面有所不同。即利用定积分求简单旋转体体积在北师大版教材中出现了,但人教版没有。
从课标和考试大纲(参考2011年高考考试大纲)上看,初等微积分所占比重也是越来越重。回顾历届高考,微积分相关题型分值越来越高。但就我个人观点,初等微积分在中学数学中的作用还没有真正全面发挥。我认为,它是学生中学数学和教师教学的一条线索,它是我们研究中学函数问题的统一 方法 ,也是联系中学与大学数学知识的纽带!
二、微积分在中学数学中的作用
1.衔接性与后继作用。微积分本是大学高等数学范畴,是大学开设的课程。让现在中学生提前学习部分微积分知识,这便为其以后升入大学学习微积分打下良好的基础,这也使数学知识从小学到大学从内容上衔接得更加紧密。也不会再出现很多大学生认为的大学数学知识在高中数学教学中没有任何作用的观点.
2.解决数学相关知识的作用。高中数学函数在整个中学数学内容中,不论从高考所占比重还是自身难度来说都应该排在首位。对学生来说永远是最难学的,得分率也相对比较低。很多学生讨厌数学就是讨厌函数,提到数学中的函数就头晕。由于应试 教育 的关系,学生又不得不学习函数,而函数思想本身也是高中数学学习的一条线索。微积分的进入对学生学习函数问题找到了统一的方法。高中阶段我们所研究的函数问题一般是以一些基本初等函数为媒介研究函数的定义,图像和性质,当然也有应用。但随着课改的深入,函数应用问题逐渐在淡化。而初等微积分知识即研究函数的重要工具,如:微积分可以求函数的单调性,最值。最重要的是它可以画出函数的图像,其实,当函数图像画好后,几乎函数所有性质都可以解决。学生只要学好微积分便掌握了研究函数的统一方法,那么高中阶段的二次函数,指数函数,对数函数,三角函数等所有初等函数的学习就可以统一,既节约了教学时间又学习了先进的数学思想。对提高学生的数学修养打下坚实的基础。我相信还可以激发其学习数学的兴趣。另外,在高中阶段,初等微积分还可以解决不等式问题,求二次曲线的切线问题,求曲边梯形的面积等很多数学问题。利用微积分不仅可以使问题简化,并能使问题的研究更为深入、全面。
3.提高数学在其他学科的应用能力。作为自然学科的数学本身已应用于社会经济、技术等各个领域。而作为中学数学,它对中学 其它 学科的推动作用也是毋庸置疑的。如物理,化学,地理等学科也离不开数学。在高中阶段往往会因为数学的教学进度而影响其它学科的进度。如地理中要学习地球的经度,纬度等知识就需要先学习数学中球体相关知识和解三角形相关知识。当微积分进入中学数学后,数学这个学科的作用就更加重要了。特别像物理中匀加速直线运动位移,瞬时速度,加速度等问题利用微积分的导数求解起来更加简单,容易理解。新课程人教版数学教材选修2-2中专门加入了利用定积分求变速直线运动的路程一节。另外,微积分解决生活中的优化问题也进入中学课本。可见,微积分进入中学教材,对促进学科间知识的整合起到了至关重要的作用。
三、国际上一些教材对微积分知识的处理
以苏联中学为例,苏联中小学为十年制,从九年级(1)(相当于我国高中一年级)中讲了数学归纳法和排列组合以后,就介绍无穷数列和极限。然后介绍函数极限和导数,所有这些都在讲解三角函数,幂函数,指数、对数函数之前。随即介绍导数在近似计算,几何(求切线)和在物理中的应用(研究速度,加速度)以及导数在研究函数问题中得应用(求函数极值,最值,单调性等)。到九年级末及十年级(2)再讲三角函数, 利用导数可以研究三角函数的性质。然后介绍不定积分和定积分。接着在指数函数,对数函数和幂函数一章介绍指数函数的导函数,再利用反函数求得对数函数的导函数。在十年级(3)中利用微积分知识研究几何问题,用积分推导锥体,球体等的体积公式。还把球的表面积定义为球的体积V(R)对R的导数,从而立即求得球的表面积公式。可见,苏联课本中及早分散引入导数及积分的概念和计算,而不是到最后整块讲解。这样处理,可以使微积分知识结合研究函数问题,几何问题以及研究物理问题中都得到应用。
当然,还有比如台湾中学教材对微积分处理和我过现行教材区别不大,就不再介绍。而上诉对微积分的处理情况是一种在欧洲中学教材中较普遍的处理方式。其优点主要就是充分发挥了微积分在中学数学教学中的作用。使中学数学知识更加连贯,更加易懂!
摘 要:微积分是高等院校管理类专业的重要数学基础课,第一堂课是上好微积分的关键。通过三个方面就如何上好微积分绪论课做些探讨。
关键词:微积分;起源;内容;方法
微积分是门基础课,这门课的学习直接影响到今后专业课的学习,而绪论课对这门课的学习有着引导的作用,在整门课中有特殊的地位和作用。绪论课应包含下面几个部分的内容:
一、微积分起源的介绍
微积分包括两方面的内容:微分与积分。微积分的创立源于处理17世纪的科学问题。先引入微积分学的创始人之一费马研究的一个问题:假设一个小球正向地面落去,求下落后第5秒时小球的速度?若是匀速运动,则速度等于路程除以时间,然而这里的速度是非均匀的,那能不能把非均匀速度近似看成均匀速度?用什么方法?这就是微分学问题,再引入古希腊人研究的面积问题:计算抛物线y=x2与坐标轴x轴在0≤x≤1间所围成的面积。能不能将面积切割成n个小面积,再将小面积用小矩形来代替,由n个小矩形的面积得到所求面积?这里所用的方法就是积分问题。很早以前就有人研究过微分与积分,而微积分的系统发展是在17世纪开始的,从此逐渐形成了一门系统完整且逻辑严密的学科。微积分通常认为是牛顿和莱布尼茨创立的。这一系统发展关键在于认识到微分和积分这两个过程实际上是彼此互逆地联系着。
介绍提及的人物牛顿和莱布尼茨的相关轶事,例如创建微积分优先权的争论。牛顿于1665~1687年把研究出的微积分相关结果告诉了他的朋友,并将短文《分析学》送给了巴罗,但期间没有正式公开发表过微积分方面的工作。莱布尼茨于1672年访问巴黎,1673年访问伦敦时,和一些知道牛顿工作的人通信。1684年莱布尼茨正式公开发表关于微积分的著作。于是有人怀疑莱布尼茨知道牛顿具体的工作内容,莱布尼茨被指责为剽窃者。在两个人死了很久后,调查证明:牛顿很多工作是在莱布尼茨前做的,但是莱布尼茨是微积分思想的独立发明者。
二、介绍微积分内容及方法
微积分学研究的对象是函数,极限是最主要的推理方法,它是微积分学的基础。微积分内容有四类:一是已知物体移动的距离是时间的函数,怎样由距离得到物体在任意时刻的速度和加速度;反过来,已知物体的加速度是时间的函数,怎样求速度和距离。二是求曲线的切线。三是求函数的最大最小值问题。四是求曲线的长度、平面曲线围成的面积、曲面围成的体积、物体的重心。
三、为什么要学习高等数学
微积分在自然科学、经济管理、工程技术、生命科学等方面都有应用,是各门学科强有力的数学工具。学好微积分,可以增加语言的严密性、精确性,可以从中锻炼人的 理性思维 ,并感受到美的艺术。例如黄金分割,无理数的■与π的表达式:
微积分的绪论课是整个教学的第一课,绪论教学能使学生对这门课有个快速大致的认识与了解,好的绪论课可以引导学生主动、积极地学习。
前言
21世纪,科学、技术和社会都发生了巨大的变化。高等数学作为高等院校的基础课程之一,在其他各个领域及学科中发挥出越来越大的作用。尤其是微积分教学,是目前数学教育的一大课题。
一、我国微积分教学改革的现状
目前的数学实验中,微积分教学改革的现状中仍然存在一些主要问题。
首先,优秀人才的培养重视不够。在微积分教学中,重视的是教育大众化的人才,而一些顶尖的、优秀的人才的培养却重视不够。
其次,过度应试化。过度重视应试教育在微积分教学中越来越明显,轻能力重考试已成为一种倾向。
再次,学生差异大,素质下降。学生人数的激增带来学生差异的强化,面对这一情况,如何规划班级,如何区别对待学生是微积分教学面临的问题。
二、微积分课改的必要性
随着高等数学改革的不断深入,微积分教学的改革成为其中的重要部分。微积分教学的改革并不是空穴来风,而是一种必然。
(1)社会高度发展提出的要求
微积分作为高等数学的一部分,对技术文明的推动有重要作用,许多数学细想和数学的建树都离不开微积分。可以说,微积分在推进数学思想,推进社会进步,推进科学发展上有举足轻重的作用,是不可或缺的,它是人类思维的伟大成果,不仅是高等数学。而且是其他行业,其他专业,在不同范围和不同程度上对微积分的认识都是必要的。设想一下,如果取消对微积分的学习,那么技能的进步只是一句空谈,社会不会发展,智慧不会被充分开掘。所以,微积分教学的改革是十分必要的。
(2)科技的发展提出的需要
当今世界,是一个科学技术突飞猛进的时代,军事、贸易等激烈的竞争和市场经济,如果没有科技的推进,则会落后于他人。如何促进科学的发展呢?微积分起着重要的作用,它不仅为科学提供了精密的数学思想,也为科学的提供了理论支撑,它不但改变了数学面貌,还是其他学科的工具和方法,微积分在自然学科的各个方面都有运用。随着科技发展的时代,提高微积分教学的质量是势在必行的。
(3)人类思维发展的需要
微积分中蕴藏着很多重要思想,比如辩证的思想,常量与变量,孤立与发展,静止变化,有限与无限等,还有“直”与“曲”,“局部”与“整体”的辩证关系,其实。哲学最处就是与数学密切相关的,所以,数学,尤其是微积分思想充满了逻辑与辩证,微积分的学习。不仅是知识、理论的学习,更是一种思维的训练。因此,微积分教学的完善有利于培养人类思维,使人类思维获得一个飞跃,更有效地解决问题。
三、微积分课改的内容
根据新的教学大纲的修改,微积分教学重新设计了课程内容、教学理念、 教学方法 等,以学生为主体,更直观形象,而且在教学方法上也进行了革新。全面促进了微积分教学的改革。
1、课程基本理念的改革
微积分教学的改革能否成功关键在于观念的转变,过去是偏重理论,现在则要注重应用激发初学者的学习兴趣,尽早把握微积分的基础知识,把抽象难懂的微积分理论转变为学生容易接受、容易理解的微积分教学方式,比如说,极限是微积分知识中的难点,极限概念、运动、辩证思想等对于学生来说是十分抽象,不容易理解,从而没有激发学生的学习兴趣,课堂变得枯燥无味,理论严谨,逻辑性很强,学生上手难。微积分教学大纲的修订也体现出教学理念的更新,新的微积分教学中,适当降低了难点知识。重视对微积分本质的认识,以直观、实例来提高学生的微积分学习兴趣和学习效率,使学生学习的主动性回归到自身,体现以人为本的思想,重视学生的情感态度、生活价值的培养,根据学生自身的特点因材施教,为学生提供更好的学习条件和基础。
2、课程内容的改革
根据《标准》大纲的修订,微积分教学首先是对课程内容和教学大纲的精简、增加、删改。修订后的教学内容比原来的教学大纲更精练,更科学。比如,原来12学时的“极限”在修订大纲中被大面积的删减。并在修订大纲中,引入导数这一很有判断意义的概念,因为导数是微积分初步了解的第一个概念,对导数概念的理解起到基础性的作用。而且,修订的课本内容中,对导数的讲解时直观形象的,应用性很强,又有许多实例来帮助学生加深理解。因此,微积分教学的新课改减轻了学生的学习负担,降低了概念的理解难度。
3、课程设计的改革
原来的课程是从极限、连续、导数、导数应用,再到不定积分、定积分这样的次序设计的,并在“导数和微分”的前面一章给“极限”设计了许多定义,以及对“极限”的求法和运算做了讲解。修订后的大纲对课程设计做了调整,尤其是微积分讲解的路线,发生了变化,从瞬间速度,变化率,导数、导数应用再到定积分。对人文社科方面的高校微积分课程的设置,则多数是作为选修课来处理的,并与生活十分贴近,应用性很强,使非数学专业也对数学有一定的基础了解和学习兴趣。
4、教学方法的革新
(1)数学思想方法的渗透与运用。数学思想方法是多种多样的,在生活中也取得有效地运用。微积分耶是高等数学的一个方面,因此,在微积分教学中引入数学思想方法是科学的。其中,数学分析,也叫微积分,是17世纪出现的十分重要的数学思想,不仅在17世纪有非常重要的地位,即使是在今天,这种思想方法在成功解决无限过程的运算方面,即极限运算有很大的帮助。数学思想的运用已成为各国比较重视一项革新项目。
(3)加强实例分析和应用性。数学是一种逻辑推理。但也是来源于生活的,也最终给应用于生活,因此,数学的教学不能和现实相脱离。修订后的微积分教学大纲明显注重了实际应用性。即使是书上一个很简单的概念,也时刻穿插一些实用性的图片,在习题的练习中,也是紧密结合生活实际,不是空中楼阁。比如说,用指数函数来看银行存款和人口问题,还有对数函数中涉及放射性、分贝、地震级的问题。微积分数学应用于生活中实际问题的解决。
5、教学工具的革新。
现代教育技术,尤其是多媒体技术在微积分教学中的应用,对很好的实现教学理念,完善教学思想和教学方法很有意义,例如,作为重点和难点的“极限”概念和理论一直是教学中难以攻克的,因为它的抽象,所以老师再怎么讲解也难免有学生不理解,而多媒体教学的应用解决了这一难题,教师可用直观形象的动画来表现比如“无限逼近”的理论,给学生一个直观、感性的认知,还可运用多媒体设计可变参数的动画,让学生积极参与,自己动手设计,加深理解。又如导数概念的理解需要借助曲线来表现其某个点在某个时刻的瞬时速度,可以充分利用多媒体技术,画具有艺术性的示意图,设计动画,让学生在动画中领悟微积分的实质和导数的概念。值得注意的是,在运用多媒体技术时,要遵循学科本身的规律,反复渗透,循序渐进,结合教材,积极引导。
四、小结
在满足学历工作年限等基本条件后,需要准备业绩材料。继续教育学时作为申报基础条件之一,若是未完成规定的学时,将无法参与职称评审。业绩材料包括论文、专利、著作等,因为评审周期较长,所以建议提前发表。不同职称级别和地区,所需要的业绩材料也是不同的,具体会有相关文件的要求。流程大概就是:(1)准备论文:如果论文已经准备好了,按照论文找合适的期刊就好;如果论文没写好,建议还是先找合适的期刊,然后参照期刊的要求进行论文的写作,这样能更容易通过审核。(2)投稿:将论文通过各种途径送到期刊编辑部。(3)审核:核心期刊一般是同行评审制度,编辑部会把你的论文转发给三个这个领域的专业人士,由他们提出意见,编辑部会举行会议研究这三个专家的意见后作出录用或者修改或者退稿的决定。这也是核心期刊审稿时间长的原因。普通期刊一般由编辑部自己审核,速度比较快。(4)录用:审核通过后,编辑部会开一个录用证明给作者,作者支付相关版面费后就可以安排发表了。(5)出刊:热门期刊的刊期通常排在一年以后了,而冷门的刊经常还在收上一年的版面。一般的出刊时间是在3-6个月左右,出刊后编辑部会付费邮寄给作者一本样刊。(6)上网:如果是上知网的期刊,那么出刊1-3个月后,作者就可以在知网上检索到自己的文章了。至此,整个发表流程完成。
据学术堂了解,职称论文发表流程共分为八步:第一步撰写稿件、第二步查询意向期刊、第三步咨询杂志社稿件安排情况、第四步投稿并确认对方收稿、第五步等待审核或返修、第六步录用稿件、第七步版面费缴费及见刊时间确定、第八步出刊邮寄.
评职称很多人会选择发表职称论文,这就涉及到了期刊的选择,作者们在学术领域可能非常权威,但是对于发表论文来说,很多人可能还是个小白,有些作者文章是发表了,评职称时却不能用,白白浪费了时间,具体我们说一说以下几种情况~1、单位对期刊发表的要求先了解清楚自己所在单位的评定细则,根据职称文件的加分细则,再去找相关的期刊投稿。比如有些单位评中级职称要求至少发表2篇省级期刊论文。那我们就只满足“省级2篇”这个要求就好。不同的要求,期刊属性都是不同的,如果你不清楚如何自己适合发哪种期刊,可以找小刊详细咨询!评职要想顺利,首选肯定是知网、万方或者维普收录的期刊,如果要求没那么高,像龙源、期刊网的期刊也可以。(具体还是要看当地的评审文件要求)2、过于追求核心期刊,错过评职核心期刊大家也都了解,确实是学术质量更权威,所以有很多作者也是奔着发表核心期刊准备的,但是小刊在这里跟大家说清楚,不一定你发表的论文就一定要选择核心期刊,如果你的文章水平没够到,你投稿也是会被拒的,完全就是浪费时间,所以发表文章符合单位评审要求,有适合自己才是最好的,普刊也有很多优秀的期刊,不一定非追求核心期刊。(如果有要求必须发核心,大家一定要提前至少一年去准备,核心的评审周期长,审核也较为严格。)3、综合期刊和专业期刊的区别?综合刊是对论文专业没有太多限制的刊物,许多专业的论文都能安排发表,而专业期刊只能发表相应专业领域的论文,所以相比较来说,发表在专业期刊的论文是要比发表在综合期刊上的论文更有价值的,能够更好的起到指导学术的作用。(如果没有写明必须要本专业的期刊,可选择综合期刊,出刊较快,价格也更合适。)4、假刊、套刊一定要清楚大家一定要提起注意,避免发到假刊、套刊上,建议大家可以在新闻出版总署查询,能查出的肯定就是正规期刊,没有信息的那就是假刊,大家要警惕,文章发表在这样的期刊上,毫无价值,浪费精力和时间。
但只要是正规期刊,新闻出版署里肯定可以查到。一般来说刊物有期刊、连续性电子期刊、报刊,都属于正规期刊,我们可以自己登陆国家新闻出版署官网进行查询,正规期刊是在国家新闻出版署有登记备案的,找到新闻出版署期刊查询的页面,然后你输入期刊名字,注意不要带书名号,然后点击查询,就能看到期刊的CN刊号。第一步:登录“国家新闻出版署”网站查询,点击办事服务。第二步:下拉看到“从业机构和产品查询”点击“连续型电子出版物”、“期刊/期刊社”、“报纸/报社”查询所要投稿的刊物就可以,如果能搜到就是正规期刊,如果未搜到则相反。