首页

职称论文知识库

首页 职称论文知识库 问题

数学模型论文发表期刊app

发布时间:

数学模型论文发表期刊app

中国学术期刊网

给您推荐一个自助投稿网站——万维书刊,上面的刊物非常全,包括数学类的刊物,电子邮箱基本都有,并且大多还能连接登录他们的官方网站。用着很方便,过去看看吧! 此投稿网的特点:自助投稿、非中介、高校教师创办、免费、直接投稿编辑部、可以收藏期刊、保存投稿记录、期刊点评、连接期刊官网等,功能齐全。每个刊物的电子邮箱都来自官网或者知网、万方等权威网站。 请收藏并且介绍给朋友们吧,让他们投稿时也省一份心!祝投稿顺利!心情愉快! 您在百度、谷歌键入“万维书刊”,首页便是!

重庆工商大学学报徐州师范大学学报安徽师范大学学报

理论数学、应用数学进展、教育进展、职业教育等等

数学模型论文发表美食app

MatlabMathematicaMaplelingoSAS我用的是Matlab,这个语言较好...详细介绍:数学建模软件介绍 一般来说学习数学建模,常用的软件有四种,分别是:matlab、lingo、Mathematica和SAS下面简单介绍一下这四种。 1.MATLAB的概况 MATLAB是矩阵实验室(Matrix Laboratory)之意。除具备卓越的数值计算能力外,它还提供了专业水平的符号计算,文字处理,可视化建模仿真和实时控制等功能。 MATLAB的基本数据单位是矩阵,它的指令表达式与数学,工程中常用的形式十分相似,故用MATLAB来解算问题要比用C,FORTRAN等语言完相同的事情简捷得多. 当前流行的MATLAB 5.3/Simulink 3.0包括拥有数百个内部函数的主包和三十几种工具包(Toolbox).工具包又可以分为功能性工具包和学科工具包.功能工具包用来扩充MATLAB的符号计算,可视化建模仿真,文字处理及实时控制等功能.学科工具包是专业性比较强的工具包,控制工具包,信号处理工具包,通信工具包等都属于此类.开放性使MATLAB广受用户欢迎.除内部函数外,所有MATLAB主包文件和各种工具包都是可读可修改的文件,用户通过对源程序的修改或加入自己编写程序构造新的专用工具包. 2.Mathematica的概况 Wolfram Research 是高科技计算机运算( Technical computing )的先趋,由复杂理论的发明者 Stephen Wolfram 成立于1987年,在1988年推出高科技计算机运算软件Mathematica,是一个足以媲美诺贝尔奖的天才产品。Mathematica 是一套整合数字以及符号运算的数学工具软件,提供了全球超过百万的研究人员,工程师,物理学家,分析师以及其它技术专业人员容易使用的顶级科学运算环境。目前已在学术界、电机、机械、化学、土木、信息工程、财务金融、医学、物理、统计、教育出版、OEM 等领域广泛使用。 Mathematica 的特色,具有高阶的演算方法和丰富的数学函数库和庞大的数学知识库,让 Mathematica 5 在线性代数方面的数值运算,例如特征向量、 反矩阵等,皆比Matlab R13做得更快更好,提供业界最精确的数值运算结果。·Mathematica不但可以做数值计算,还提供最优秀的可设计的符号运算。丰富的数学函数库,可以快速的解答微积分、线性代数、微分方程、复变函数、数值分析、机率统计等等问题。Mathematica可以绘制各专业领域专业函数图形,提供丰富的图形表示方法,结果呈现可视化。Mathematica可编排专业的科学论文期刊,让运算与排版在同一环境下完成,提供高品质可编辑的排版公式与表格,屏幕与打印的 自动最佳化排版,组织由初始概念到最后报告的计划,并且对 txt、html、pdf 等格式的输出提供了最好的兼容性。可与 C、C++ 、Fortran、Perl、Visual Basic、以及 Java 结合,提供强大高级语言接口功能,使得程序开发更方便。·Mathematica本身就是一个方便学习的程序语言。 Mathematica提供互动且丰富的帮助功能,让使用者现学现卖。强大的功能,简 单的操作,非常容易学习特点,可以最有效的缩短研发时间。

随着科学技术特别是信息技术的高速发展,数学建模的应用价值越来越得到众人的重视,

数学建模本身是一个创造性的思维过程,它是对数学知识的综合应用,具有较强的创新性,以下是一篇关于数学建模教育开展策略探究的论文 范文 ,欢迎阅读参考。

大学数学具有高度抽象性和概括性等特点,知识本身难度大再加上学时少、内容多等教学现状常常造成学生的学习积极性不高、知识掌握不够透彻、遇到实际问题时束手无策,而数学建模思想能激发学生的学习兴趣,培养学生应用数学的意识,提高其解决实际问题的能力。数学建模活动为学生构建了一个由数学知识通向实际问题的桥梁,是学生的数学知识和应用能力共同提高的最佳结合方式。因此在大学数学教育中应加强数学建模教育和活动,让学生积极主动学习建模思想,认真体验和感知建模过程,以此启迪创新意识和 创新思维 ,提高其素质和创新能力,实现向素质教育的转化和深入。

一、数学建模的含义及特点

数学建模即抓住问题的本质,抽取影响研究对象的主因素,将其转化为数学问题,利用数学思维、数学逻辑进行分析,借助于数学 方法 及相关工具进行计算,最后将所得的答案回归实际问题,即模型的检验,这就是数学建模的全过程。一般来说",数学建模"包含五个阶段。

1.准备阶段

主要分析问题背景,已知条件,建模目的等问题。

2.假设阶段

做出科学合理的假设,既能简化问题,又能抓住问题的本质。

3.建立阶段

从众多影响研究对象的因素中适当地取舍,抽取主因素予以考虑,建立能刻画实际问题本质的数学模型。

4.求解阶段

对已建立的数学模型,运用数学方法、数学软件及相关的工具进行求解。

5.验证阶段

用实际数据检验模型,如果偏差较大,就要分析假设中某些因素的合理性,修改模型,直至吻合或接近现实。如果建立的模型经得起实践的检验,那么此模型就是符合实际规律的,能解决实际问题或有效预测未来的,这样的建模就是成功的,得到的模型必被推广应用。

二、加强数学建模教育的作用和意义

(一) 加强数学建模教育有助于激发学生学习数学的兴趣,提高数学修养和素质

数学建模教育强调如何把实际问题转化为数学问题,进而利用数学及其有关的工具解决这些问题, 因此在大学数学的教学活动中融入数学建模思想,鼓励学生参与数学建模实践活动,不但可以使学生学以致用,做到理论联系实际,而且还会使他们感受到数学的生机与活力,激发求知的兴趣和探索的欲望,变被动学习为主动参与其效率就会大为改善。数学修养和素质自然而然得以培养并提高。

(二)加强数学建模教育有助于提高学生的分析解决问题能力、综合应用能力

数学建模问题来源于社会生活的众多领域,在建模过程中,学生首先需要阅读相关的文献资料,然后应用数学思维、数学逻辑及相关知识对实际问题进行深入剖析研究并经过一系列复杂计算,得出反映实际问题的最佳数学模型及模型最优解。因此通过数学建模活动学生的视野将会得以拓宽,应用意识、解决复杂问题的能力也会得到增强和提高。

(三)加强数学建模教育有助于培养学生的创造性思维和创新能力

所谓创造力是指"对已积累的知识和 经验 进行科学地加工和创造,产生新概念、新知识、新思想的能力,大体上由感知力、 记忆力 、思考力、 想象力 四种能力所构成"[1].现今教育界认为,创造力的培养是人才培养的关键,数学建模活动的各个环节无不充满了创造性思维的挑战。

很多不同的实际问题,其数学模型可以是相同或相似的,这就要求学生在建模时触类旁通,挖掘不同事物间的本质,寻找其内在联系。而对一个具体的建模问题,能否把握其本质转化为数学问题,是完成建模过程的关键所在。同时建模题材有较大的灵活性,没有统一的标准答案,因此数学建模过程是培养学生创造性思维,提高创新能力的过程[2].

(四)加强数学建模教育有助于提高学生科技论文的撰写能力

数学建模的结果是以论文形式呈现的,如何将建模思想、建立的模型、最优解及其关键环节的处理在论文中清晰地表述出来,对本科生来说是一个挑战。经历数学建模全过程的磨练,特别是数模论文的撰写,学生的文字语言、数学表述能力及论文的撰写能力无疑会得到前所未有的提高。

(五)加强数学建模教育有助于增强学生的团结合作精神并提高协调组织能力建模问题通常较复杂,涉及的知识面也很广,因此数学建模实践活动一般效仿正规竞赛的规则,三人为一队在三天内以论文形式完成建模题目。要较好地完成任务,离不开良好的组织与管理、分工与协作[3].

三、开展数学建模教育及活动的具体途径和有效方法

(一)开展数学建模课堂教学

即在课堂教学中,教师以具体的案例作为主要的教学内容,通过具体问题的建模,介绍建模的过程和思想方法及建模中要注意的问题。案例教学法的关键在于把握两个重要环节:

案例的选取和课堂教学的组织。

教学案例一定要精心选取,才能达到预期的教学效果。其选取一般要遵循以下几点。

1. 代表性:案例的选取要具有科学性,能拓宽学生的知识面,突出数学建模活动重在培养兴趣提高能力等特点。

2. 原始性:来自媒体的信息,企事业单位的 报告 ,现实生活和各学科中的问题等等,都是数学建模问题原始资料的重要来源。

3. 创新性:案例应注意选取在建模的某些环节上具有挑战性,能激发学生的创造性思维,培养学生的创新精神和提高创造能力。

案例教学的课堂组织,一部分是教师讲授,从实际问题出发,讲清问题的背景、建模的要求和已掌握的信息,介绍如何通过合理的假设和简化建立优化的数学模型。还要强调如何用求解结果去解释实际现象即检验模型。另一部分是课堂讨论,让学生自由发言各抒己见并提出新的模型,简介关键环节的处理。最后教师做出点评,提供一些改进的方向,让学生自己课外独立探索和钻研,这样既突出了教学重点,又给学生留下了进一步思考的空间,既避免了教师的"满堂灌",也活跃了课堂气氛,提高了学生的课堂学习兴趣和积极性,使传授知识变为学习知识、应用知识,真正地达到提高素质和培养能力的教学目的[4].

(二)开展数模竞赛的专题培训指导工作

建立数学建模竞赛指导团队,分专题实行教师负责制。每位教师根据自己的专长,负责讲授某一方面的数学建模知识与技巧,并选取相应地建模案例进行剖析。如离散模型、连续模型、优化模型、微分方程模型、概率模型、统计回归模型及数学软件的使用等。学生根据自己的薄弱点,选择适合的专题培训班进行学习,以弥补自己的不足。这种针对性的数模教学,会极大地提高教学效率。

(三)建立数学建模网络课程

以现代 网络技术 为依托,建立数学建模课程网站,内容包括:课程介绍,课程大纲,教师教案,电子课件,教学实验,教学录像,网上答疑等;还可以增加一些有关栏目,如历年国内外数模竞赛介绍,校内竞赛,专家点评,获奖心得交流;同时提供数模学习资源下载如讲义,背景材料,历年国内外竞赛题,优秀论文等。以此为学生提供良好的自主学习网络平台,实现课堂教学与网络教学的有机结合,达到有效地提高学生数学建模综合应用能力的目的。[5,6]

(四)开展校内数学建模竞赛活动

完全模拟全国大学生数模竞赛的形式规则:定时公布赛题,三人一组,只能队内讨论,按时提交论文,之后指导教师、参赛同学集中讨论,进一步完善。笔者负责数学建模竞赛培训近 20 年,多年的实践证明,每进行一次这样的训练,学生在建模思路、建模水平、使用软件能力、论文书写方面就有大幅提高。多次训练之后,学生的建模水平更是突飞猛进,效果甚佳。

如 2008 年我指导的队荣获全国高教社杯大学生数学建模竞赛的最高奖---高教社杯奖,这是此赛设置的唯一一个名额,也是当年从全国(包括香港)院校的约 1 万多个本科参赛队中脱颖而出的。又如 2014 年我校 57 队参加全国大学生数学建模竞赛,43 队获奖,获奖比例达 75%,创历年之最。

(五)鼓励学生积极参加全国大学生数学建模竞赛、国际数学建模竞赛

全国大学生数学建模竞赛创办于 1992 年,每年一届,目前已成为全国高校规模最大的基础性学科竞赛, 国际大学生数学建模竞赛是世界上影响范围最大的高水平大学生学术赛事。参加数学建模大赛可以激励学生学习数学的积极性,提高运用数学及相关工具分析问题解决问题的综合能力,开拓知识面,培养创造精神及合作意识。

四、结束语

数学建模本身是一个创造性的思维过程,它是对数学知识的综合应用,具有较强的创新性,而高校数学教学改革的目的之一是要着力培养学生的创造性思维,提高学生的创新能力。因此应将数学建模思想融入教学活动中,通过不断的数学建模教育和实践培养学生的创新能力和应用能力从而提高学生的基本素质以适应社会发展的要求。

参考文献:

[1]辞海[M].上海辞书出版社,2002,1:237.

[2]许梅生,章迪平,张少林。 数学建模的认识与实践[J].浙江科技学院学报,2003,15(1):40-42.

[3]姜启源,谢金星,一项成功的高等教育改革实践[J].中国高教研究,2011,12:79-83.

[4]饶从军,王成。论高校数学建模教学[J].延边大学学报(自然科学学版),2006,32(3):227-230.

[5]段璐灵。数学建模课程教学改革初探[J].教育与职业,2013,5:140-142.

[6]郝鹏鹏。工程网络课程教学的实践与思考[J]科技视界,2014,29:76-77.

大部分数学知识是抽象的,概念比较枯燥,造成学生学习困难,而数学建模的运用,在很大程度上可以将抽象的数学知识转化成实体模型,让学生更容易理解和学习数学知识。教师要做的就是了解并掌握数学建模的方法,并且把这种 教学方法 运用到数学教学中。

对教师来说,发现好的教学方法不是最重要的,而是如何把方法与教学结合起来。通过对数学建模的长期研究和实践应用,笔者 总结 了数学建模的概念以及运用策略。

一、数学建模的概念

想要更好地运用数学建模,首先要了解什么是数学建模。可以说,数学建模就像一面镜子,可以使数学抽象的影像产生与之对应的具体化物象。

二、在小学数学教学中运用数学建模的策略

1.根据事物之间的共性进行数学建模

想要运用数学建模,首先要对建模对象有一定的感知。教师要创造有利的条件,促使学生感知不同事物之间的共性,然后进行数学建模。

教师应做好建模前的指导工作,为学生的数学建模做好铺垫,而学生要学会尝试自己去发现事物的共性,争取将事物的共性完美地运用到数学建模中。在建模过程中,教师要引导学生把新知识和旧知识结合起来的作用,将原来学习中发现的好方法运用到新知识的学习、新数学模型的构建中,降低新的数学建模的难度,提高学生数学建模的成功率。如在教学《图形面积》时,教师可以利用不同的图形模板,让学生了解不同图形的面积构成,寻找不同图形面积的差异以及图形之间的共性。这样直观地向学生展示图形的变化,可以加深学生对知识的理解,提高学生的学习效率。

2.认识建模思想的本质

建模思想与数学的本质紧密相连,它不是独立存在于数学教学之外的。所以在数学建模过程中,教师要帮助学生正确认识数学建模的本质,将数学建模与数学教学有机结合起来,提高学生解决问题的能力,让学生真正具备使用数学建模的能力。

建模过程并不是独立于数学教学之外的,它和数学的教学过程紧密相连。数学建模是使人对数学抽象化知识进行具体认识的工具,是运用数学建模思想解决数学难题的过程。因此,教师要将它和数学教学组成一个有机的整体,不仅要帮助学生完成建模,更要带领学生认识数学建模的本质,领悟数学建模思想的真谛,并逐渐引导学生使用数学建模解决数学学习过程中遇到的问题。

3.发挥教材在数学建模上的作用

教材是最基础的教学工具,在数学教材中有很多典型案例可以利用在数学建模上,其中很大一部分来源于生活,更易于小学生学习和理解,有助于学生构建数学建模思想。教师要利用好教材,培养学生的建模能力,帮助学生建造更易于理解的数学模型,从而提高学生的学习效率。如在教学加减法时,教材上会有很多数苹果、香蕉的例题,这些就是很好的数学模型,因为贴近生活,可以激发学生的学习兴趣,培养学生数学建模的能力,所以教师应该深入研究教材。

数学建模是一种很好的数学教学方法,教师要充分利用这种教学方法,真正做到实践与理论完美结合。

1、层次分析法,简称AHP,是指将与决策总是有关的元素分解成目标、准则、方案等层次,在此基础之上进行定性和定量分析的决策方法。该方法是美国运筹学家匹茨堡大学教授萨蒂于20世纪70年代初,在为美国国防部研究"根据各个工业部门对国家福利的贡献大小而进行电力分配"课题时,应用网络系统理论和多目标综合评价方法,提出的一种层次权重决策分析方法。

2、多属性决策是现代决策科学的一个重要组成部分,它的理论和方法在工程设计、经济、管理和军事等诸多领域中有着广泛的应用,如:投资决策、项目评估、维修服务、武器系统性能评定、工厂选址、投标招标、产业部门发展排序和经济效益综合评价等.多属性决策的实质是利用已有的决策信息通过一定的方式对一组(有限个)备选方案进行排序或择优.它主要由两部分组成:(l) 获取决策信息.决策信息一般包括两个方面的内容:属性权重和属性值(属性值主要有三种形式:实数、区间数和语言).其中,属性权重的确定是多属性决策中的一个重要研究内容;(2)通过一定的方式对决策信息进行集结并对方案进行排序和择优。

3、灰色预测模型(Gray Forecast Model)是通过少量的、不完全的信息,建立数学模型并做出预测的一种预测方法.当我们应用运筹学的思想方法解决实际问题,制定发展战略和政策、进行重大问题的决策时,都必须对未来进行科学的预测.预测是根据客观事物的过去和现在的发展规律,借助于科学的方法对其未来的发展趋势和状况进行描述和分析,并形成科学的假设和判断。

4、Dijkstra算法能求一个顶点到另一顶点最短路径。它是由Dijkstra于1959年提出的。实际它能出始点到 其它 所有顶点的最短路径。

Dijkstra算法是一种标号法:给赋权图的每一个顶点记一个数,称为顶点的标号(临时标号,称T标号,或者固定标号,称为P标号)。T标号表示从始顶点到该标点的最短路长的上界;P标号则是从始顶点到该顶点的最短路长。

5、Floyd算法是一个经典的动态规划算法。用通俗的语言来描述的话,首先我们的目标是寻找从点i到点j的最短路径。从动态规划的角度看问题,我们需要为这个目标重新做一个诠释(这个诠释正是动态规划最富创造力的精华所在)从任意节点i到任意节点j的最短路径不外乎2种可能,1是直接从i到j,2是从i经过若干个节点k到j。所以,我们假设Dis(i,j)为节点u到节点v的最短路径的距离,对于每一个节点k,我们检查Dis(i,k) + Dis(k,j) < Dis(i,j)是否成立,如果成立,证明从i到k再到j的路径比i直接到j的路径短,我们便设置Dis(i,j) = Dis(i,k) + Dis(k,j),这样一来,当我们遍历完所有节点k,Dis(i,j)中记录的便是i到j的最短路径的距离。

6、模拟退火算法是模仿自然界退火现象而得,利用了物理中固体物质的退火过程与一般优化问题的相似性从某一初始温度开始,伴随温度的不断下降,结合概率突跳特性在解空间中随机寻找全局最优解。

7、种群竞争模型:当两个种群为争夺同一食物来源和生存空间相互竞争时,常见的结局是,竞争力弱的灭绝,竞争力强的达到环境容许的最大容量。使用种群竞争模型可以描述两个种群相互竞争的过程,分析产生各种结局的条件。

8、排队论发源于上世纪初。当时美国贝尔电话公司发明了自动电话,以适应日益繁忙的工商业电话通讯需要。这个新发明带来了一个新问题,即通话线路与电话用户呼叫的数量关系应如何妥善解决,这个问题久久未能解决。1909年,丹麦的哥本哈根电话公司A.K.埃尔浪(Erlang)在热力学统计平衡概念的启发下解决了这个问题。

9、线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法.在经济管理、交通运输、工农业生产等经济活动中,提高经济效果是人们不可缺少的要求,而提高经济效果一般通过两种途径:一是技术方面的改进,例如改善生产工艺,使用新设备和新型原材料.二是生产组织与计划的改进,即合理安排人力物力资源.线性规划所研究的是:在一定条件下,合理安排人力物力等资源,使经济效果达到最好.一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题。满足线性约束条件的解叫做可行解,由所有可行解组成的集合叫做可行域。决策变量、约束条件、目标函数是线性规划的三要素。

10、非线性规划:非线性规划是一种求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。运筹学的一个重要分支。20世纪50年代初,库哈(H.W.Kuhn) 和托克 (A.W.Tucker) 提出了非线性规划的基本定理,为非线性规划奠定了理论基础。这一方法在工业、交通运输、经济管理和军事等方面有广泛的应用,特别是在“最优设计”方面,它提供了数学基础和计算方法,因此有重要的实用价值。

数学建模全国优秀论文相关 文章 :

★ 数学建模全国优秀论文范文

★ 2017年全国数学建模大赛获奖优秀论文

★ 数学建模竞赛获奖论文范文

★ 小学数学建模的优秀论文范文

★ 初中数学建模论文范文

★ 学习数学建模心得体会3篇

★ 数学建模论文优秀范文

★ 大学生数学建模论文范文(2)

★ 数学建模获奖论文模板范文

★ 大学生数学建模论文范文

MatlabMathematicalingoSAS详细介绍:数学建模软件介绍 一般来说学习数学建模,常用的软件有四种,分别是:matlab、lingo、Mathematica和SAS下面简单介绍一下这四种。 1.MATLAB的概况 MATLAB是矩阵实验室(Matrix Laboratory)之意。除具备卓越的数值计算能力外,它还提供了专业水平的符号计算,文字处 理,可视化建模仿真和实时控制等功能。 MATLAB的基本数据单位是矩阵,它的指令表达式与数学,工程中常用的形式十分相似,故用MATLAB来解算问题要比用C,FORTRAN等 语言完相同的事情简捷得多. 当前流行的MATLAB 5.3/Simulink 3.0包括拥有数百个内部函数的主包和三十几种工具包(Toolbox).工具包又可以分为功能性工具 包和学科工具包.功能工具包用来扩充MATLAB的符号计算,可视化建模仿真,文字处理及实时控制等功能.学科工具包是专业性比较强 的工具包,控制工具包,信号处理工具包,通信工具包等都属于此类. 开放性使MATLAB广受用户欢迎.除内部函数外,所有MATLAB主包文件和各种工具包都是可读可修改的文件,用户通过对源程序的修改 或加入自己编写程序构造新的专用工具包. 2.Mathematica的概况 Wolfram Research 是高科技计算机运算( Technical computing )的先趋,由复杂理论的发明者 Stephen Wolfram 成立于 1987年,在1988年推出高科技计算机运算软件Mathematica,是一个足以媲美诺贝尔奖的天才产品。Mathematica 是一套整合数字以 及符号运算的数学工具软件,提供了全球超过百万的研究人员,工程师,物理学家,分析师以及其它技术专业人员容易使用的顶级 科学运算环境。目前已在学术界、电机、机械、化学、土木、信息工程、财务金融、医学、物理、统计、教育出版、OEM 等领域广 泛使用。 Mathematica 的特色 ·具有高阶的演算方法和丰富的数学函数库和庞大的数学知识库,让 Mathematica 5 在线性代数方面的数值运算,例如特征向量、 反矩阵等,皆比Matlab R13做得更快更好,提供业界最精确的数值运算结果。 ·Mathematica不但可以做数值计算,还提供最优秀的可设计的符号运算。 ·丰富的数学函数库,可以快速的解答微积分、线性代数、微分方程、复变函数、数值分析、机率统计等等问题。 ·Mathematica可以绘制各专业领域专业函数图形,提供丰富的图形表示方法,结果呈现可视化。 ·Mathematica可编排专业的科学论文期刊,让运算与排版在同一环境下完成,提供高品质可编辑的排版公式与表格,屏幕与打印的 自动最佳化排版,组织由初始概念到最后报告的计划,并且对 txt、html、pdf 等格式的输出提供了最好的兼容性。 ·可与 C、C++ 、Fortran、Perl、Visual Basic、以及 Java 结合,提供强大高级语言接口功能,使得程序开发更方便。 ·Mathematica本身就是一个方便学习的程序语言。 Mathematica提供互动且丰富的帮助功能,让使用者现学现卖。强大的功能,简 单的操作,非常容易学习特点,可以最有效的缩短研发时间。 3.lingo的概况 LINGO则用于求解非线性规划(NLP—NON—LINEAR PROGRAMMING)和二次规则(QP—QUARATIC PROGRAMING)其中 LINGO 6.0学生版最多可版最多达300个变量和150个约束的规则问题,其标准版的求解能力亦再10^4量级以上。虽然LINDO和 LINGO不能直接求解目标规划问题,但用序贯式算法可分解成一个个LINDO和LINGO能解决的规划问题。 模型建立语言和求解引擎的整合 LINGO是使建立和求解线性、非线性和整数最佳化模型更快更简单更有效率的综合工具。LINGO提供强大的语言和快速的求解引擎来阐述和求解最佳化模型。 ■ 简单的模型表示 LINGO可以将线性、非线性和整数问题迅速得予以公式表示,并且容易阅读、了解和修改。 ■ 方便的数据输入和输出选择 LINGO建立的模型可以直接从数据库或工作表获取资料。同样地, LINGO可以将求解结果直接输出到数据库或工作表。 ■ 强大的求解引擎 LINGO内建的求解引擎有线性、非线性(convex and nonconvex)、二次、二次限制和整数最佳化。 ■ Model Interactively or Create Turn-key Applications LINGO提供完全互动的环境供您建立、求解和分析模型。LINGO也提供DLL和OLE界面可供使用者由撰写的程序中呼叫。 ■ 广泛的文件和HELP功能 LINGO提供的所有工具和文件可使你迅速入门和上手。LINGO使用者手册有详细的功能定义。 4.SAS软件概况 SAS系统全称为Statistics Analysis System,最早由北卡罗来纳大学的两位生物统计学研究生编制,并于1976年成立了SAS软件研究所,正式推出了SAS软件。SAS是用于决策支持的大型集成信息系统,但该软件系统最早的功能限于统计分析,至今,统计分析功能也仍是它的重要组成部分和核心功能。SAS现在的版本为9.0版,大小约为1G。经过多年的发展,SAS已被全世界120多个国家和地区的近三万家机构所采用,直接用户则超过三百万人,遍及金融、医药卫生、生产、运输、通讯、政府和教育科研等领域。在英美等国,能熟练使用SAS进行统计分析是许多公司和科研机构选材的条件之一。在数据处理和统计分析领域,SAS系统被誉为国际上的标准软件系统,并在96~97年度被评选为建立数据库的首选产品。堪称统计软件界的巨无霸。在此仅举一例如下:在以苛刻严格著称于世的美国FDA新药审批程序中,新药试验结果的统计分析规定只能用SAS进行,其他软件的计算结果一律无效!哪怕只是简单的均数和标准差也不行!由此可见SAS的权威地位。 SAS系统是一个组合软件系统,它由多个功能模块组合而成,其基本部分是BASE SAS模块。BASE SAS模块是SAS系统的核心,承担着主要的数据管理任务,并管理用户使用环境,进行用户语言的处理,调用其他SAS模块和产品。也就是说,SAS系统的运行,首先必须启动BASE SAS模块,它除了本身所具有数据管理、程序设计及描述统计计算功能以外,还是SAS系统的中央调度室。它除可单独存在外,也可与其他产品或模块共同构成一个完整的系统。各模块的安装及更新都可通过其安装程序非常方便地进行。SAS系统具有灵活的功能扩展接口和强大的功能模块,在BASE SAS的基础上,还可以增加如下不同的模块而增加不同的功能:SAS/STAT(统计分析模块)、SAS/GRAPH(绘图模块)、SAS/QC(质量控制模块)、SAS/ETS(经济计量学和时间序列分析模块)、SAS/OR(运筹学模块)、SAS/IML(交互式矩阵程序设计语言模块)、SAS/FSP(快速数据处理的交互式菜单系统模块)、SAS/AF(交互式全屏幕软件应用系统模块)等等。SAS有一个智能型绘图系统,不仅能绘各种统计图,还能绘出地图。SAS提供多个统计过程,每个过程均含有极丰富的任选项。用户还可以通过对数据集的一连串加工,实现更为复杂的统计分析。此外,SAS还提供了各类概率分析函数、分位数函数、样本统计函数和随机数生成函数,使用户能方便地实现特殊统计要求。

数学模型论文发表小说app

下图是今日分享的软件列表

视频讲解:

撰写论文的9个实用软件

1.Excel

Excel这个软件我相信大家都不陌生,就不过多介绍了,我主要用它来将一些数据表格化插到论文中。

2.fritzing

fritzing这个软件我也是最近才了解到的。相比与Altium designer和allegro,fritzing多了一个原理图模式,能够很美观的展示电路板的电气连接。能够用于画一些简单器件的电路连接,显示效果极好。

3.mathpix snipping Tool

这是一款开源的公式OCR软件,能够识别公式转换成为Latex语法,直接输入在MathType公式编辑器中。这款软件需要和mathtype一起使用,体验感更好,直接将第二行的Latax语句复制到Mathtype中即可完成转换。

4.MathType

MathType是一款著名的公式编辑器软件,编辑的公式能够在Word中直接修改。

5.Matlab

Matlab是工科生应该都知道的一款软件,应该也有一些同学的毕业设计就是和Matlab相关。我用的功能比较浅,就是一些基本的图像处理与一些仿真功能。Matlab的数据绘图也是很强的,下图是使用Matlab画制的三维图形

6.Originlab

这是一款专业的数据分析软件,与matlab一样,功能也非常的强大,我现在也只会一点皮毛,B站上有相关的教程:Originlab的官方中文教程 很多SCI论文的数据可视化插图都是使用这款软件画制出来的。Originlab软件的强大只有你自己使用过才知道

7.visio

也是微软旗下的产品,因此与Word的兼容性好。我经常用它来画一些框图

8.天若OCR

与Mathpix公式OCR不同,天若OCR是一款文字识别的OCR,我个人使用了好久,识别率很高,识别速率也挺快的。不过前段时间可能是使用的人数过多,导致了天若OCR无法正常使用,原因是因为原本破解该软件的开发者使用的搜狗接口无法正常使用了,解决方法:OCR推荐 即使用百度账号在百度智能云中申请一个免费的文字识别API接口,将天若OCR接口改成百度接口即可。

9.亿图图示

和visio类似,亿图图示也可用于画框图,功能也很强大。软件自带很多模板,样式也很精美

因为我是学电子的,在这些模板中,科技模板比较适合电子与计算机的人员。这些自带的符号库能够很方便我们画制框图,讲解相应的功能。

2022“数维杯”国际大学生数学建模论文提交截止:北京时间2022年11月21日08:00。

数学建模,就是根据实际问题来建立数学模型,对数学模型来进行求解,然后根据结果去解决实际问题。

当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言作表述来建立数学模型。

数学是研究现实世界数量关系和空间形式的科学,在它产生和发展的历史长河中,一直是和各种各样的应用问题紧密相关的。数学的特点不仅在于概念的抽象性、逻辑的严密性、结论的明确性和体系的完整性,而且在于它应用的广泛性。

自从20世纪以来,随着科学技术的迅速发展和计算机的日益普及,人们对各种问题的要求越来越精确,使得数学的应用越来越广泛和深入,特别是在21世纪这个知识经济时代,数学科学的地位会发生巨大的变化,它正在从国家经济和科技的后备走到了前沿。

经济发展的全球化、计算机的迅猛发展、数学理论与方法的不断扩充,使得数学已经成为当代高科技的一个重要组成部分和思想库,数学已经成为一种能够普遍实施的技术。培养学生应用数学的意识和能力已经成为数学教学的一个重要方面。

数学模型论文发表心情app

先大致说一下内容。我们评诂一下?上次杨付民先生提到一个素数论猜想,一不小心被我否定了。

数学中国啊,注册个账号,里面很多相关的东西都可以下载。有什么疑问可以问我哈

word里面有自带的公式编辑器,选择插入->对象->Microsoft 公式3.0就可以用了另外还可以安装mathtype软件

数学建模征文

那些年,我们一起经历的数学建模

还记得那时候我刚进入大学,利用一个月的时间才熟悉了大学的环境,和大学生的作息时间。

记得新生开学的一个月后,有一个社团纳新活动,全校的社团聚集在这里,拉拢着各自的会员。我在这琳琅满目的社团纳新中搜寻着自己感兴趣的社团。就在这时,我看到许多人围在一个社团前面徘徊着,出于好奇心理,我走上前去看了看,是数学建模协会纳新会员。我当时就在想,我自己本身数学就不好,这个应该和数学的关系很密切吧,顿时有种想放弃的冲动。

就在这时,有位学姐走了过来,给我详细的介绍了数学建模培训和相关的各类比赛。原来,数学建模是个团体性比赛,并不是个人类比赛,而且还有相关老师的指点,所以即使你不会,也没关系,大家一起分析,一起解决,体会团队合作解决问题的乐趣。

在学姐的大力鼓励下,还有我个人喜欢挑战自我的性格,于是我就这样加入了数学建模协会。在协会中,我不断的学习相关建模思想与算法,并与其他会友一同交流感想,交流心得,时间就这样一天天的过去,直到迎来了数学建模全国赛……

还记得迎来数学建模全国赛的前一天,老师通知我们参赛的队员们自己有空课时间的过来搬床板和床架,在机房旁边腾出了几个空房子,供队员们休息,晚上就不用回宿舍了。那天,我们十几个大男生把几十个人的床板和床架搬完了,累得汗流浃背,但却蛮开心的,因为彼此之间都在相互鼓励,相互帮忙,我体会到了一起耕耘,一起收获的喜悦。

我和我另外两个队友商量,今晚你值班,明晚我值班,后天晚上他值班,最后一天晚上大家一起熬到天明。所以在放赛题的前一天晚上,我收拾好行李,早早的躺在了床上,一想到明天就要开始和队友奋战三天三夜,我就激动无比,在迷迷糊糊的想象中,我睡着了,第二天早上7点钟就醒了,由于我是在新疆上学,所以新疆7点多天还是黑的,我起来后洗漱好,整理了一下我的行李,一个大大的登山包背了起来,然后到宿舍楼下骑上自行车,朝机房的方向出发!我知道,我的第一场数学建模大赛,将在那里开始…这时北京时间是早上7点半。

到了教学楼,找到自己的床铺,然后放下行李,就立马赶到机房与队友们会合,大家看起来精神还不错,想必昨晚都已把精力养好。这时是北京时间7点50.时间过得好慢,感觉我和队友们聊了很久,时间又似乎过得很快,仿佛就在一瞬间迎来了比赛开始的时刻,只见大家坐在电脑机前聚精会神的输入账号和密码后,把试题下载了下来。然后两个朋友们都聚精会神地看着题目,A题是关于黑子影子的分析,B题关于滴滴打车的数据分析,当时我和队友们一致认为,A题太高大上了,还是B题更切合实际点。

于是我们就分好工,我找历年来各城市间的人口密度等数据,他找与之相关的数学模型与算法,另外一个找关于打车软件的使用情况与使用频率等相关数据。还记得那是一个早上,机房开着空调,我内心却无比地感到炽热,这就是数学建模吗?和队友们还有指导老师在这机房内奋斗三天三夜后,总结出一篇论文来,仅此而已吗?

那一整天,我都在不停地寻找数据,逛遍了中国知网,万方,维普等数据库,还进入了国家统计网里查询相关资料。最后收获得就是一堆堆的图表和相关年份与地区的数据分析资料。真的好奇怪,平时这个点一般不饿的,今天却突然奇饿无比。中午学校订好的午餐,我狼吞虎咽的吃完后继续坐在电脑前奋斗至黄昏,时间过的真快呐,没想到一心一意的专注于做一件事,时间从身旁悄悄溜过都无法感受到,想想平时没事的时候老看表,或许就是因为没有明确目标的缘故吧!

第一天就这么过去了, 我们把B题的第一问解决了,我回到宿舍后一头栽在了床上,好累!累,并快乐着。数学建模国赛的第一天——结束了!

第二天,我们继续昨天的劲头,一鼓作气的准备拿下B题的第二问和第三问,这样我们第三天的任务量就会轻一点。可是,天有不测风云,待到第二天中午的时候,我们遇到了一个关键性问题,就是关于数据的采集和合适模型的建立问题。那个下午,我们不停的查找资料,老师也在旁边帮助我们出谋划策,提出一些指导性的意见。一直到傍晚,我们都在不断地摸索中,各种数据库,中国知网进了无数遍,浏览了无数篇论文,期间有人松懈过,打开爱奇艺播放器观看电视剧,但在我们的提醒下,他的心还是回到了正轨!

第二天夜晚,我值班。另外两个队友已经回宿舍休息了,我一个人,和其他几个队的队员坐在机房内继续工作,想睡,但又想到还有一天时间比赛就结束了,强大的压力感使我无法入睡,如果不睡的话,注意力集中不起来,于是当我有倦意的时候,我就去洗手间用冷水洗脸,或者趴在电脑桌旁小憩一会。

在这种状态下,我终于在第三天的凌晨4点,完成了任务,躺在了我梦寐以求的床上,等待着第三天黎明的到来,然后和队友们披荆斩棘,完成对数学建模比赛的最后一击。于是,我带着对未来美好的憧憬,沉沉睡去……

第三天醒来,已是8点,早饭学校已经准备好,队友们也陆续到齐,坐在了机房内继续写论文。我们围在一起,边吃着早饭,边向队友们今天凌晨的工作情况和遇到的问题,大家相互交流了下,吃过早饭,开始了第三天的工作。加油!最后一天!

在4个小时的奋战中,B题的.第二问已经基本结束,最难的一问已经解决掉,第三问还不是手到擒来?!

到了下午的时候,指导老师也来了,看了下我们写的初步论文,觉得除了语句和格式出了点问题,其他都还好,于是他让我们再完善下论文,晚上发给他,他来负责论文排版和一些语句的修改工作。我们双方达成了协议,于是从下午开始进行对第三题的研究和论文的最终纂写工作。

不知是因为我太紧张,还是太兴奋,其中有一段时间是用Lingo软件算数据优化的,我却丢三落四,写了这个,忘了那个,来来回回改了四遍。看来做事情,一定不能急躁,越是在紧急的情况下,越要保持冷静,这样才能达到事半功倍的效果!

到了晚上,我们已经基本上完成了我们的数学建模国赛论文,我呼出了长长的一口气,把论文发给了指导老师,让他做好最后的排版与修改后,就可以交了。一个队友守在电脑机前,旁边放着几袋咖啡粉包,然后我和另外一个队友去旁边的休息室小睡一会。

到了休息室,我和我的队友聊了会天,结果越聊越兴奋,竟然毫无睡意,一直聊到了凌晨1点半,我们聊到了生活,聊到了感情,聊到了大学理想,也聊到了未来,谈谈人生…感觉我好久没有说这么多的话了,另外一个守在电脑机前的队友还在靠喝咖啡提神,听说我们没睡,郁闷的发昏,不过最后还是相互调侃了几句,郁闷的坏心情也烟消云散了。

不过我真的十几个小时没合眼了,从早上8点到次日的凌晨1点多,倦意突然袭来,我向他们请了个假,去休息室睡觉去了,告诉他们如果老师发消息来了就一定要把我摇醒。于是我再一次躺在了我梦寐以求的床上,我卸掉了这几天的紧张感,随之进入梦乡……

不知过了多久,感觉像是十几分钟,我的一个队友跑过来叫我让我醒来,我迷迷糊糊的问了句老师发消息过来了吗?他说没有,让我去趟机房,我说知道了,然后他就走了,结果我直接栽倒在了床上继续睡去,不知又过了多久,感觉这次比上次睡觉时间稍微长了那么一点点,我又被我的队友摇醒,让我去趟机房,我还是问了句老师发消息来了吗?结果还是一样的回答,没有。

于是我又倒在了床上不省人事,前前后后,反反复复的队友"折腾"了我四次,在这过程中我断断续续的补了3个半小时的觉,终于觉得这样被他叫下去不是办法,索性直接坐起来,去洗手间用凉水冲了把脸,瞬间觉得精神许多,然后快步走入机房。这时候我看了下表,是数学建模第四日的凌晨6点,离比赛结束时间还有两个小时……

老师还是没有发消息过来,我无聊地打起了CS,队友们在看电视剧,而我看其他的队都在紧锣密鼓的写论文,我突然觉得我们队是最轻松的了。就在这时,老师发来了他修改后的论文。

我们此时兴奋到了极点,瞬间把论文下载下来进行查看。不得不感谢老师大半夜的还在帮我们修改论文,真是辛苦了!论文的排版比以前好看了许多,语句不通顺的也修改的很严谨,很专业。我们看了下,觉得没多大问题,就准备在早上8点之前提交论文。这时时间是早上7点,离数学建模国赛结束时间还有1个小时…

时间过的很快,转眼到了7点40,大家陆续打开网站链接进行论文提交。但没想到登陆的人数太多,网站卡爆了,于是我们先打印纸质版的论文,由于打印的队伍比较多,场面比较混乱,人在看到忙碌的场面,再加上没有休息好的话,心情就会极差,容易发脾气,所以我很抱歉当时我没有控制好自己的情绪,对我的队友发火了,事后想来,还是我自己的错,于是在论文的电子版和纸质版提交后,我主动向他们到了歉。还是大男生好说话,手一挥,说了句没事!国赛结束了,我们收拾好行李,准备往宿舍的方向走去,此时看了下表,北京时间9点半,星期一,是大家每周第一天上课的时间。

我们从机房走出来,我背着我自己硕大的登山包,队友们拿着大大的袋子装上被褥和床单,一起朝着宿舍的方向走去,路上看到我的朋友们,都和我说"出关了?不容易啊!",我也只是笑笑,因为我实在,没有太多的力气和他们打招呼了,甚至说话都觉得好困难,这三天里,我们一起经历了从不会到会的过程,也感受了现学现用的快感!

当然,最让我难以忘怀的,还是当我累的睁不开眼睛的时候,有队友们的支持与关怀,相互鼓励,相互扶持的温暖。三个人并排坐在电脑前各司其职的场景;吃饭时间围在一起聊天娱乐的喜悦之情;还有出现问题大家一起相互探讨,相互分享想法的学习气氛;当然了,还有为我们默默付出的指导老师;我觉得参加数学建模比赛获奖只是个其次,关键是在这三天三夜的过程中,我体会到了团队作战的重要性,还有培养了我独立思考,数据分析,现学现用的学习能力,最后就是在那种强大压力下想偷懒却不敢偷懒,不断激发自己潜力的过程,因为我从没有试过一天一夜不睡觉是什么感觉,或者就是休息短短几个小时后工作一天的那种强大的精神力量。

是的,这些我都体会到了,我也都经历了,所以,这次的数学建模国赛,是我会一直用心铭记的比赛,不仅是因为这是我第一次参加国家级比赛,更是因为在这次比赛中,我收获了除了获奖之外的其他财富,这些都是用物质买不到的。

三个人,走到了宿舍楼的十字路口,该说再见了,我挥一挥手,给他们说声"再见,早点回去休息喽~".谢谢你们,于我记忆的深处收藏了一幅美不胜收的画卷,即使会过去多年,但我依旧会相信每当回忆起这段经历,都是我的一笔宝贵的财富,我将用它走上更美好的人生,因为我发现,我已经做出了别人做不到的事情,我已经成长了,所以,我相信我会在以后的道路中更加顽强,更有能力去接受更大的挑战!

回到了我的宿舍,舍友们都去上课了,空荡荡的宿舍,我卸下一身的包袱,还有疲惫的身躯,机械式的上了床,躺在床上,看着天花板,缓缓的闭上眼睛,这将是我睡的最美的一觉。明天,又将是一个崭新的一天,而我,将会在人群中昂首阔步,因为我已不是过去的我,我已拥有新的生命。

数学模型论文发表期刊

国际会议,研讨会会议等等《数学建模及其应用》是中国工业与应用数学学会的会刊自创刊以来,杂志坚持刊登以建模为主要内容的应用数学研究成果,用数学建模及方法解决科学、工程技术和经济等应用问题以及建模教学研究的成果,为从事数学建模研究和教学的广大高校师生以及工业界相关专家提供了一个学习、借鉴及交流的平台。注重于数学建模方法和理论方面的学术性研讨,针对目前数学建模竞赛中的热点问题进行专题报告,探讨数学建模的发展趋势,让更多老师参与到数学建模的理论和方法研究,提高各高等学校数学建模研究和教学水平,创新学生数学建模活动,推动数学建模的快速发展。

期刊名称:Acta Mathematica Scientia(English Series)曾用刊名:数学物理学报(英文版);Acta Mathematica Scientia主办单位:中国科学院武汉物理与数学研究所期刊名称:Acta Mathematica Sinica主办单位:中国科学院应用数学研究所期刊名称:Acta Mathematicae Applicatae Sinica曾用刊名:应用数学学报(英文版)主办单位:中国科学院应用数学研究所;中国数学会期刊名称:Applied Mathematics and Mechanics(English Edition)曾用刊名:应用数学和力学(英文版);Applied Mathematics and Mechanics主办单位:上海大学期刊名称:Applied Mathematics:A Journal of Chinese Universities(Series B)曾用刊名:高校应用数学学报B辑(英文版);Applied Mathematics:A Journal of Chinese Universities主办单位:浙江大学期刊名称:Chinese Annals of Mathematics,Series B曾用刊名:数学年刊B辑(英文版);Chinese Annals of Mathematics主办单位:复旦大学期刊名称:Communications in Mathematical Research曾用刊名:数学研究通讯(英文版);东北数学(英文版);东北数学;Northeastern Mathematical Journal主办单位:吉林大学期刊名称:Journal of Computational Mathematics曾用刊名:计算数学(英文版)主办单位:中国科学院数学与系统科学研究院期刊名称:Journal of Systems Science & Complexity曾用刊名:系统科学与数学(英文版);系统科学与复杂性学报(英文版);Systems Science and Mathematical Sciences;Journal of Systems Science and Complexity主办单位:中国科学院系统科学研究院期刊名称:数学季刊(英文版)曾用刊名:数学季刊主办单位:河南大学全英文的数学期刊不多的

相关百科

热门百科

首页
发表服务