首页

职称论文知识库

首页 职称论文知识库 问题

德布罗意发表的学术论文

发布时间:

德布罗意发表的学术论文

1924年,德布罗意提出“物质波”假说,认为和光一样,一切物质都具有波粒二象性。根据这一假说,电子也会具有干涉和衍射等波动现象,这被后来的电子衍射试验所证实。1924年,路易-维克多•德•布罗意注意到原子中电子的稳定运动需要引入整数来描写,与物理学中其他涉及整数的现象如干涉和振动简正模式之间的类似性,构造了德布罗意假设,提出正如光具有波粒二象性一样,实物粒子也具有波粒二象性。他将这个波长λ和动量p联系为:λ=h/p这是对爱因斯坦等式的一般化,因为光子的动量为p = E / c(c为真空中的光速),而λ = c / ν。德布罗意的方程三年后通过两个独立的电子散射实验被证实于电子(具有静止质量)身上。在贝尔实验室Clinton Joseph Davisson和Lester Halbert Germer以低速电子束射向镍单晶获得电子经单晶衍射,测得电子的波长与德布罗意公式一致。在阿伯丁大学,George Paget Thomson以高速电子穿过多晶金属箔获得类似X射线在多晶上产生的衍射花纹,确凿证实了电子的波动性;以后又有其他实验观测到氦原子、氢分子以及中子的衍射现象,微观粒子的波动性已被广泛地证实。根据微观粒子波动性发展起来的电子显微镜、电子衍射技术和中子衍射技术已成为探测物质微观结构和晶体结构分析的有力手段。德布罗意于1929年因为这个假设获得了诺贝尔物理学奖。Thomson和Davisson因为他们的实验工作共享了1937年诺贝尔物理学奖。

所谓粒子,主要是指它具有集中的、不可分割的特性。微观客体和其他物质相互作用时,取粒子的方式,而不是波动方式,我们接收到的是一颗一颗的粒子,接收不到分数颗粒子。其次,提到波就意味着场的概念,所谓波不过是周期性地传播运动的场而已。场是弥散的。微观客体的传播取波动的方式,而不像经典粒子一样有一条轨道。波动性和粒子性是在不同实验条件下得到的概念。-----摘自 柯善哲《量子力学》 科学出版社

一、德布罗意的科学地位法国著名理论物理学家,1929年诺贝尔物理学奖获得者,波动力学的创始人,物质波理论的创立者,量子力学的奠基人之一。二、德布罗意的科学贡献德布罗意之前,人们对自然界的认识,只局限于两种基本的物质类型:实物和场。前者由原子、电子等粒子构成,光则属于后者。但是,许多实验结果之间出现了难以解释的矛盾。物理学家们相信,这些表面上的矛盾,势必有其深刻的根源。1923年,德布罗意最早想到了这个问题,并且大胆地设想,人们对于光子建立起来的两个关系式 会不会也适用于实物粒子。如果成立的话,实物粒子也同样具有波动性。为了证实这一设想,1923年,德布罗意又提出了作电子衍射实验的设想。1924年,又提出用电子在晶体上作衍射实验的想法。1927年,戴维孙和革末用实验证实了电子具有波动性,不久,G.P.汤姆孙与戴维孙完成了电子在晶体上的衍射实验。此后,人们相继证实了原子、分子、中子等都具有波动性。德布罗意的设想最终都得到了完全的证实。这些实物所具有的波动称为德布罗意波,即物质波。三、德布罗意的科学荣誉由于德布罗意的杰出贡献,他获得了很多的荣誉。1929年获法国科学院享利。彭加勒奖章,同年又获诺贝尔物理学奖。1932年,获摩纳哥阿尔伯特一世奖,1952年联合国教科文组织授予他一级卡琳加奖,1956年获法国家科学研究中心的金质奖章。德布罗意于1933年当选为法国科学院院士,1942年以后任数学科学常务秘书。他还是华沙大学、雅典大学等六所著名大学的荣誉博士,是欧、美、印度等18个科学院院士。四、德布罗意的生平1892年8月15日出生于下塞纳,1910年获巴黎大学文学学士学位,1913年又获理学士学位,1924年获巴黎大学博士学位,在博士论文中首次提出了"物质波"概念。1929年获诺贝尔物理学奖。1932年任巴黎大学理论物理学教授,1933年被选为法国科学院院士。1987年逝世。�五、德布罗意的科学生涯德布罗意1892年8月15日出生于法国塞纳河畔的蒂厄浦,是法国一贵族家庭的次子。德布罗意家族自17世纪以来在法国军队、政治、外交方面颇具盛名。祖父J。V。A德布罗意(1821~1901)是法国著名政治家和国务活动家,1871年当选为法国国民议会下院议员,同年担任法国驻英国大使,后来还担任过法国总理和外交部长等职务。德布罗意从18岁开始在巴黎大学学习理论物理,但是因为打算沿其家族传统,以后从事外交活动,他也学习历史,并且于1909年获得历史学位。由于他哥哥(M。德布罗意)是一位实验物理学家,拥有设备精良的私人实验室,从事物理实验研究。因而德布罗意在学习历史的二象性。人类对自然的认识由浅入深、由片面到全面、由现象到本质不断深化。对光本性的认识同时,受到他哥哥的影响,参与一些物理研究工作。从他哥哥那里德布罗意了解到普朗克和爱因斯坦关于量子方面的工作,这些引起了他对物理学的极大兴趣。经过一翻思想斗争之后,德布罗意终于放弃了已决定的研究法国历史的计划,选择了物理学的研究道路,并且希望通过物理学研究获得博士学位。第一次世界大战期间,德布罗意在军队服役,被分配到无线电台工作,中断了他的理论物理研究。1919年,德布罗意重新回到他哥哥的实验室研究X射线,在这里,他不仅获得了许多原子结构的知识,而且接触到X射线时而象波、时而象粒子的奇特性质。德布罗意曾经与其兄就X射线的性质进行了长时间的讨论,他对其兄及其同事们的实验工作发生了浓厚的兴趣。为了对这些现象做出理论解释,1920年,德布罗意重新开始研究理论物理,特别是关于量子问题,他的研究终于取得了可喜成果。1923年9月和10月,德布罗意发表了三篇关于物质波的论文,创立了物质波理论。之后,他投人博士论文的写作,1924年11月他以题为《量子理论的研究》的论文通过博士论文答辩,获得博士学位。在这篇论文中,包括了德布罗意近两年取得的一系列重要研究成果,全面论述了物质波理论及其应用。德布罗意获得博士学位后,继续留在巴黎大学,他又发表了有关波动力学的有创造性的研究成果,同时担任教学任务。德布罗意在神也是沿着这个认识规律发展的。在认识发展中,物质生产水平、实验条件起了决定性的作用,同时促进人类认识水平的不断提高。学院担任了两年义务讲座后,1928年被聘为新建立的巴黎大学享利·彭加勒学院理论物理教授,他担任这一职务从事教学工作一直到1962年退休。1945年以后,他还担任法国原子能委员会顾问。1930年到1950年间,德布罗意的研究工作主要是波动力学的推广,他的研究取得了许多成果,发表了大量评论和论文。1951年以后的一段时间,德布罗意研究粒子和波之间的关系,目的是通过研究用经典的空间和时间概念对波动力学作出因果解释。此时重新研究他于1927年提出的引导波理论,但不久他就放弃这方面的工作,回到了以前的研究领域,探索微观现象产生的原因和决定论的科学哲学观点,用波动力学的观点探讨热力学和分子生物学。德布罗意一生的研究成果颇丰,他的著作就达25本之多。由于德布罗意的杰出贡献,他获得了很多的荣誉。1929年获法国科学院享利。彭加勒奖章,同年又获诺贝尔物理学奖。1932年,获摩纳哥阿尔伯特一世奖,1952年联合国教科文组织授予他一级卡琳加奖,1956年获法国家科学研究中心的金质奖章。德布罗意于1933年当选为法国科学院院士,1942年以后任数学科学常务秘书。他还是华沙大学、雅典大学等六所著名大学的荣誉博士,是欧、美、印度等18个科学院院士。六、物质波理论的形成德布罗意开始研究物理学时,适逢现代物理学发生深刻革命的时期。1900年,普朗克研究黑体辐射时假定谐振子取分立的能量,提出量子的概念,由此出发,他推导出能够描述黑体辐射规律的普朗克黑体辐射公式。但是,人们并没有认识能量子的重要性,只把能量子看作仅仅是在支配物质和辐射相互作用过程中是合适的,频率为V的物质振子仅仅以hV的倍数发射或吸收能量。直到1905年,量子概念才发生了重要发展。1905年,爱因斯坦发表了题为《关于光的产生和转化的一个启发性观点》的论文,文中通过对黑体辐射的研究和论证,得到并提出了光量子的概念,并用它成功地解释了光电效应。这一工作的意义之一在于,光量子的概念是在分析和研究黑体辐射基础上得到的,表明量子概念具有比较普遍的意义。爱因斯坦认为:密度小的单色辐射,从其热现象方面的行为看,仿佛是由一些独立的能量所组成。本世纪初期,人们通过对X射线的研究认识到,X射线具有时而象波、时而象粒子的奇特性质。1913年,玻尔提出原子中的电子运动的量子化条件,原子中的电子只有可能进行某些运动,成功地解释了氢原子光谱。玻尔的量子化条件没有理论基础,是人为规定的。1919-1922年,法国物理学家布里渊提出了一个解释玻尔基于化条件的理论。布里渊把电子和波作为一个整体进行研究,设想在原子核周围存在着一层以太,电子在其中运动掀起波,这些波相互干涉在原子核周围形成驻波。这些研究成果,尤其是布里渊的理论对德布罗意提出物质被思想产生巨大影响。德布罗意重新开始研究理论物理,物理学面临着的主要困难是:对于光需要有微粒说和波动说两种理论;确定原子中电子的稳定运动涉及到整数,这些都是当时人们无法理解的事实。德布罗意首先考察光量子理论和玻尔的量子化条件。确定光微粒能量的表达式是W=hv,这个公式中包含着频率v,而纯粹的粒子理论不包含频率的因素;确定原子中电子的稳定运动涉及到整数,而物理学中涉及到整数的只是干涉现象和本征振动现象。这些结果使德布罗意想到,对于光需要同时引进粒子的概念和周期的概念;对于电子不能简单地用微粒来描述电子本身,还必须赋予它们周期的概念。于是,德布罗意形成了指导他进行研究的全部概念:在所有情况下,都必须假设微粒伴随着波而存在,他的首要目的就是建立微粒的运动和缔合波的传播之间的对应关系。1923年夏末,德布罗意已开始形成他的相波(后来他称为相位波)概念,9月10日,他发表了关于物质波理论的第一篇论文——《波和量子》,文中提出的思想可以被看作是波动力学理论的开端。两个星期后,德布罗意又发表了《光量子、衍射和干涉》的论文,明确提出相干波的概念。文中明确指出:要描述一个动点的运动,观察者必须将这一运动与一个非物质的、在同一方向上传播的正弦波联系起来。在观察者看来,这一波的频率等于上述动点的总能量除以普朗克常量h。同年10月8日,德布罗意发表关于物质波理论的第三篇论文《量子、气体运动理论以及费马原理》。文中阐述了波与粒子的对应关系,他假定与任何粒子相联系的相波,在空间任何点与粒子同相位。相波的频率与速度由粒子的能量和速度所决定。德布罗意的这三篇论文是物质波理论奠基工作的开端。继这三篇论文之后,德布罗意着手撰写他的博士论文《量子理论的研究》。1924年11月,德布罗意通过论文答辩,获博士学位。他的博士论文包括了近两年研究的一些成果,比较系统地论述了物质波理论,得到物质波的一些重要结果。德布罗意认为,任何运动着的物体都伴随着一种波动,而且不可能将物体的运动和波的传播分开,这种波称为相位波。存在相位波是物体的能量和动量同时满足量子条件和相对论关系的必然结果。德布罗意考虑静止质量为外、相对于静止观察者的速度为的粒子,他假设粒子是周期性内在现象的活动中心,它的频率 , 是普朗克常数, 是粒子的内在能量。以狭义相对论原理和严格的量子关系式为基础,L。德布罗意通过严格论征得到:相位波的波长是,是普朗克常数, 是相对论动量,这就是著名的德布罗意波长与动量的关系。此外,德布罗意把相位波的相速度 和群速度(能量传递的速度)联系起来,证明了波的群速度等于粒子速度,确定了群速度与粒子速度的等同性。他的这些研究成果形成了比较完整的物质波理论。七、物质波理论的实验验证德布罗意撰写论文时,他的哥哥(M.德布罗意)建议他的论文应包括实验部分,可是他没有采纳这个建议。他的物质波理论是在没有得到任何已知事实支持的情况下提出来的,这就使得答辩委员会对物质波的真实性存在疑虑,答辩委员会主席佩兰就提出了物质波如何用实验来证实的问题。对佩兰的提问,德布罗意回答:用晶体对电子的衍射实验验证物质波的存在是可能的。他的这个思想是早已形成的,他曾在1923年9月24日《光量子、衍射和干涉》一文中指出:从很小的孔穿过的电子束,可能产生衍射现象,这也许会成为在实验上验证物质具有波粒二象性的方法。他还曾向他哥哥的同事道维里叶提出做电子的衍射实验,后者因忙于电视实验而将其搁置。物理学的发展需要理论的和实验的两只脚向前迈进,现在理论这只脚已经先向前迈进了一步,这就给实验提出了研究课题。物质波理论提出后,如何从实验上证实物质波存在就成了人们关注的一个热点。 按照德布罗意理论,经过几千伏加速电压的电子束,其波长数量级为10-10米,这与X射线的波长是同一个数量级,因而可以用晶体对电子的衍射实验验证物质波。德布罗意的理论一传到美国,就在纽约开始了显示电子衍射的实验。尽管这个实验开始并不是为验证波动理论而做的,但是到了1926年,这项工作的目的已经转变为验证物质波理论。1927年初,戴维森和革末通过实验发现,在镍晶体对电子的衍射实验中,有19个事例可以用来验证波长和动量之间的关系,而且每次都在测量精确度范围内证明了德布罗意公式的正确性。戴维森实验所用电子束的电子能量很低,仅有50-600电子伏特。同年G.P.汤姆逊用较高能量的电子做了晶体对电子束衍射的实验,他让电子能量为1000-8000电子伏特的电子束垂直射入赛玛哈、金、铂或铝等薄膜上,观测产生的衍射图样。实验观测和由德布罗意理论得到的结果非常一致,这充分证明了电子具有波动性,再一次用无可辨驳的事实向人们展示了德布罗意理论是正确的。以后,人们通过实验又观察到原子、分子……等微观粒子都具有波动性。实验证明了物质具有波粒二象性,不仅使人们认识到德布罗意的物质波理论是正确的,而且为物质波理论奠定了坚实基础。其英文名称为:De Broglie Waves

最早提出波粒二象性的应该是德布罗意,找到方程的应该是薛定谔; 1923年9月至10月间,路易·维克多·德布罗意连续在《法国科学院通报》上发表了三篇有关波和量子的论文. 第一篇题目是“辐射——波与量子”,提出实物粒子也有波粒二象性,认为与运动粒子相应的还有一正弦波,两者总保持相同的位相.后来他把这种假想的非物质波称为相波.他考虑一个静质量为m0的运动粒子的相对论效应,把相应的内在能量m0c2视为一种频率为v0的简单周期性现象.他把相波概念应用到以闭合轨道绕核运动的电子,推出了玻尔量子化条件.在第三篇题为“量子气体运动理论以及费马原理’的论文中,他进一步提出:“只有满足位相波谐振,才是稳定的轨道.”在第二年的博士论文中,他更明确地写下了:“谐振条件是l=nλ,即电子轨道的周长是位相波波长的整数倍.” 在第二篇题为“光学——光量子、衍射和干涉”的论文中,德布罗意提出如下设想:“在一定情形中,任一运动质点能够被衍射.穿过一个相当小的开孔的电子群会表现出衍射现象.正是在这一方面,有可能寻得我们观点的实验验证.” 德布罗意在这里并没有明确提出物质波这一概念,他只是用位相波或相波的概念,认为可以假想有一种非物质波.可是究竟是一种什么波呢?在他的博士论文结尾处,他特别声明:“我特意将相波和周期现象说得比较含糊,就象光量子的定义一样,可以说只是一种解释,因此最好将这一理论看成是物理内容尚未说清楚的一种表达方式,而不能看成是最后定论的学说.”物质波是在薛定谔方程建立以后,诠释波函数的物理意义时才由薛定谔提出的.再有,德布罗意并没有明确提出波长λ和动量p之间的关系式:λ=h/p(h即普朗克常数),只是后来人们发觉这一关系在他的论文中已经隐含了,就把这一关系称为德布罗意公式. 1925年底到1926年初,薛定谔在A.爱因斯坦关于单原子理想气体的量子理论和L.V.德布罗意的物质波假说的启发下,从经典力学和几何光学间的类比,提出了对应于波动光学的波动力学方程,奠定了波动力学的基础.他最初试图建立一个相对论性理论,得出了后来称之为克莱因—戈登方程(见场方程)的波动方程,但由于当时还不知道电子有自旋,所以在关于氢原子光谱的精细结构的理论上与实验数据不符.以后他又改用非相对论性波动方程──以后人们称之为薛定谔方程──来处理电子,得出了与实验数据相符的结果.

德布罗意论文发表

该粒子的质量(m)和速度(v)。德布罗意设想,每个粒子(比如电子)都伴随着波,其波长(λ)与该粒子的质量(m)和速度(v)有关,它们之间的关系可以借助于普朗克常数(h)用一个简单的公式来表示:λ=h/mv。德布罗意在1924年发表电子波动论文,当时光的波粒二象性刚被证实,他把这种二象性推广到物质粒子,解决了原子内的电子运动问题,为此获1929年诺贝尔物理学奖。

薛定谔方程(Schrödinger equation)又称薛定谔波动方程(Schrodinger wave equation),是由奥地利物理学家薛定谔提出的量子力学中的一个基本方程,也是量子力学的一个基本假定。

它是将物质波的概念和波动方程相结合建立的二阶偏微分方程,可描述微观粒子的运动,每个微观系统都有一个相应的薛定谔方程式,通过解方程可得到波函数的具体形式以及对应的能量,从而了解微观系统的性质。薛定谔方程表明量子力学中,粒子以概率的方式出现,具有不确定性,宏观尺度下失效可忽略不计。

扩展资料:

在1925年,瑞士苏黎世每两周会举办一场物理学术研讨会。有一次,主办者彼得·德拜邀请薛定谔讲述关于德布罗意的波粒二象性博士论文。那段时期,薛定谔正在研究气体理论,他从阅读爱因斯坦关于玻色-爱因斯坦统计的论述中,接触德布罗意的博士论文,在这方面有很精深的理解。在研讨会里,他将波粒二象性阐述的淋漓尽致,大家都听的津津有味。

德拜指出,既然粒子具有波动性,应该有一种能够正确描述这种量子性质的波动方程。他的意见给予薛定谔极大的启发与鼓舞,他开始寻找这波动方程。检试此方程最简单与基本的方法就是,用此方程来描述氢原子内部束缚电子的物理行为,而必能复制出玻尔模型的理论结果,另外,这方程还必须能解释索末菲模型给出的精细结构。

很快,薛定谔就通过德布罗意论文的相对论性理论,推导出一个相对论性波动方程,他将这方程应用于氢原子,计算出束缚电子的波函数。但很可惜。因为薛定谔没有将电子的自旋纳入考量,所以从这方程推导出的精细结构公式不符合索末菲模型。

他只好将这方程加以修改,除去相对论性部分,并用剩下的非相对论性方程来计算氢原子的谱线。解析这微分方程的工作相当困难,在其好朋友数学家赫尔曼·外尔鼎力相助下,他复制出了与玻尔模型完全相同的答案。因此,他决定暂且不发表相对论性部分,只把非相对论性波动方程与氢原子光谱分析结果,写为一篇论文。1926年,他正式发表了这论文。

这篇论文迅速在量子学术界引起震撼。普朗克表示“他已阅读完毕整篇论文,就像被一个迷语困惑多时,渴慕知道答案的孩童,现在终于听到了解答”。爱因斯坦称赞,这著作的灵感如同泉水般源自一位真正的天才。

爱因斯坦觉得,薛定谔已做出决定性贡献。由于薛定谔所创建的波动力学涉及到众所熟悉的波动概念与数学,而不是矩阵力学中既抽象又陌生的矩阵代数,量子学者都很乐意地开始学习与应用波动力学。自旋的发现者乔治·乌伦贝克惊叹,“薛定谔方程给我们带来极大的解救!”沃尔夫冈·泡利认为,这论文应可算是近期最重要的著作。

薛定谔给出的薛定谔方程能够正确地描述波函数的量子行为。在那时,物理学者尚不清楚如何诠释波函数,薛定谔试图以电荷密度来诠释波函数的绝对值平方,但并不成功。1926年,玻恩提出概率幅的概念,成功地诠释了波函数的物理意义。

但是薛定谔与爱因斯坦观点相同,都不赞同这种统计或概率方法,以及它所伴随的非连续性波函数坍缩。爱因斯坦主张,量子力学是个决定性理论的统计近似。在薛定谔有生的最后一年,写给玻恩的一封信中,他清楚地表示他不接受哥本哈根诠释。

参考资料:百度百科 薛定谔方程

得布罗意几几年发表论文

蒲丰投针实验(Buffon's Needle)

蒲丰投针实验是法国数学家、自然科学家“乔治-路易·勒克莱尔·德·蒲丰”在18世纪提出的。其实验方法极其简单:

1)取出一张白纸,在白纸上画出一组平行等距的直线。(什么,没白纸?那就用石头在地上画线吧。。)

2)将纸平放,任意地向白纸上抛一枚长度为直线间距一半的针(如上图所示)。(什么,针也没有?那。。找根小木棍凑合一下吧。。。)

3)多次投针,记录下针与直线相交的次数和总的投针次数,最后相除算出针与直线相交的概率。你会惊奇地发现此概率为圆周率的倒数(1/ π)。

蒲丰投针实验是第一个用几何形式表达概率问题的例子。我们可以用这种方法来估计圆周率π。

理论推导,具体太复杂了,说不清楚

德布罗意认为“任何物质都伴随着波,而且不可能将物质的运动和波的传播分开”。这就是说,波粒二象性,并不只是光才具有的特性,而是一切实物粒子都共有的普遍属性,原来被认为是粒子的东西也同样具有波动性。因而可以说,一切物质都有波动性。 于是德布罗意大胆地提出了物质波假设,动量为 (m为质量,v为速度)的粒子与一个波长为 的波动有着 的关系。这个关系后来被称为德布罗意关系,与粒子相联系的这种波称为德布罗意波。 第二章.files/第一节.htm 德布罗意波 有公式

物质波研究第一次世界大战期间,德布罗意在埃菲尔铁塔上的军用无线电报站服役。平时爱读科学著作,特别是庞加莱、洛伦兹和朗之万的著作。后来对普朗克、爱因斯坦和玻尔的工作发生了兴趣,转而研究物理学。退伍后跟随朗之万攻读物理学博士学位。他的兄长莫里斯·德布罗意是一位研究X射线的专家,路易斯·维克多·德布罗意曾随莫里斯一道研究X射线,两人经常讨论有关的理论问题。莫里斯曾在1911年第一届索尔威会议上担任秘书,负责整理文件。这次会议的主题是关于辐射和量子论。会议文件对路易·维克多·德布罗意有很大启发。莫里斯和另一位X射线专家亨利·布拉格联系密切。亨利·布拉格曾主张过X射线的粒子性。这个观点对莫里斯很有影响,所以他经常跟弟弟讨论波和粒子的关系。这些条件促使路易·维克多·德布罗意伊深入思考波粒二象性的问题。法国物理学家布里渊(M.Brillouin)在1919年——1922年间发表过一系列论文,提出了一种能解释玻尔定态轨道原子模型的理论。他设想原子核周围的“以太”会因电子的运动激发一种波,这种波互相干涉,只有在电子轨道半径适当时才能形成环绕原子核的驻波,因而轨道半径是量子化的。这一见解被德布罗意吸收了,他把以太的概念去掉,把以太的波动性直接赋予电子本身,对原子理论进行深入探讨。1923年9月至10月间,路易·维克多·德布罗意连续在《法国科学院通报》上发表了三篇有关波和量子的论文。 第一篇题目是“辐射——波与量子”,提出实物粒子也有波粒二象性,认为与运动粒子相应的还有一正弦波,两者总保持相同的位相。后来他把这种假想的非物质波称为相波。他考虑一个静质量为m0的运动粒子的相对论效应,把相应的内在能量m0c2视为一种频率为v0的简单周期性现象。他把相波概念应用到以闭合轨道绕核运动的电子,推出了玻尔量子化条件。在第三篇题为“量子气体运动理论以及费马原理’的论文中,他进一步提出:“只有满足位相波谐振,才是稳定的轨道。”在第二年的博士论文中,他更明确地写下了:“谐振条件是l=nλ,即电子轨道的周长是位相波波长的整数倍。”在第二篇题为“光学——光量子、衍射和干涉”的论文中,德布罗意提出如下设想:“在一定情形中,任一运动质点能够被衍射。穿过一个相当小的开孔的电子群会表现出衍射现象。正是在这一方面,有可能寻得我们观点的实验验证。”德布罗意在这里并没有明确提出物质波这一概念,他只是用位相波或相波的概念,认为可以假想有一种非物质波。可是究竟是一种什么波呢?在他的博士论文结尾处,他特别声明:“我特意将相波和周期现象说得比较含糊,就象光量子的定义一样,可以说只是一种解释,因此最好将这一理论看成是物理内容尚未说清楚的一种表达方式,而不能看成是最后定论的学说。”物质波是在薛定谔方程建立以后,诠释波函数的物理意义时才由薛定谔提出的。再有,德布罗意并没有明确提出波长λ和动量p之间的关系式:λ=h/p(h即普朗克常数),只是后来人们发觉这一关系在他的论文中已经隐含了,就把这一关系称为德布罗意公式。德布罗意的博士论文得到了答辩委员会的高度评价,认为很有独创精神,但是人们总认为他的想法过于玄妙,没有认真地加以对待。例如:在答辩会上,有人提问有没有办法验证这一新的观念。德布罗意答道:“通过电子在晶体上的衍射实验,应当有可能观察到这种假定的波动的效应。”在他兄长的实验室中有一位实验物理学家道威利尔(Dauvillier)曾试图用阴极射线管做这样的实验,试了一试,没有成功,就放弃了。后来分析,可能是电子的速度不够大,当作靶子的云母晶体吸收了空中游离的电荷,如果实验者认真做下去,肯定会做出结果来的。德布罗意的论文发表后,当时并没有多大反应。后来引起人们注意是由于爱因斯坦的支持。朗之万曾将德布罗意的论文寄了一份给爱因斯坦,爱因斯坦看到后非常高兴。他没有想到,自己创立的有关光的波粒二象性观念,在德布罗意手里发展成如此丰富的内容,竟扩展到了运动粒子。当时爱因斯坦正在撰写有关量子统计的论文,于是就在其中加了一段介绍德布罗意工作的内容。他写道:“一个物质粒子或物质粒子系可以怎样用一个波场相对应,德布罗意先生已在一篇很值得注意的论文中指出了。”这样一来,德布罗意的工作立即获得大家的注意。当1926年薛定谔发表他的波动力学论文时,曾明确表示:“这些考虑的灵感,主要归因于路易·维克多·德布罗意先生的独创性的论文。”1927年,美国的戴维森和革末及英国的G.P.汤姆孙通过电子衍射实验各自证实了电子确实具有波动性。至此,德布罗意的理论作为大胆假设而成功的例子获得了普遍的赞赏,从而使他获得了1929年诺贝尔物理学奖。后来,德布罗意主要从事的仍是波动力学方面的研究,他在1951年以后着重研究了“双重解理论”,想要在经典的时空概念的基础上对波动力学的几率和因果性作出解释,但这种努力未获得成功。德布罗意伊始终对现代物理学的哲学问题感兴趣,喜欢将理论物理学、科学史和自然哲学结合起来考虑,写过一些有关的论文。

保罗劳特布尔发表的论文

保罗·劳特布尔(Paul Lauterbur),美国科学家。他致力于核磁共振光谱学及其应用的研究。劳特布尔还把核磁共振成像技术推广应用到生物化学和生物物理学领域。

从1963年到1985年,他在纽约州立大学石溪分校担任副教授,他在石溪大学开展了MRI发展的研究。  1985年至今,他担任美国伊利诺伊大学生物医学核磁共振实验室主任。因在核磁共振成像技术领域的突破性成就,而和英国科学家彼得·曼斯菲尔德(Peter Mansfield)共同获得2003年度诺贝尔生理学或医学奖。于2007年3月27日在美国伊利诺伊州乌尔班纳市逝世,享年77岁。

劳特布尔1929年生于美国俄亥俄州小城悉尼,

1951年获凯斯理工学院理学士,

1962年获费城匹兹堡大学化学博士。

1963年至1984年间,劳特布尔作为化学和放射学系教授执教于纽约州立大学石溪分校。在此期间,他致力于核磁共振光谱学及其应用的研究。劳特布尔还把核磁共振成像技术推广应用到生物化学和生物物理学领域。当劳特伯德在石溪大学进行他的工研究作时,当时校园内最好的核磁共振机器属于化学系。所以他不得不在晚上用它进行实验,并会小心地改变设置,以便在他离开时还给化学系。

1985年至今,他担任美国伊利诺伊大学生物医学核磁共振实验室主任。

20世纪70年代初,劳特布尔在主磁场内附加一个不均匀的磁场,即引进梯度磁场,并逐点诱发核磁共振无线电波,最终获得一幅二维的核磁共振图像。多年来,伊利诺伊大学一直认为劳特布尔极有希望获得诺贝尔奖。但劳特布尔本人对获奖还是有点惊讶,他对媒体说:“我听到过各种猜测,但现实仍令我惊讶。”

保罗·劳特布尔简介:姓名:保罗·劳特布尔(PaulLauterber);

出生年代:1929年;

职称:科学家;

国家:美国;

个人情况:1951年获凯斯理工学院理学士,1962年获费城匹兹堡大学化学博士。1963年1984年间,劳特布尔作为化学和放射学系教授执教于纽约州立大学石溪分校。在此期间,他致力于核磁共振光谱学及其应用的研究。劳特布尔还把核磁共振成像技术推广应用到生物化学和生物物理学领域。1985年至今,他担任美国伊利诺伊大学生物医学核磁共振实验室主任。2003年诺贝尔生理学或医学奖授予美国科学家保罗·劳特布尔和英国科学家彼得·曼斯菲尔德,以表彰他们在核磁共振成像技术领域的突破性成就。他们的成就是医学诊断和研究领域的重大成果。

诺贝尔大会最终决定得主,并对外公布(一般在每年10月份)。 每年12月10日在斯德哥尔摩音乐厅举行颁奖仪式。 近年诺贝尔生理学或医学奖得主及主要成就 以下为2000年至2005年,诺贝尔生理学或医学奖获奖者名单及其主要成就:

2005年,澳大利亚科学家巴里·马歇尔和罗宾·沃伦。他们发现了导致人类罹患胃炎、胃溃疡和十二指肠溃疡的罪魁——幽门螺杆菌,革命性地改变了世人对这些疾病的认识。

2004年,美国科学家理查德·阿克塞尔和琳达·巴克。他们在气味受体和嗅觉系统组织方式研究中做出贡献,揭示了人类嗅觉系统的奥秘。

2003年,美国科学家保罗·劳特布尔和英国科学家彼得·曼斯菲尔德。他们在核磁共振成像技术上获得关键性发现,这些发现最终导致核磁共振成像仪的出现。

2002年,英国科学家悉尼·布雷内、约翰·苏尔斯顿和美国科学家罗伯特·霍维茨。他们为研究器官发育和程序性细胞死亡过程中的基因调节作用作出了重大贡献。

2001年,美国科学家利兰·哈特韦尔、英国科学家保罗·纳斯和蒂莫西·亨特。他们发现了导致细胞分裂的关键性调节机制,这一发现为研究治疗癌症的新方法开辟了途径。

2000年,瑞典科学家阿尔维德·卡尔松、美国科学家保罗·格林加德和埃里克·坎德尔。他们在研究脑细胞间信号的相互传递方面获得了重要发现。

1901年 E . A . V . 贝林(德国)从事有关白喉血清疗法的研究1902年 R.罗斯(英国)从事有关疟疾的研究1903年 N.R.芬森(丹麦)发现利用光辐射治疗狼疮1904年 I.P.巴甫洛夫(俄国)从事有关消化系统生理学方面的研究1905年 R.柯赫(德国)从事有关结核的研究1906年 C.戈尔季(意大利)、S.拉蒙–卡哈尔(西班牙)从事有关神经系统精细结构的研究1907年 C.L.A.拉韦朗(法国)发现并阐明了原生动物在引起疾病中的作用1908年 P.埃利希(德国)、E.梅奇尼科夫(俄国)从事有关免疫力方面的研究1909年 E.T.科歇尔(瑞士)从事有关甲状腺的生理学、病理学以及外科学上的研究1910年 A.科塞尔(德国)从事有关蛋白质、核酸方面的研究1911年 A.古尔斯特兰德(瑞典)从事有关眼睛屈光学方面的研究1912年 A.卡雷尔(法国)从事有关血管缝合以及脏器移植方面的研究1913年 C.R.里谢(法国)从事有关抗原过敏的研究1914年 R.巴拉尼(奥地利)从事有关内耳前庭装置生理学与病理学方面的研究1915年 —— 1918年 未颁奖1919年 J . 博尔德特(比利时)作出了有关免疫方面的一系列发现1920年 S.A.S.克劳(丹麦)发现了有关体液和神经因素对毛细血管运动机理的调节1921年 未颁奖1922年 A.V.希尔(英国)从事有关肌肉能量代谢和物质代谢问题的研究迈尔霍夫(德国)从事有关肌肉中氧消耗和乳酸代谢问题的研究1923年 F.G.班廷、J.J.R.麦克劳德(加拿大)发现胰岛素1924年 W.爱因托文(荷兰)发现心电图机理1925年 未颁奖1926年 J.A.G.菲比格(丹麦)发现菲比格氏鼠癌(鼠实验性胃癌)1927年 J.瓦格纳–姚雷格(奥地利)发现治疗麻痹的发热疗法1928年 C.J.H.尼科尔(法国)从事有关斑疹伤寒的研究1929年 C.艾克曼(荷兰)发现可以抗神经炎的维生素F.G.霍普金斯(英国)发现维生素B1缺乏病并从事关于抗神经炎药物的化学研究1930年 K.兰德斯坦纳(美籍奥地利)发现血型1931年 O.H.瓦尔堡(德国)发现呼吸酶的性质和作用方式1932年 C.S.谢林顿、E.D.艾德里安(英国)发现神经细胞活动的机制1933年 T.H.摩尔根(美国)发现染色体的遗传机制,创立染色体遗传理论1934年 G.R.迈诺特、W.P.墨菲、G.H.惠普尔(美国)发现贫血病的肝脏疗法1935年 H.施佩曼(德国)发现胚胎发育中背唇的诱导作用1936年 H.H.戴尔(英国)、O.勒韦(美籍德国)发现神经冲动的化学传递1937年 A.森特–焦尔季(匈牙利)发现肌肉收缩原理1938年 C.海曼斯(比利时)发现呼吸调节中颈动脉窦和主动脉的机理1939年 G.多马克(德国)研究和发现磺胺药1940年——1942年 未颁奖1943年 C.P.H.达姆(丹麦)发现维生素KE.A.多伊西(美国)发现维生素K的化学性质1944年 J.厄兰格、H.S.加塞(美国)从事有关神经纤维机制的研究1945年 A.弗莱明、E.B.钱恩、H.W.弗洛里(英国)发现表霉素以及表霉素对传染病的治疗效果1946年 H.J.马勒(美国)发现用X 射线可以使基因人工诱变1947年 C.F. 科里、G.T.科里(美国)发现糖代谢中的酶促反应B.A.何赛(阿根廷)发现脑下垂体前叶激素对糖代谢的作用1948年 P.H.米勒(瑞士)发现并合成了高效有机杀虫剂DDT1949年 W.R.赫斯(瑞士)发现动物间脑的下丘脑对内脏的调节功能1950年 E.C.肯德尔、P.S.亨奇(美国)T.赖希施泰因(瑞士)发现肾上腺皮质激素及其结构和生物效应1951年 M.蒂勒(南非)发现黄热病疫苗1952年 S.A.瓦克斯曼(美国)发现链霉素1953年 F.A.李普曼(英国)发现高能磷酸结合在代谢中的重要性,发现辅酶AH.A.克雷布斯(英国)发现克雷布斯循环(三羧酸循环)1954年 J.F.恩德斯、T.H.韦勒、F.C.罗宾斯(美国)研究脊髓灰质炎病毒的组织培养与组织技术的应用1955年 A.H.西奥雷尔(瑞典)从事过氧化酶的研究1956年 A.F.库南德、D.W.理查兹(美国)、W.福斯曼(德国)开发了心脏导管术1957年 D.博维特(意籍瑞士)从事合成类箭毒化合物的研究1958年 G.W.比德乐、E.L.塔特姆(美国)发现一切生物体内的生化反应都是由基因逐步控制的J.莱德伯格(美国)从事基因重组以及细菌遗传物质方面的研究1959年 S.奥乔亚、A.科恩伯格(美国)从事合成RNA和DNA的研究1960年 F.M.伯内特(澳大利亚)、P.B.梅达沃(英国)证实了获得性免疫耐受性1961年 G.V.贝凯西(美国)确立“行波学说”发现耳蜗感音的物理机制1962年 J.D.沃森(美国)、F.H.C.克里克、M.H.F.威尔金斯(英国)发现核酸的分子结构及其对住处传递的重要性1963年 J.C.艾克尔斯(澳大利亚)、A.L.霍金奇、A.F.赫克斯利(英国)发现与神经的兴奋和抑制有关的离子机构1964年 K.E.布洛赫(美国)、F.吕南(德国)从事有关胆固醇和脂肪酸生物合成方面的研究1965年 F.雅各布、J.L.莫诺、A.M.雷沃夫(法国)研究有关酶和细菌合成中的遗传调节机构1966年 F.P. 劳斯(美国)发现肿瘤诱导病毒C.B.哈金斯(美国)发现内分泌对于癌的干扰作用1967年 R.A.格拉尼特(瑞典)、H.K.哈特兰、G.沃尔德(美国)发现眼睛的化学及重量视觉过程1968年 R.W.霍利、H.G.霍拉纳、M.W.尼伦伯格(美国)研究遗传信息的破译及其在蛋白质合成中的作用1969年 M.德尔布吕克、A.D.赫尔、S.E.卢里亚(美国)发现病毒的复制机制和遗传结构1970年 B.卡茨(英国)、U.S.V.奥伊勒(瑞典)J.阿克塞尔罗行(美国)发现神经末梢部位的传递物质以及该物质的贮藏、释放、受抑制机理1971年 E.W.萨瑟兰(美国)发现激素的作用机理1972年 G.M.埃德尔曼(美国)、R.R.波特(英国)从事抗体的化学结构和机能的研究1973年 K.V.弗里施、K.洛伦滋(奥地利)、N.廷伯根(英国)发现个体及社会性行为模式(比较行为动物学)1974年 A.克劳德、C.R.德·迪夫(比利时)、G.E.帕拉德(美国)从事细胞结构和机能的研究1975年 D.巴尔摩、H.M.特明(美国)、R.杜尔贝科(美国)从事肿瘤病毒的研究1976年 B.S.丰卢姆伯格(美国)发现澳大利亚抗原D.C.盖达塞克(美国)从事慢性病毒感染症的研究1977年 R.C.L.吉尔曼、A.V.沙里(美国)发现下丘脑激素R.S.雅洛(美国)开发放射免疫分析法1978年 W.阿尔伯(瑞士)、H.O.史密斯、D.内森斯(美国)发现限制性内切酶以及在分子遗传学方面的应用1979年 A.M.科马克 (美国)、G.N.蒙斯菲尔德(英国)开始了用电子计算机操纵的X 射线断层扫描仪(简称扫描仪)1980年 B.贝纳塞拉夫、G.D.斯内尔(美国)、J.多塞(法国)从事细胞表面调节免疫反应的遗传结构的研究1981年 R.W.斯佩里(美国)从事大脑半球职能分工的研究D.H.休伯尔(美国)、T.N.威塞尔(瑞典)从事视觉系统的信息加工研究1982年 S.K.贝里斯德伦、B.I.萨米埃尔松(瑞典)J.R.范恩(英国)发现前列腺素,并从事这方面的研究1983年 B.麦克林托克(美国)发现移动的基因1984年 N.K.杰尼(丹麦)、G.J.F.克勒(德国)、C.米尔斯坦(英国)确立有免疫抑制机理的理论,研制出了单克隆抗体1985年 M.S.布朗、J.L.戈德斯坦(美国)从事胆固醇代谢及与此有关的疾病的研究1986年 R.L.蒙塔尔西尼(意大利)、S.科恩(美国)发现神经生长因子以及上皮细胞生长因子1987年 利根川进(日本)阐明与抗体生成有关的遗传性原理1988年 J.W.布莱克(英国)、G.B.埃利昂、G.H.希钦斯(美国)对药物研究原理作出重要贡献1989年 J.M.毕晓普、H.E.瓦慕斯(美国)发现了动物肿瘤病毒的致癌基因源出于细胞基因,即所谓原癌基因1990年 J.E.默里、E.D.托马斯(美国)从事对人类器官移植、细胞移植技术和研究1991年 E.内尔、B.萨克曼(德国)发明了膜片钳技术1992年 E.H.费希尔、E.G.克雷布斯(美国)发现蛋白质可逆磷酸化作用1993年 P.A.夏普、R.J.罗伯茨(美国)发现断裂基因1994年 A.G.吉尔曼、M.罗德贝尔(美国)发现G 蛋白及其在细胞中转导信息的作用1995年 E.B.刘易斯、E.F.维绍斯(美国)、C.N.福尔哈德(德国)发现了控制早期胚胎发育的重要遗传机理,利用果蝇作为实验系统,发现了同样适用于高等增有机体(包括人)的遗传机理1996年 P.C.多尔蒂(澳大利亚)、R.M.青克纳格尔(瑞士)发现细胞的中介免疫保护特征1997年 S.B.普鲁西纳(美国)发现了一种全新的蛋白致病因子 —— 朊蛋白(PRION)并在其致病机理研究方面做出了杰出贡献1998年 R.F.福尔荷格特、L.J.依格那罗和F.穆莱德发现一氧化一氮在心血管系统中作为信号分子1999年 Gunter Blobel发现控制细胞运输和定位的内在信号蛋白质2000年 阿尔维德·卡尔松(瑞典)、保罗·格林加德(美国)、埃里克·坎德尔(奥地利)在“人类脑神经细胞间信号的相互传递”方面获得的重要发现。2001年 利兰·哈特韦尔(美国)、蒂莫西·亨特(英国)和保罗·纳斯(英国)发现了细胞周期的关键分子调节机制2002年 悉尼·布雷内(英国)、约翰·苏尔斯顿(英国)、罗伯特·霍维茨(美国)为研究器官发育和程序性细胞死亡过程中的基因调节作用作出了重大贡献2003年 保罗·劳特布尔(美国)、彼得·曼斯菲尔德(英国)在核磁共振成像技术上获得关键性发现最终导致核磁共振成像仪的出现。2004年 理查德·阿克塞尔(美国)、琳达·巴克(美国)在气味受体和嗅觉系统组织方式研究中作出贡献,揭示了人类嗅觉系统的奥秘2005年 巴里·马歇尔(澳大利亚)、罗宾·沃伦诺贝尔(澳大利亚)发现了导致胃炎和胃溃疡的细菌10月2日至4日,瑞典皇家科学院陆续宣布了2006年度诺贝尔生理学或医学奖、物理学奖及化学奖的获奖名单,美国科学家安德鲁·法尔和克雷格·梅洛因发现RNA(核糖核酸)干扰机制而获得诺贝尔生理学或医学奖。美国科学家约翰·马瑟和乔治·斯穆特因发现宇宙微波背景辐射的黑体形式和各向异性而获得诺贝尔物理学奖。美国科学家罗杰·科恩伯格因在“真核转录的分子基础”研究领域所作出的贡献而独自获得诺贝尔化学奖。安德鲁·法尔1959年出生,目前任职于美国麻省理工学院;克雷格·梅洛1960年出生,目前在美国哈佛大学工作。根据诺贝尔奖评审委员会发布的公报,法尔和梅洛获奖是因为他们“发现了控制遗传信息流动的基本机制”。公报指出,RNA干扰已被广泛用作研究基因功能的一种手段,并有望在未来帮助科学家开发出治疗疾病的新疗法。今年60岁的马瑟目前为美国宇航局戈达德航天中心高级天体物理学家,1945年出生的斯穆特目前任职于美国加利福尼亚大学伯克利分校。诺贝尔奖评审委员会发布的公报称,马瑟和斯穆特借助美国1989年发射的COBE卫星做出的发现,为有关宇宙起源的大爆炸理论提供了支持,将有助于研究早期宇宙,帮助人们更多地了解恒星和星系的起源。公报说,他们的工作使宇宙学进入了“精确研究”时代。科恩伯格现年59岁,目前供职于美国斯坦福大学医学院,他的父亲阿瑟·科恩伯格是1959年的诺贝尔医学或生理学奖得主之一。瑞典皇家科学院在一份声明中说,科恩伯格揭示了真核生物体内的细胞如何利用基因内存储的信息生产蛋白质,而理解这一点具有医学上的“基础性”作用,因为人类的多种疾病如癌症、心脏病等都与这一过程发生紊乱有关。据悉,到10月13日,诺贝尔奖的其他奖项也将各有其主。除诺贝尔和平奖在挪威首都奥斯陆颁奖外,其余奖项的颁奖仪式将于12月10日在瑞典首都斯德哥尔摩举行。2006年度诺贝尔奖的奖金为1000万瑞典克朗(约合140万美元)。据诺贝尔奖官方网站消息,当地时间10月2日上午11时30分(北京时间17时30分),瑞典皇家科学院诺贝尔奖委员会宣布,将2006年度诺贝尔生理学或医学奖授予两名美国科学安德鲁·法尔和克雷格·梅洛,以表彰他们发现了RNA干扰现象。法尔和梅洛将分享奖金。法尔和梅洛将分享一千万瑞典克朗的奖金(137万美元、107万欧元)。安德鲁·法尔出生于1959年,美国公民,1983年获美国麻省理工学院生物学博士学位,现任斯坦福医学院病理学和遗传学教授。克雷格·梅洛出生于1960年,美国公民,1990年获得哈佛大学生物学博士学位,现任马萨诸塞州医学院分子医学教授。卡罗林斯卡医学院在颁奖声明称,今年诺贝尔医学奖获得者发现了一个有关控制基因信息流程的关键机制。人们的基因组通过从细胞核里的DNA向蛋白质的合成机制发出生产蛋白质的指令运作,这些指令通过mRNA传送。美国科学家法尔和梅洛公布了他们发现一种可以从特定基因降解mRNA的方式,在这种RNA干扰现象中,双链RNA(double-stranded RNA)以一种非常明确的方式抑制了基因表达。植物、动物、人类都存在RNA干扰现象,这对于基因表达的管理、参与对病毒感染的防护、控制活跃基因具有重要意义。RNA干扰已经作为一种强大的“基因沉默”技术而出现。这项技术被用于全球的实验室来确定各种病症中哪种基因起到了重要作用。RNA干扰作为研究基因运行的一种研究方法已被广泛应用于基础科学,它可能在将来产生新的治疗方法。获得今年诺贝尔生理学奖或医学奖的美国科学家克雷格·梅洛今天称,他曾认为有关基因信息流程的研究可能有一天会获得诺贝尔奖,但他没有想到这一刻会来得这么快。他的同事安德鲁·法尔称,诺贝尔奖委员会半夜打来的电话使他感到很惊讶。在美国马萨诸塞州医学院工作的梅洛与在斯坦福大学医学院工作的法尔分享了一千万瑞典克朗(137万美元)的奖金。克雷格·梅洛在他位于马萨诸塞州的家中表示:“这令人感到惊奇。我至今仍难以相信自己获奖了。我曾想到我可能会获奖,但我现在只有45岁,我想我可能在十年或二十年后获奖。”47岁的安德鲁·法尔则称,诺贝尔委员会的电话通知使他感到很惊讶。他在接受电话采访时称:“我可能在是做梦,或者诺贝尔委员会打错了电话。我最感激的是我的工作得到了承认。”瑞典卡罗林斯卡医学院宣布,安德鲁·法尔和克雷格·梅洛在基因技术的使用方面提供了“令人激动的可能性”。这两位科学家进行的实验发现了一种有效中止有缺陷的基因运传的机制,这为研发控制这种基因和与疾病作斗争的新药提供了可能性。安德鲁·法尔称:“克雷格和我的工作是研究为什么一些基因会停止运行,我们试图去控制它们,我们发现了一些东西可以有效地中止它们。知道这些基因并不能告诉你它们能做什么,所以如果你能中止它们,你就可以开始了解它们能做什么。”不过,最初发现RNAi现象的是一位华人学者,非常可惜,他没有进一步弄清这是为什么。小知识方兴未艾的RNA(核糖核酸)干扰技术---RNAi瑞典卡罗林斯卡医学院2日宣布,美国科学家安德鲁·法尔和克雷格·梅洛因为发现RNA(核糖核酸)干扰机制而获得2006年诺贝尔生理学或医学奖。法尔和梅洛于1998年正式发表论文,公布了有关RNA干扰机制的发现。以他们的发现为基础,RNA干扰技术近年来迅速兴起,其前景被普遍看好。RNA能够充当“信使”,传递DNA(脱氧核糖核酸)上的遗传信息,将其用于蛋白质的生产合成。研究显示,向生物体内注入微小RNA片段,会干扰生物体本身的RNA“信使”功能,导致相应蛋白质无法合成,从而“关闭”特定基因。科学家认为,采用RNA干扰技术直接从源头上让致病基因“沉默”,也许可以更有效地治疗某些疾病。这种技术最初曾被用来研究植物和蠕虫等,科学家后来发现它对哺乳动物细胞也有效。例如,美国哈佛医学院的科学家已经成功地利用RNA干扰技术治愈了实验鼠的肝炎。目前,RNA干扰治疗技术正在快速进入人体试验阶段。一些公司正在资助用这项技术治疗黄斑变性、乙肝等疾病的试验。不过,尚有几个难题阻碍着该技术的发展。首先,科学家还没有找到一种方便快捷的方法,使RNA干扰能在患者体内的有效部位进行。比如说,在治疗黄斑变性时,科学家可以直接对患者眼部进行治疗,而对于其他一些疾病就没有这么简单。其次,科学家还无法确定这种疗法是否会影响目标基因以外的其他基因,引发副作用.评选过程起初,诺贝尔生理医学奖的评选是由卡罗琳医学院的教员完成的。现在,根据诺贝尔基金会的相关章程,评选由卡罗琳医学院诺贝尔大会(Nobel Assembly)负责,大会由50名选举出来的卡罗琳医学院名教授组成。生理医学奖的评选程序大致为:卡罗琳医学院的诺贝尔大会任命一个工作委员会——诺贝尔委员会(Nobel Committee)负责前期工作。邀请生理医学领域的代表提名候选人,提名截至日期为每年2月1日。诺贝尔委员会对提名进行初步筛选,然后候选人提交给诺贝尔大会。诺贝尔大会最终决定得主,并对外公布(一般在每年10月份)。每年12月10日在斯德哥尔摩音乐厅举行颁奖仪式。近年诺贝尔生理学或医学奖得主及主要成就以下为2000年至2005年,诺贝尔生理学或医学奖获奖者名单及其主要成就:2005年,澳大利亚科学家巴里·马歇尔和罗宾·沃伦。他们发现了导致人类罹患胃炎、胃溃疡和十二指肠溃疡的罪魁——幽门螺杆菌,革命性地改变了世人对这些疾病的认识。2004年,美国科学家理查德·阿克塞尔和琳达·巴克。他们在气味受体和嗅觉系统组织方式研究中做出贡献,揭示了人类嗅觉系统的奥秘。2003年,美国科学家保罗·劳特布尔和英国科学家彼得·曼斯菲尔德。他们在核磁共振成像技术上获得关键性发现,这些发现最终导致核磁共振成像仪的出现。2002年,英国科学家悉尼·布雷内、约翰·苏尔斯顿和美国科学家罗伯特·霍维茨。他们为研究器官发育和程序性细胞死亡过程中的基因调节作用做出了重大贡献。2001年,美国科学家利兰·哈特韦尔、英国科学家保罗·纳斯和蒂莫西·亨特。他们发现了导致细胞分裂的关键性调节机制,这一发现为研究治疗癌症的新方法开辟了途径。2000年,瑞典科学家阿尔维德·卡尔松、美国科学家保罗·格林加德和埃里克·坎德尔。他们在研究脑细胞间信号的相互传递方面获得了重要发现。

曼德勃罗发表论文

π一般约等于3.14,他是无限不循环小数

是不是要科学小论文啊,我就不给!!!自己的事情自己做!!!!呵呵~~~~~~~!!!

数学小论文 篮球场上的数学 一个星期天的早晨,我和我的朋友一起去打篮球。 过了一会儿,我们俩打累了,就到观众席上去休息。突然间,我想到了一个问题,我就禁不住说出来:“小明一分钟投8个球,小红一分钟投6个球,他们一起投了8分钟之后,小红提高命中率一分钟投8个球,小明由于体力不支减少投球只数一分钟投6个球,问多少分钟后小红和小明投进的只数相同?” 大概是我朋友太累的缘故,这么简单的问题他都答不上来,他想了一会儿没做出来,过了好长时间他还是没想出来。时间一分一秒的过去了,他实在想不出来,只得不好意思地说:“没了草稿本,我做不出来。”我知道,就算他有草稿也未必做得出来。 我自豪地说:“原来小明一分比小红多投进2个,一共投了8分钟,也就是8×2=16(个),后来小红反过来每分比小明多投4个,那么16个球要多投几分钟呢?16÷4=4(分),要4分钟才能追上。”他说:“你真厉害!”“我是天才嘛!”我开玩笑说。我俩都笑了。 通过这件事,我发现生活中的数学是无处不在,生活中、学习中、还有工作中到处都有。从此,我就更加喜欢数学了 顺便说一句,我不赞成您这种对孩子的态度,对孩子要善于诱导,而不是替代他做什么.下边是关于如何写数学小论文的,希望对您和您的孩子有所帮助. 如何学写数学小论文 “写什么?怎样写?”这是每个学写小论文的同学都会碰到的问题。一篇好论文的产生,对于它的作者来说是一次创造性的劳动。创造性的劳动对劳动者的要求是很高的。其创作的素材、水平,乃至创作的灵感……,绝不是轻易可以得到的,它们需要作者在自己的学习与生活实践中,去进行长期的积累与思考。从我校征集的论文来看,作者中有的是在平时十分注意对课本知识进行归纳整理、拓展延伸,学习中有许多意想不到的收获;有的是从课外阅读中得到收获与启发后,获得灵感、得以选题;……更有甚者是,有的作者在生活中发现问题注意观察、探究,并与自己的数学学习相联系,对观察、探究的结果进行思考、归纳、总结,升华为理论,写出了令人叫绝的好论文。综观获奖论文的小作者们,他们大多是数学学习的有心人。好论文的作者不仅要有较好的数学感悟,还要有良好的文学修养、综合素养。 (1) 写什么 写小论文的关键,首先就是选题,大家的选题要从自己最熟悉的、最想写的内容入手。 下面我结合我校同学部分获奖论文的选题,进行一点简单的选题分析。 论文按内容分类,大概有以下几种: ①勤于实践,学以致用,对实际问题建立数学模型,再利用模型对问题进行分析、预测; 如:探究大桥的热胀冷缩度 ②对生活中普遍存在而又扰人心烦的小事,提出了巧妙的数学方法来解决它; 如: 一台饮水机创造的意想不到的实惠 ③对数学问题本身进行研究,探索规律,得出了解决问题的一般方法 如: 分式“家族”中的亲缘探究 如: 纸飞机里的数学 ④对自己数学学习的某个章节、或某个内容的体会与反思 如: “没有条件”的推理 如: 小议“黄金分割” 如: 奇妙的正五角星 (2) 怎样写 ① 课题要小而集中,要有针对性; ② 见解要真实、独特,有感而发,富有新意; ③ 要用自己的语言表述自己要表达的内容 (四) 评价数学小论文的标准 什么样的数学小论文算是好的论文呢?标准很多,但我以为一篇好的数学小论文必须有以下三个特征——新、真、美。“新”,指的就是选题要有独特的视角,写的内容不是简单地重复别人的东西、不是单纯地下载一段。文字,最好是自己原创的,至少要有自己的创造、自己的观点,属于自己的思想;“真”,指的就是内容要实在、言之有理,既不能空洞无味、也不能冗长拖沓,文章要紧扣主题,力求做到准确、精练,尽量地体现数学的严谨性与科学性;“美”,指的就是语言通顺、文笔流畅,文章要给人以美的享受。当然,从第二届时代数学学习“时代之星”实践与创新论文大赛的名称来看,既有实践又有创新的论文肯定更容易受到评委们的亲睐,所以,我希望同学们更加贴近生活、注意观察、去寻找、去发现,把生活与数学联系起来,把学习撰写论文、争取写出好的论文,作为对自己数学学习的一种评价、一种补充、一种提高,这样你学写小论文的目的就对了,你就会将数学小论文越写越好。 “梅花香自苦寒来”,只要肯下大工夫、只要肯吃的起苦,不断地去思考、去揣摸,去学习,好的数学论文就一定会在你的手中诞生。总之,学习撰写论文、争取写出好的论文,对于我们每一位同学来说,始终是一个锻炼自己、提高能力的极好的方式。我相信我校初一、初二的同学们一定会在老师的组织与指导下积极参与第二届《时代数学学习》“时代之星”实践与创新论文大赛的活动与交流,并取得好成绩。祝愿今后有更多更好的数学小论文,在同学们的手中诞生;愿有更多的同学从学写数学小论文开始起飞,在今后的人生之路上书写出更多的高水平、高质量的论文。 例子:《容易忽略的答案》 大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了2.5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。所以正确答案应该是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米)和45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。

当然不可以,因为这里的线不光滑。虽然它围成的面积和圆一样但长度其实并不一样。事实上,一个粗糙的曲线,它的长度要多长有多长。1967年,数学家曼德勃罗《科学》杂志上发表了一篇论文:《英国的海岸线有多长?统计自相似和分数维》,文章最后的结论表明:英国的海岸线长度是无法精确测量的!这个结论看似违背生活经验,但它确确实实是一个经过严密地分析得出的结论。为什么呢?这是因为测量得到的海岸线长度与测量的尺度有关。由于涨潮落潮使海岸线的水陆分界线具有各种层次的不规则性,测量时所使用的尺度的差异会直接导致测量结果的不同。如果用公里作测量单位,从几米到几十米的一些曲折会被忽略;改用米来做单位,测得的总长度会增加,但是一些厘米量级以下的就不能反映出来。就是说在测量尺度足够小的情况下我们总可以测的更长的海岸线。当测量的尺度趋近于无穷小,海岸线的长度甚至会趋近于无穷大。所以海岸线的长度不能用测量的方法得到准确值。上面这张图片叫科赫雪花,它是由瑞典人科赫于1904年提出的。它的画法是:1、任意画一个正三角形,并把每一边三等分;2、取三等分后的一边中间一段为边向外作正三角形,并把这"中间一段"擦掉;3、重复上述两步,画出更小的三角形;4、一直重复,直到无穷。如果把开始时的等边三角形边长记作S,通过计算可以得到这个曲线的面积是2√3S²╱5,而它的长度却是无穷大。事实上通过这个例子我们可以发现,有限的面积中,可以画出无限长的线。在数学中,线是无限细的,不占任何面积,如果把无限长的线折叠起来,它完全可以呈现于有限的面积之中。随着人的衰老,人的皮肤会变皱,如果把人的脸皮扒下来摊平,你会发现它的面积比脸要大很多很多。问题中的这张图也是同理,其实这条长度为4的曲线是折叠起来的,其表面是粗糙的。要考察它的长度,我们必须把它拉直,这时我们就会发现它的长度和圆并不一样。

相关百科

热门百科

首页
发表服务