首页

职称论文知识库

首页 职称论文知识库 问题

高斯没有发表的论文

发布时间:

高斯没有发表的论文

卡尔.弗里德里希.高斯(Carl Friedrich Gauß,1777.4.30~1855.2.23),德国数学家、物理学家和天文学家,出生于德国布伦兹维克的一个贫苦家庭。父亲格尔恰尔德·迪德里赫先后当过护堤工、泥瓦匠和园丁,第一个妻子和他生活了10多年后因病去世,没有为他留下孩子。迪德里赫后来娶了罗捷雅,第二年他们的孩子高斯出生了,这是他们唯一的孩子。父亲对高斯要求极为严厉,甚至有些过分,常常喜欢凭自己的经验为年幼的高斯规划人生。高斯尊重他的父亲,并且秉承了其父诚实、谨慎的性格。1806年迪德里赫逝世,此时高斯已经做出了许多划时代的成就。 在成长过程中,幼年的高斯主要是力于母亲和舅舅。高斯的外祖父是一位石匠,30岁那年死于肺结核,留下了两个孩子:高斯的母亲罗捷雅、舅舅弗利德里希(Friederich)。弗利德里希富有智慧,为人热情而又聪明能干投身于纺织贸易颇有成就。他发现姐姐的儿子聪明伶利,因此他就把一部分精力花在这位小天才身上,用生动活泼的方式开发高斯的智力。若干年后,已成年并成就显赫的高斯回想起舅舅为他所做的一切,深感对他成才之重要,他想到舅舅多产的思想,不无伤感地说,舅舅去世使“我们失去了一位天才”。正是由于弗利德里希慧眼识英才,经常劝导姐夫让孩子向学者方面发展,才使得高斯没有成为园丁或者泥瓦匠。 在数学史上,很少有人象高斯一样很幸运地有一位鼎力支持他成才的母亲。罗捷雅直到34岁才出嫁,生下高斯时已有35岁了。他性格坚强、聪明贤慧、富有幽默感。高斯一生下来,就对一切现象和事物十分好奇,而且决心弄个水落石出,这已经超出了一个孩子能被许可的范围。当丈夫为此训斥孩子时,他总是支持高斯,坚决反对顽固的丈夫想把儿子变得跟他一样无知。 罗捷雅真诚地希望儿子能干出一番伟大的事业,对高斯的才华极为珍视。然而,他也不敢轻易地让儿子投入当时尚不能养家糊口的数学研究中。在高斯19岁那年,尽管他已做出了许多伟大的数学成就,但她仍向数学界的朋友W.波尔约(W.Bolyai,非欧几何创立者之一J.波尔约之父)问道:高斯将来会有出息吗?W.波尔约说她的儿子将是“欧洲最伟大的数学家”,为此她激动得热泪盈眶。 7岁那年,高斯第一次上学了。头两年没有什么特殊的事情。1787年高斯10岁,他进入了学习数学的班次,这是一个首次创办的班,孩子们在这之前都没有听说过算术这么一门课程。数学教师是布特纳(Buttner),他对高斯的成长也起了一定作用。 在全世界广为流传的一则故事说,高斯最出名的故事就是他十岁时,小学老师出了一道算术难题:“计算1+2+3…+100=?” 。这可难为初学算术的学生,但是高斯却在几秒后将答案解了出来,他利用算术级数(等差级数)的对称性,然后就像求得一般算术级数和的过程一样,把数目一对对的凑在一起:1+100,2+ 99,3+98,……49+52,50+51 而这样的组合有50组,所以答案很快的就可以求出是: 101×50=5050。不过,这很可能是一个不真实的传说。据对高斯素有研究的著名数学史家E·T·贝尔(E.T.Bell)考证,布特纳当时给孩子们出的是一道更难的加法题:81297+81495+81693+…+100899。 当然,这也是一个等差数列的求和问题(公差为198,项数为100)。当布特纳刚一写完时,高斯也算完并把写有答案的小石板交了上去。E·T·贝尔写道,高斯晚年经常喜欢向人们谈论这件事,说当时只有他写的答案是正确的,而其他的孩子们都错了。高斯没有明确地讲过,他是用什么方法那么快就解决了这个问题。数学史家们倾向于认为,高斯当时已掌握了等差数列求和的方法。一位年仅10岁的孩子,能独立发现这一数学方法实属很不平常。贝尔根据高斯本人晚年的说法而叙述的史实,应该是比较可信的。而且,这更能反映高斯从小就注意把握更本质的数学方法这一特点。 高斯的计算能力,更主要地是高斯独到的数学方法、非同一般的创造力,使布特纳对他刮目相看。他特意从汉堡买了最好的算术书送给高斯,说:“你已经超过了我,我没有什么东西可以教你了。”接着,高斯与布特纳的助手巴特尔斯(J.M.Bartels)建立了真诚的友谊,直到巴特尔斯逝世。他们一起学习,互相帮助,高斯由此开始了真正的数学研究。 1788年,11岁的高斯进入了文科学校,他在新的学校里,所有的功课都极好,特别是古典文学、数学尤为突出。经过巴特尔斯等人的引荐,布伦兹维克公爵召见了14岁的高斯。这位朴实、聪明但家境贫寒的孩子赢得了公爵的同情,公爵慷慨地提出愿意作高斯的资助人,让他继续学习。 布伦兹维克公爵在高斯的成才过程中起了举足轻重的作用。不仅如此,这种作用实际上反映了欧洲近代科学发展的一种模式,表明在科学研究社会化以前,私人的资助是科学发展的重要推动因素之一。高斯正处于私人资助科学研究与科学研究社会化的转变时期。 1792年,高斯进入布伦兹维克的卡罗琳学院继续学习。1795年,公爵又为他支付各种费用,送他入德国著名的哥丁根大学,这样就使得高斯得以按照自己的理想,勤奋地学习和开始进行创造性的研究。1799年,高斯完成了博士论文,回到家乡布伦兹维克,正当他为自己的前途、生计担忧而病倒时----虽然他的博士论文顺利通过了,已被授予博士学位,同时获得了讲师职位,但他没有能成功地吸引学生,因此只能回老家,又是公爵伸手救援他。公爵为高斯付诸了长篇博士论文的印刷费用,送给他一幢公寓,又为他印刷了《算术研究》,使该书得以在1801年问世;还负担了高斯的所有生活费用。所有这一切,令高斯十分感动。他在博士论文和《算术研究》中,写下了情真意切的献词:“献给大公”,“你的仁慈,将我从所有烦恼中解放出来,使我能从事这种独特的研究”。 1806年,公爵在抵抗拿破仑统帅的法军时不幸阵亡,这给高斯以沉重打击。他悲痛欲绝,长时间对法国人有一种深深的敌意。大公的去世给高斯带来了经济上的拮据,德国处于法军奴役下的不幸,以及第一个妻子的逝世,这一切使得高斯有些心灰意冷,但他是位刚强的汉子,从不向他人透露自己的窘况,也不让朋友安慰自己的不幸。人们只是在19世纪整理他的未公布于众的数学手稿时才得知他那时的心态。在一篇讨论椭圆函数的手搞中,突然插入了一段细微的铅笔字:“对我来说,死去也比这样的生活更好受些。” 慷慨、仁慈的资助人去世了,因此高斯必须找一份合适的工作,以维持一家人的生计。由于高斯在天文学、数学方面的杰出工作,他的名声从1802年起就已开始传遍欧洲。彼得堡科学院不断暗示他,自从1783年欧拉去世后,欧拉在彼得堡科学院的位置一直在等待着象高斯这样的天才。公爵在世时坚决劝阻高斯去俄国,他甚至愿意给高斯增加薪金,为他建立天文台。现在,高斯又在他的生活中面临着新的选择。 为了不使德国失去最伟大的天才,德国著名学者洪堡(B.A.Von Humboldt)联合其他学者和政界人物,为高斯争取到了享有特权的哥丁根大学数学和天文学教授,以及哥丁根天文台台长的职位。1807年,高斯赴哥丁根就职,全家迁居于此。从这时起,除了一次到柏林去参加科学会议以外,他一直住在哥丁根。洪堡等人的努力,不仅使得高斯一家人有了舒适的生活环境,高斯本人可以充分发挥其天才,而且为哥丁根数学学派的创立、德国成为世界科学中心和数学中心创造了条件。同时,这也标志着科学研究社会化的一个良好开端。 高斯的学术地位,历来为人们推崇得很高。他有“数学王子”、“数学家之王”的美称、被认为是人类有史以来“最伟大的三位(或四位)数学家之一”(阿基米德、牛顿、高斯或加上欧拉)。人们还称赞高斯是“人类的骄傲”。天才、早熟、高产、创造力不衰、……,人类智力领域的几乎所有褒奖之词,对于高斯都不过份。 高斯的研究领域,遍及纯粹数学和应用数学的各个领域,并且开辟了许多新的数学领域,从最抽象的代数数论到内蕴几何学,都留下了他的足迹。从研究风格、方法乃至所取得的具体成就方面,他都是18----19世纪之交的中坚人物。如果我们把18世纪的数学家想象为一系列的高山峻岭,那么最后一个令人肃然起敬的巅峰就是高斯;如果把19世纪的数学家想象为一条条江河,那么其源头就是高斯。 虽然数学研究、科学工作在18世纪末仍然没有成为令人羡慕的职业,但高斯依然生逢其时,因为在他快步入而立之年之际,欧洲资本主义的发展,使各国政府都开始重视科学研究。随着拿破仑对法国科学家、科学研究的重视,俄国的沙皇以及欧洲的许多君主也开始对科学家、科学研究刮目相看,科学研究的社会化进程不断加快,科学的地位不断提高。作为当时最伟大的科学家,高斯获得了不少的荣誉,许多世界著名的科学泰斗都把高斯当作自己的老师。 1802年,高斯被俄国彼得堡科学院选为通讯院士、喀山大学教授;1877年,丹麦政府任命他为科学顾问,这一年,德国汉诺威政府也聘请他担任政府科学顾问。 高斯的一生,是典型的学者的一生。他始终保持着农家的俭朴,使人难以想象他是一位大教授,世界上最伟大的数学家。他先后结过两次婚,几个孩子曾使他颇为恼火。不过,这些对他的科学创造影响不太大。在获得崇高声誉、德国数学开始主宰世界之时,一代天骄走完了生命旅程。 在处理相片的软件 photoshop 中,有一种菜单叫高斯模糊,这种功能对模糊一些不必要的地方很有作用。高斯(Gauss 1777~1855)生於Brunswick,位於现在德国中北部。他的祖父是农民,父亲是泥水匠,母亲是一个石匠的女儿,有一个很聪明的弟弟,高斯这位舅舅,对小高斯很照顾,偶而会给他一些指导,而父亲可以说是一名「大老粗」,认为只有力气能挣钱,学问这种劳什子对穷人是没有用的。 高斯很早就展现过人才华,三岁时就能指出父亲帐册上的错误。七岁时进了小学,在破旧的教室里上课,老师对学生并不好,常认为自己在穷乡僻壤教书是怀才不遇。高斯十岁时,老师考了那道著名的「从一加到一百」,终於发现了高斯的才华,他知道自己的能力不足以教高斯,就从汉堡买了一本较深的数学书给高斯读。同时,高斯和大他差不多十岁的助教Bartels变得很熟,而Bartels的能力也比老师高得多,后来成为大学教授,他教了高斯更多更深的数学。 老师和助教去拜访高斯的父亲,要他让高斯接受更高的教育,但高斯的父亲认为儿子应该像他一样,作个泥水匠,而且也没有钱让高斯继续读书,最后的结论是--去找有钱有势的人当高斯的赞助人,虽然他们不知道要到哪里找。经过这次的访问,高斯免除了每天晚上织布的工作,每天和Bartels讨论数学,但不久之后,Bartels也没有什麽东西可以教高斯了。 1788年高斯不顾父亲的反对进了高等学校。数学老师看了高斯的作业后就要他不必再上数学课,而他的拉丁文不久也凌驾全班之上。 1791年高斯终於找到了资助人--布伦斯维克公爵费迪南(Braunschweig),答应尽一切可能帮助他,高斯的父亲再也没有反对的理由。隔年,高斯进入Braunschweig学院。这年,高斯十五岁。在那里,高斯开始对高等数学作研究。并且独立发现了二项式定理的一般形式、数论上的「二次互逆定理」(Law of Quadratic Reciprocity)、质数分布定理(prime numer theorem)、及算术几何平均(arithmetic-geometric mean)。 1795年高斯进入哥廷根(G?ttingen)大学,因为他在语言和数学上都极有天分,为了将来是要专攻古典语文或数学苦恼了一阵子。到了1796年,十七岁的高斯得到了一个数学史上极重要的结果。最为人所知,也使得他走上数学之路的,就是正十七边形尺规作图之理论与方法。 希腊时代的数学家已经知道如何用尺规作出正 2m×3n×5p 边形,其中 m 是正整数,而 n 和 p 只能是0或1。但是对於正七、九、十一边形的尺规作图法,两千年来都没有人知道。而高斯证明了: 一个正 n 边形可以尺规作图若且唯若 n 是以下两种形式之一: 1、n = 2k,k = 2, 3,… 2、n = 2k × (几个不同「费马质数」的乘积),k = 0,1,2,… 费马质数是形如 Fk = 22k 的质数。像 F0 = 3,F1 = 5,F2 = 17,F3 = 257, F4 = 65537,都是质数。高斯用代数的方法解决二千多年来的几何难题,他也视此为生平得意之作,还交待要把正十七边形刻在他的墓碑上,但后来他的墓碑上并没有刻上十七边形,而是十七角星,因为负责刻碑的雕刻家认为,正十七边形和圆太像了,大家一定分辨不出来。 1799年高斯提出了他的博士论文,这论文证明了代数一个重要的定理: 任一多项式都有(复数)根。这结果称为「代数学基本定理」(Fundamental Theorem of Algebra)。 事实上在高斯之前有许多数学家认为已给出了这个结果的证明,可是没有一个证明是严密的。高斯把前人证明的缺失一一指出来,然后提出自己的见解,他一生中一共给出了四个不同的证明。 在1801年,高斯二十四岁时出版了《算学研究》(Disquesitiones Arithmeticae),这本书以拉丁文写成,原来有八章,由於钱不够,只好印七章。 这本书除了第七章介绍代数基本定理外,其余都是数论,可以说是数论第一本有系统的着作,高斯第一次介绍「同余」(Congruent)的概念。「二次互逆定理」也在其中。 二十四岁开始,高斯放弃在纯数学的研究,作了几年天文学的研究。 当时的天文界正在为火星和木星间庞大的间隙烦恼不已,认为火星和木星间应该还有行星未被发现。在1801年,意大利的天文学家Piazzi,发现在火星和木星间有一颗新星。它被命名为「谷神星」(Cere)。现在我们知道它是火星和木星的小行星带中的一个,但当时天文学界争论不休,有人说这是行星,有人说这是彗星。必须继续观察才能判决,但是Piazzi只能观察到它9度的轨道,再来,它便隐身到太阳后面去了。因此无法知道它的轨道,也无法判定它是行星或彗星。 高斯这时对这个问是产生兴趣,他决定解决这个捉摸不到的星体轨迹的问题。高斯自己独创了只要三次观察,就可以来计算星球轨道的方法。他可以极准确地预测行星的位置。果然,谷神星准确无误的在高斯预测的地方出现。这个方法--虽然他当时没有公布--就是「最小平方法」(Method of Least Square)。 1802年,他又准确预测了小行星二号--智神星(Pallas)的位置,这时他的声名远播,荣誉滚滚而来,俄国圣彼得堡科学院选他为会员,发现Pallas的天文学家Olbers请他当哥廷根天文台主任,他没有立刻答应,到了1807年才前往哥廷根就任。 1809年他写了《天体运动理论》二册,第一册包含了微分方程、圆椎截痕和椭圆轨道,第二册他展示了如何估计行星的轨道。高斯在天文学上的贡献大多在1817年以前,但他仍一直做着观察的工作到他七十岁为止。虽然做着天文台的工作,他仍抽空做其他研究。为了用积分解天体运动的微分力程,他考虑无穷级数,并研究级数的收敛问题,在1812年,他研究了超几何级数(Hypergeometric Series),并且把研究结果写成专题论文,呈给哥廷根皇家科学院。 1820到1830年间,高斯为了测绘汗诺华(Hanover)公国(高斯住的地方)的地图,开始做测地的工作,他写了关於测地学的书,由於测地上的需要,他发明了日观测仪(Heliotrope)。为了要对地球表面作研究,他开始对一些曲面的几何性质作研究。 1827年他发表了《曲面的一般研究》 (Disquisitiones generales circa superficies curva),涵盖一部分现在大学念的「微分几何」 在1830到1840年间,高斯和一个比他小廿七岁的年轻物理学家-韦伯(Withelm Weber) 一起从事磁的研究,他们的合作是很理想的:韦伯作实验,高斯研究理论,韦伯引起高斯对物理问题的兴趣,而高斯用数学工具处理物理问题,影响韦伯的思考工作方法。 1833年高斯从他的天文台拉了一条长八千尺的电线,跨过许多人家的屋顶,一直到韦伯的实验室,以伏特电池为电源,构造了世界第一个电报机。 1835年高斯在天文台里设立磁观测站,并且组织「磁协会」发表研究结果,引起世界广大地区对地磁作研究和测量。 高斯已经得到了地磁的准确理,他为了要获得实验数据的证明,他的书《地磁的一般理论》拖到1839年才发表。 1840年他和韦伯画出了世界第一张地球磁场图,而且定出了地球磁南极和磁北极的位置。1841年美国科学家证实了高斯的理论,找到了磁南极和磁北极的确实位置。 高斯对自己的工作态度是精益求精,非常严格地要求自己的研究成果。他自己曾说:宁可发表少,但发表的东西是成熟的成果。」许多当代的数学家要求他,不要太认真,把结果写出来发表,这对数学的发展是很有帮助的。其中一个有名的例子是关於非欧几何的发展。非欧几何的的开山祖师有三人,高斯、 Lobatchevsky(罗巴切乌斯基,1793~1856), Bolyai(波埃伊,1802~1860)。其中Bolyai的父亲是高斯大学的同学,他曾想试着证明平行公理,虽然父亲反对他继续从事这种看起来毫无希望的研究,小Bolyai还是沉溺於平行公理。最后发展出了非欧几何,并且在1832~1833年发表了研究结果,老Bolyai把儿子的成果寄给老同学高斯,想不到高斯却回信道: to preise it would mean to praise myself. 我无法夸赞他,因为夸赞他就等於夸奖我自己。 早在几十年前,高斯就已经得到了相同的结果,只是怕不能为世人所接受而没有公布而已。美国的着名数学家贝尔(E.T.Bell),在他着的《数学工作者》(Men of Mathematics)一书里曾经这样批评高斯: 在高斯死后,人们才知道他早就预见一些十九世的数学,而且在1800年之前已经期待它们的出现。如果他能把他所知道的一些东西泄漏,很可能现在数学早比目前还要先进半个世纪或更多的时间。阿贝尔(Abel)和雅可比(Jacobi)可以从高斯所停留的地方开始工作,而不是把他们最好的努力花在发现高斯早在他们出生时就知道的东西。而那些非欧几何学的创造者,可以把他们的天才用到其他力面去。 在1855年二月23日清晨,高斯在他的睡梦中安详的去世了 [2]物理单位 高斯(G),非国际通用的磁感应强度单位。为纪念德国物理学家和数学家高斯而命名。 一段导线,若放在磁感应强度均匀的磁场中,方向与磁感应强度方向垂直的长直导在线通有1电磁系单位(emu)的稳恒电流(等于10安培)时,在每厘米长度的导线受到电磁力为1达因,则该磁感应强度就定义为1高斯。 高斯是很小的单位,10000高斯等于1特斯拉。 补充 高斯是德国数学家 ,也是科学家,他和牛顿、阿基米德,被誉为有史以来的三大数学家。高斯是近代数学奠基者之一,在历史上影响之大, 可以和阿基米德、牛顿、欧拉并列,有“数学王子”之称。 他幼年时就表现出超人的数学天才。1795年进入格丁根大学学习。第二年他就发现正十七边形的尺规作图法。并给出可用尺规作出的正多边形的条件,解决了欧几里得以来悬而未决的问题。 高斯的数学研究几乎遍及所有领域,在数论、代数学、非欧几何、复变函数和微分几何等方面都做出了开创性的贡献。他还把数学应用于天文学、大地测量学和磁学的研究,发明了最小二乘法原理。高理的数论研究 总结 在《算术研究》(1801)中,这本书奠定了近代数论的基础,它不仅是数论方面的划时代之作,也是数学史上不可多得的经典着作之一。高斯对代数学的重要贡献是证明了代数基本定理,他的存在性证明开创了数学研究的新途径。高斯在1816年左右就得到非欧几何的原理。他还深入研究复变函数,建立了一些基本概念发现了着名的柯西积分定理。他还发现椭圆函数的双周期性,但这些工作在他生前都没发表出来。1828年高斯出版了《关于曲面的一般研究》,全面系统地阐述了空间曲面的微分几何学,并提出内蕴曲面理论。高斯的曲面理论后来由黎曼发展。 高斯一生共发表155篇论文,他对待学问十分严谨,只是把他自己认为是十分成熟的作品发表出来。其著作还有《地磁概念》和《论与距离平方成反比的引力和斥力的普遍定律》等。 高斯最出名的故事就是他十岁时,小学老师出了一道算术难题:“计算1+2+3…+100=?”。 这可难为初学算术的学生,但是高斯却在几秒后将答案解了出来,他利用算术级数(等差级数)的对称性,然后就像求得一般算术级数和的过程一样,把数目一对对的凑在一起:1+100,2+ 99,3+98,……49+52,50+51 而这样的组合有50组,所以答案很快的就可以求出是: 101×50=5050。 1801年高斯有机会戏剧性地施展他的优势的计算技巧。那年的元旦,有一个后来被证认为小行星并被命名为谷神星的天体被发现当时它好像在向太阳靠近,天文学家虽然有40天的时间可以观察它,但还不能计算出它的轨道。高斯只作了3次观测就提出了一种计算轨道参数的方法,而且达到的精确度使得天文学家在1801年末和1802年初能够毫无困难地再确定谷神星的位置。高斯在这一计算方法中用到了他大约在1794年创造的最小二乘法(一种可从特定计算得到最小的方差和中求出最佳估值的方法在天文学中这一成就立即得到公认。他在《天体运动理论》中叙述的方法今天仍在使用,只要稍作修改就能适应现代计算机的要求。高斯在小行星”智神星”方面也获得类似的成功。 由于高斯在数学、天文学、大地测量学和物理学中的杰出研究成果,他被选为许多科学院和学术团体的成员。“数学之王”的称号是对他一生恰如其分的赞颂。

德国大数学家高斯 ( Carl Friedrich Gauss 1777-1855 ) 是德国最伟大,最杰出的科学家,如果单纯以他的数学成就来说,很少在一门数学的分支里没有用到他的一些研究成果。贫寒家庭出身高斯的祖父是农民,父亲除了从事园艺的工作外,也当过各色各样的杂工,如护堤员、建筑工等等。父亲由於贫穷,本身没有受过什麼教育。母亲在三十四岁时才结婚,三十五岁生下了高斯。她是一名石匠的女儿,有一个很聪明的弟弟,他手巧心灵是当地出名的织绸能手,高斯的这位舅舅,对小高斯很照顾,有机会就教育他,把他所知道的一些知识传授给他。而父亲可以说是一名”大老粗”,认为只有力气能挣钱,学问对穷人是没有用的。高斯在晚年喜欢对自己的小孙儿讲述自己小时候的故事,他说他在还不会讲话的时候,就已经学会计算了。他还不到三岁的时候,有一天他观看父亲在计算受他管辖的工人们的周薪。父亲在喃喃的计数,最後长叹的一声表示总算把钱算出来。父亲念出钱数,准备写下时,身边传来微小的声音:「爸爸!算错了,钱应该是这样.....。」父亲惊异地再算一次,果然小高斯讲的数是正确的,奇特的地方是没有人教过高斯怎麼样计算,而小高斯平日靠观察,在大人不知不觉时,他自己学会了计算。另外一个著名的故事亦可以说明高斯很小时就有很快的计算能力。当他还在小学读书时,有一天,算术老师要求全班同学算出以下的算式:1 + 2 + 3 + 4 + ....+ 98 + 99 + 100 = ?在老师把问题讲完不久,高斯就在他的小石板上端端正正地写下答案5050,而其他孩子算到头昏脑胀,还是算不出来。最後只有高斯的答案是正确无误。原来1 +100= 1012 + 99 = 1013 + 98 = 101... 50 + 51 = 101前後两项两两相加,就成了50对和都是 101的配对了即 101 × 50 = 5050。按:今用公式表示1 + 2 + ... + n高斯的家里很穷,在冬天晚上吃完饭後,父亲就要高斯上床睡觉,这样可以节省燃料和灯油。高斯很喜欢读书,他往往带了一梱芜菁上他的顶楼去,他把芜菁当中挖空,塞进用粗棉卷成的灯芯,用一些油脂当烛油,於是就在这发出微弱光亮的灯下,专心地看书。等到疲劳和寒冷压倒他时,他才钻进被窝睡觉。高斯的算术老师本来是对学生态度不好,他常认为自己在穷乡僻壤教书是怀才不遇,现在发现了「神童」,他是很高兴。但是很快他就感到惭愧,觉得自己懂的数学不多,不能对高斯有什麼帮助。他去城里自掏腰包买了一本数学书送给高斯,高斯很高兴和比他大差不多十岁的老师的助手一起学习这本书。这个小孩和那个少年建立起深厚的感情,他们花许多时间讨论这里面的东西。高斯在十一岁的时候就发现了二项式定理 ( x + y )n的一般情形,这里 n可以是正负整数或正负分数。当他还是一个小学生时就对无穷的问题注意了。有一天高斯在走回家时,一面走一面全神贯注地看书,不知不觉走进了布伦斯维克 ( Braunschweig ) 宫的庭园,这时布伦斯维克公爵夫人看到这个小孩那麼喜欢读书,於是就和他交谈,她发现他完全明白所读的书的深奥内容。公爵夫人回去报告给公爵知道,公爵也听说过在他所管辖的领地有一个聪明小孩的故事,於是就派人把高斯叫去宫殿。费迪南公爵 ( Duke Ferdinand ) 很喜欢这个害羞的孩子,也赏识他的才能,於是决定给他经济援助,让他有机会受高深教育,费迪南公爵对高斯的照顾是有利的,不然高斯的父亲是反对孩子读太多书,他总认为工作赚钱比去做什麼数学研究是更有用些,那高斯又怎麼会成材呢?

高斯过于谨慎,未公开非欧几何学的发现

建立在公理基础上的欧几里得几何学,雄视科学界两千年,没有人能动摇它的权威。但后来人们对第五公理表示怀疑,第五公理是:“通过不在直线上的一个点,不能引多于一条的直线,平行于原来的直线。”有什么根据说不能引多于一条的平行线呢?能不能把它从公理中删掉?能不能从其余的公理中把它证明出来,使之由公理变为定理呢?

这一问题从5世纪以来就有人进行研究,到18世纪时,一些著名的数学家兰贝尔特(1728—1777)、勒让德(1752—1833)、拉格朗日(1736—1813)等人,都在这个问题上花费了大量的精力,然而他们都没有成功。这个问题像无底深渊一样,无情地吞噬着数学家们的智慧,而不付给他们任何报酬。

俄国数学家罗巴切夫斯基(1792—1856)于1815开始研究平行线问题,一开始他也想走证明第五公里的老路,到1823年时,他认识到以前所有的证明都是错误的。1826年,他发表论文声明第五公理不可证明,并且采用了相反的公理:“通过不在直线上的一点,至少可以引两条直线平行于已知直线”。从这个新公理和其余的公理出发,他终于建立了一种崭新的非欧几何学。这一新学科在天文学和宇宙论中得到了应用。

在试证第五公理的浪潮中,大数学家高斯也卷在其中。他总结了1000多年来试证失败的教训,改变了原来的论题,即由“欧氏第五公里可证”改为“欧氏第五公理不可证”,结果证明后一结论是正确的。他从中发现了一门新的几何学——非欧几何学。就是说,高斯与罗巴切夫斯基等人各自独立地、几乎又是同时创立了非欧几何学,高斯甚至比罗巴切夫斯基更早些。但是,高斯把自己的发现隐藏起来了,没有公诸于世,他怕引起庸人的叫喊和讥笑,结果至死未敢公开发表这一研究成果。

胆怯是缺乏自信心的表现,过于谨慎就会优柔寡断,丧失良机。对待世俗同样需要有一种勇气,要大胆地走自己的路,让别人去嚼舌吧。

有些人就是不用努力都比其他人要强,自带的光圈就可以征服所有人,数学王子高斯就是这样的一个人,天才这个词语说的大概就是他了。

高斯有没发表的论文吗

高斯是德国数学家,也是科学家,他和牛顿、阿基米德,被誉为有史以来的三大数学家。高斯是近代数学奠基者之一,在历史上影响之大,可以和阿基米德、牛顿、欧拉并列,有“数学王子”之称。他幼年时就表现出超人的数学天才。1795年进入格廷根大学学习。第二年他就发现正十七边形的尺规作图法。并给出可用尺规作出的正多边形的条件,解决了欧几里得以来悬而未决的问题。高斯的数学研究几乎遍及所有领域,在数论、代数学、非欧几何、复变函数和微分几何等方面都做出了开创性的贡献。他还把数学应用于天文学、大地测量学和磁学的研究,发明了最小二乘法原理。高理的数论研究总结在《算术研究》(1801)中,这本书奠定了近代数论的基础,它不仅是数论方面的划时代之作,也是数学史上不可多得的经典著作之一。高斯对代数学的重要贡献是证明了代数基本定理,他的存在性证明开创了数学研究的新途径。高斯在1816年左右就得到非欧几何的原理。他还深入研究复变函数,建立了一些基本概念发现了著名的柯西积分定理。他还发现椭圆函数的双周期性,但这些工作在他生前都没发表出来。1828年高斯出版了《关于曲面的一般研究》,全面系统地阐述了空间曲面的微分几何学,并提出内蕴曲面理论。高斯的曲面理论后来由黎曼发展。高斯一生共发表155篇论文,他对待学问十分严谨,只是把他自己认为是十分成熟的作品发表出来。其著作还有《地磁概念》和《论与距离平方成反比的引力和斥力的普遍定律》等。1801年高斯有机会戏剧性地施展他的优势的计算技巧。那年的元旦,有一个后来被证认为小行星并被命名为谷神星的天体被发现当时它好像在向太阳靠近,天文学家虽然有40天的时间可以观察它,但还不能计算出它的轨道。高斯只作了3次观测就提出了一种计算轨道参数的方法,而且达到的精确度使得天文学家在1801年末和1802年初能够毫无困难地再确定谷神星的位置。高斯在这一计算方法中用到了他大约在1794年创造的最小二乘法(一种可从特定计算得到最小的方差和中求出最佳估值的方法在天文学中这一成就立即得到公认。他在《天体运动理论》中叙述的方法今天仍在使用,只要稍作修改就能适应现代计算机的要求。高斯在小行星“智神星”方面也获得类似的成功。由于高斯在数学、天文学、大地测量学和物理学中的杰出研究成果,他被选为许多科学院和学术团体的成员。“数学之王”的称号是对他一生恰如其分的赞颂。

一个正n边形可以用直尺和圆规画出当且仅当n是底下两种形式之一:k=0,1,2……十七世纪时法国数学家费马(Fermat)以为公式在k=0,1,2,3,……给出素数。(事实上,目前只确定F0,F1,F2,F4是质数,F5不是)。

高斯用代数方法解决了二千多年来的几何难题,而且找到正十七边形的直尺与圆规的作法。他是那么的兴奋,因此决定一生研究数学。据说,他还表示希望死后在他的墓碑上能刻上一个正十七边形,以纪念他少年时最重要的数学发现。

高斯总结了复数的应用

并且严格证明了每一个n阶的代数方程必有n个实数或者复数解。在他的第一本著名的著作《算术研究》中,做出了二次互反律的证明,成为数论继续发展的重要基础。在这部著作的第一章,导出了三角形全等定理的概念。高斯在最小二乘法基础上创立的测量平差理论的帮助下,测算天体的运行轨迹。他用这种方法,测算出了小行星谷神星的运行轨迹。

以上内容参考:百度百科-高斯

高斯是德国数学家,也是科学家,他和牛顿、阿基米德,被誉为有史以来的三大数学家。高斯是近代数学奠基者之一,在历史上影响之大,能够和阿基米德、牛顿、欧拉并列,有数学王子之称。

他幼年时就表现出超人的数学天才。1795年进入格丁根大学学习。第二年他就发现正十七边形的尺规作图法。并给出可用尺规作出的正多边形的条件,解决了欧几里得以来悬而未决的问题。

高斯的数学研究几乎遍及所有领域,在数论、代数学、非欧几何、复变函数和微分几何等方面都做出了开创性的贡献。他还把数学应用于天文学、大地测量学和磁学的研究,发明了最小二乘法原理。高理的数论研究总结在《算术研究》(1801)中,这本书奠定了近代数论的基础,它不仅仅是数论方面的划时代之作,也是数学史上不可多得的经典著作之一。高斯对代数学的重要贡献是证明了代数基本定理,他的存在性证明开创了数学研究的新途径。高斯在1816年左右就得到非欧几何的原理。他还深入研究复变函数,建立了一些基本概念发现了著名的柯西积分定理。他还发现椭圆函数的双周期性,但这些工作在他生前都没发表出来。1828年高斯出版了《关于曲面的一般研究》,全面系统地阐述了空间曲面的微分几何学,并提出内蕴曲面理论。高斯的曲面理论之后由黎曼发展。高斯一生共发表155篇论文,他对待学问十分严谨,只是把他自己认为是十分成熟的作品发表出来。其著作还有《地磁概念》和《论与距离平方成反比的引力和斥力的普遍定律》等。

1801年高斯有机会戏剧性地施展他的优势的计算技巧。那年的元旦,有一个之后被证认为小行星并被命名为谷神星的天体被发现当时它好像在向太阳靠近,天文学家虽然有40天的时间能够观察它,但还不能计算出它的轨道。高斯只作了3次观测就提出了一种计算轨道参数的方法,而且到达的精确度使得天文学家在1801年末和1802年初能够毫无困难地再确定谷神星的位置。高斯在这一计算方法中用到了他大约在1794年创造的最小二乘法(一种可从特定计算得到最小的方差和中求出最佳估值的方法在天文学中这一成就立即得到公认。他在《天体运动理论》中叙述的方法这天仍在使用,只要稍作修改就能适应现代计算机的要求。高斯在小行星智神星方面也获得类似的成功。

由于高斯在数学、天文学、大地测量学和物理学中的杰出研究成果,他被选为许多科学院和学术团体的成员。数学之王的称号是对他一生恰如其分的赞颂。

在古今中外的著名数学家当中,像高斯那样从小就具有高度数学才华的,恐怕极为少见。

高斯于1777年4月30日出生于德国一个农民家庭。他从小就酷爱数学,据说在他还不满三岁的时候,有一天,他观看父亲算帐,计算结束后,父亲念出了钱数准备写下时,身边传来细小的声音:爸爸,算错了,总数就应是。父亲惊讶不止,复算结果,发现孩子的答案是正确的。高斯读小学的时候,有一次,老师出了一道难题,要他们从1加起,加2,加3,加4,一向加到100,满以为这下准能把学生们难住。没想到高斯一会儿就算了出来。老师一看,答数是5050,一点不错,大吃一惊。高斯是这样算的:1与100、2与99、3与98每一对的和都是101,而100以内这样的数共有50对,101×50=5050,他的这种计算方法,代数上称为等差级数求和公式。那时高斯才10岁。

高斯对数学的兴趣越来越浓,数学上的定理、公式和求证方法一个又一个地被他发现和证实。

11岁时,他发现了X+Yn的展开式。

17岁时,他发现了数论中的二次互反律。

1796年3月30日,年仅18岁的高斯,又有了堪称数学史上最惊人的发现,他用代数方法解决两千年来的几何难题,而且找到了只使用直尺和圆规作圆,内接正17边形的方法也称17边形直尺圆规画法。为了纪念他少年时的这一最重要的发现,高斯表示期望死后在他的墓碑上能刻上一个正17边形。1799年,高斯又证明了一个重要的定理:任何一元代数方程都有一个根,这一结果数学上称为代数基本定理,也被称做高斯定理。1801年,高斯出版了他的《算术论文集》。高斯在23岁的时候开始研究天文,并解决了测量星球椭圆轨道的方法,也称椭圆函数。

高斯所取得的成就,一方面来自天赋,一方面来自勤奋。他家里很穷,冬天,爸爸为了节省灯油,吃完晚饭就要他上床睡觉,高斯自己做了个油灯,在微弱的灯光下全神贯注地读书到深夜。15岁时,他就读了牛顿、欧拉、拉格朗日等著名数学家的数学著作,并熟练地掌握了微积分理论。高斯的成功,不是天上掉下来的,而是刻苦学习得来的。他把科学研究工作看得高于一切。妻子病重时,高斯正在钻研一个深奥的数学问题。仆人几次来叫他:如果您不立刻过去,就不能见她最后一面了!高斯却说:叫她等一下,等到我过去。直到他把手头的研究告一段落,这才勿勿跑去看望妻子。

高斯就是这样,天资聪明,更勤奋好学,最后成为著名的数学家,被誉为数学王子。1855年2月23日,高斯逝世,终年78岁。

高斯(Gauss1777~1855)生于Brunswick,位于此刻德国中北部。他的祖父是农民,父亲是泥水匠,母亲是一个石匠的女儿,有一个很聪明的弟弟,高斯这位舅舅,对小高斯很照顾,偶而会给他一些指导,而父亲能够说是一名「大老粗」,认为只有力气能挣钱,学问这种劳什子对穷人是没有用的。

高斯很早就展现过人才华,三岁时就能指出父亲帐册上的错误。七岁时进了小学,在破旧的教室里上课,老师对学生并不好,常认为自己在穷乡僻壤教书是怀才不遇。高斯十岁时,老师考了那道著名的「从一加到一百」,最后发现了高斯的才华,他明白自己的潜力不足以教高斯,就从汉堡买了一本较深的数学书给高斯读。同时,高斯和大他差不多十岁的助教Bartels变得很熟,而Bartels的潜力也比老师高得多,之后成为大学教授,他教了高斯更多更深的数学。

老师和助教去拜访高斯的父亲,要他让高斯理解更高的教育,但高斯的父亲认为儿子就应像他一样,作个泥水匠,而且也没有钱让高斯继续读书,最后的结论是去找有钱有势的人当高斯的赞助人,虽然他们不明白要到哪里找。经过这次的访问,高斯免除了每一天晚上织布的工作,每一天和Bartels讨论数学,但不久之后,Bartels也没有什么东西能够教高斯了。

1788年高斯不顾父亲的反对进了高等学校。数学老师看了高斯的作业后就要他不必再上数学课,而他的拉丁文不久也凌驾全班之上。

1791年高斯最后找到了资助人布伦斯维克公爵费迪南(Braunschweig),答应尽一切可能帮忙他,高斯的父亲再也没有反对的理由。隔年,高斯进入Braunschweig学院。这年,高斯十五岁。在那里,高斯开始对高等数学作研究。并且独立发现了二项式定理的一般形式、数论上的「二次互逆定理」(LawofQuadraticReciprocity)、质数分布定理(primenumertheorem)、及算术几何平均(arithmeticgeometricmean)。

1795年高斯进入哥廷根(Gttingen)大学,因为他在语言和数学上都极有天分,为了将来是要专攻古典语文或数学苦恼了一阵子。到了1796年,十七岁的高斯得到了一个数学史上极重要的结果。最为人所知,也使得他走上数学之路的,就是正十七边形尺规作图之理论与方法。希腊时代的数学家已经明白如何用尺规作出正2m×3n×5p边形,其中m是正整数,而n和p只能是0或1。但是对于正七、九、十一边形的尺规作图法,两千年来都没有人明白。而高斯证明了:

一个正n边形能够尺规作图若且唯若n是以下两种形式之一:

1、n=2k,k=2,3,

2、n=2k×(几个不同「费马质数」的乘积),k=0,1,2,

费马质数是形如Fk=22k的质数。像F0=3,F1=5,F2=17,F3=257,F4=65537,都是质数。高斯用代数的方法解决二千多年来的几何难题,他也视此为生平得意之作,还交待要把正十七边形刻在他的墓碑上,但之后他的墓碑上并没有刻上十七边形,而是十七角星,因为负责刻碑的雕刻家认为,正十七边形和圆太像了,大家必须分辨不出来。

1799年高斯提出了他的博士论文,这论文证明了代数一个重要的定理:

任一多项式都有(复数)根。这结果称为「代数学基本定理」(FundamentalTheoremofAlgebra)。

事实上在高斯之前有许多数学家认为已给出了这个结果的证明,但是没有一个证明是严密的。高斯把前人证明的缺失一一指出来,然后提出自己的见解,他一生中一共给出了四个不同的证明。

爱因斯坦没有发表的论文

虽然爱因斯坦在他人生的前半段提出了很多伟大的理论,但是不被那个时候的科学界所接受,他后面的30年一直都在说服他们而浪费了时间,被孤立了。

(一)论文名称论文名称就是课题的名字第一,名称要准确、规范。准确就是论文的名称要把论文研究的问题是什么,研究的对象是什么交待清楚,论文的名称一定要和研究的内容相一致,不能太大,也不能太小,要准确地把你研究的对象、问题概括出来。第二,名称要简洁,不能太长。不管是论文或者课题,名称都不能太长,能不要的字就尽量不要,一般不要超过20个字。(二)论文研究的目的、意义研究的目的、意义也就是为什么要研究、研究它有什么价值。这一般可以先从现实需要方面去论述,指出现实当中存在这个问题,需要去研究,去解决,本论文的研究有什么实际作用,然后,再写论文的理论和学术价值。这些都要写得具体一点,有针对性一点,不能漫无边际地空喊口号。主要内容包括:⑴研究的有关背景(课题的提出):即根据什么、受什么启发而搞这项研究。⑵通过分析本地(校)的教育教学实际,指出为什么要研究该课题,研究的价值,要解决的问题。(三)本论文国内外研究的历史和现状(文献综述)规范些应该有,如果是小课题可以省略。一般包括:掌握其研究的广度、深度、已取得的成果;寻找有待进一步研究的问题,从而确定本课题研究的平台(起点)、研究的特色或突破点。(四)论文研究的指导思想指导思想就是在宏观上应坚持什么方向,符合什么要求等,这个方向或要求可以是哲学、政治理论,也可以是政府的教育发展规划,也可以是有关研究问题的指导性意见等。(五)论文写作的目标论文写作的目标也就是课题最后要达到的具体目的,要解决哪些具体问题,也就是本论文研究要达到的预定目标:即本论文写作的目标定位,确定目标时要紧扣课题,用词要准确、精练、明了。常见存在问题是:不写研究目标;目标扣题不紧;目标用词不准确;目标定得过高, 对预定的目标没有进行研究或无法进行研究。

爱因斯坦是真厉害啊!!1905年的五篇论文发表在最权威的杂志上了,有些人一辈子发一篇就津津乐道啦,他一年就发表了五篇!!其中包括获得诺贝尔奖的光电效应,和狭义相对论,有些人说这五篇论文篇篇都能获得诺贝尔奖!!此时的他还只是一个图书管理员身份。。但是从狭义相对论推广到广义相对论用了十年时间,到1915年才发表!最后爱因斯坦致力于将引力场和磁场统一起来,但是到现在为止还没统一起来,这也是科学家在未来一段时间内潜心研究的问题……我们都加油吧!争取我们大陆能出位真正的诺贝尔奖获得者看着每年诺贝尔奖真是让人寒心啊……

爱因斯坦在1905年发表了四篇论文。这四篇论文中每一篇都足以获得一次诺贝尔奖,这些成就深远地影响了整个世界,爱因斯坦也由此变得举世闻名。在第一篇论文《关于光的产生和转化的一个启发性观点》里,爱因斯坦通过量子理论解释了光电效应,并最终证明了能量子以及光子(即光的粒子)的存在。

另外一个是布朗运动,还有一篇是关于原子大小的测定,我们从这些成果可以看出,爱因斯坦在20世纪最重要的两个物理学学术贡献中占了一半,除了相对论之外,量子力学、光电效应都从爱因斯坦开始。

在该年度发表的论文中,爱因斯坦深信原子真实存在,直到那时,原子对科学界来说还更多的是一个对方程有用的数学工具,而不是物理实体。假设热水是由很多不稳定的水分子组成的,水是热的,这些分子不稳定,到处移动,无规则地撞击花粉;爱因斯坦推论花粉的运动是碰撞的结果。爱因斯坦遇到的最大问题是需要结合热力学和经典力学来阐述他的观点,后者描述物体的运动,前者却研究大系统。

高斯发表的论文有哪些

高斯是德国数学家,也是科学家,他和牛顿、阿基米德,被誉为有史以来的三大数学家。高斯是近代数学奠基者之一,在历史上影响之大,能够和阿基米德、牛顿、欧拉并列,有数学王子之称。

他幼年时就表现出超人的数学天才。1795年进入格丁根大学学习。第二年他就发现正十七边形的尺规作图法。并给出可用尺规作出的正多边形的条件,解决了欧几里得以来悬而未决的问题。

高斯的数学研究几乎遍及所有领域,在数论、代数学、非欧几何、复变函数和微分几何等方面都做出了开创性的贡献。他还把数学应用于天文学、大地测量学和磁学的研究,发明了最小二乘法原理。高理的数论研究总结在《算术研究》(1801)中,这本书奠定了近代数论的基础,它不仅仅是数论方面的划时代之作,也是数学史上不可多得的经典著作之一。高斯对代数学的重要贡献是证明了代数基本定理,他的存在性证明开创了数学研究的新途径。高斯在1816年左右就得到非欧几何的原理。他还深入研究复变函数,建立了一些基本概念发现了著名的柯西积分定理。他还发现椭圆函数的双周期性,但这些工作在他生前都没发表出来。1828年高斯出版了《关于曲面的一般研究》,全面系统地阐述了空间曲面的微分几何学,并提出内蕴曲面理论。高斯的曲面理论之后由黎曼发展。高斯一生共发表155篇论文,他对待学问十分严谨,只是把他自己认为是十分成熟的作品发表出来。其著作还有《地磁概念》和《论与距离平方成反比的引力和斥力的普遍定律》等。

1801年高斯有机会戏剧性地施展他的优势的计算技巧。那年的元旦,有一个之后被证认为小行星并被命名为谷神星的天体被发现当时它好像在向太阳靠近,天文学家虽然有40天的时间能够观察它,但还不能计算出它的轨道。高斯只作了3次观测就提出了一种计算轨道参数的方法,而且到达的精确度使得天文学家在1801年末和1802年初能够毫无困难地再确定谷神星的位置。高斯在这一计算方法中用到了他大约在1794年创造的最小二乘法(一种可从特定计算得到最小的方差和中求出最佳估值的方法在天文学中这一成就立即得到公认。他在《天体运动理论》中叙述的方法这天仍在使用,只要稍作修改就能适应现代计算机的要求。高斯在小行星智神星方面也获得类似的成功。

由于高斯在数学、天文学、大地测量学和物理学中的杰出研究成果,他被选为许多科学院和学术团体的成员。数学之王的称号是对他一生恰如其分的赞颂。

在古今中外的著名数学家当中,像高斯那样从小就具有高度数学才华的,恐怕极为少见。

高斯于1777年4月30日出生于德国一个农民家庭。他从小就酷爱数学,据说在他还不满三岁的时候,有一天,他观看父亲算帐,计算结束后,父亲念出了钱数准备写下时,身边传来细小的声音:爸爸,算错了,总数就应是。父亲惊讶不止,复算结果,发现孩子的答案是正确的。高斯读小学的时候,有一次,老师出了一道难题,要他们从1加起,加2,加3,加4,一向加到100,满以为这下准能把学生们难住。没想到高斯一会儿就算了出来。老师一看,答数是5050,一点不错,大吃一惊。高斯是这样算的:1与100、2与99、3与98每一对的和都是101,而100以内这样的数共有50对,101×50=5050,他的这种计算方法,代数上称为等差级数求和公式。那时高斯才10岁。

高斯对数学的兴趣越来越浓,数学上的定理、公式和求证方法一个又一个地被他发现和证实。

11岁时,他发现了X+Yn的展开式。

1796年3月30日,年仅18岁的高斯,又有了堪称数学史上最惊人的发现,他用代数方法解决两千年来的几何难题,而且找到了只使用直尺和圆规作圆,内接正17边形的方法也称17边形直尺圆规画法。为了纪念他少年时的这一最重要的发现,高斯表示期望死后在他的墓碑上能刻上一个正17边形。1799年,高斯又证明了一个重要的定理:任何一元代数方程都有一个根,这一结果数学上称为代数基本定理,也被称做高斯定理。1801年,高斯出版了他的《算术论文集》。高斯在23岁的时候开始研究天文,并解决了测量星球椭圆轨道的方法,也称椭圆函数。

高斯所取得的成就,一方面来自天赋,一方面来自勤奋。他家里很穷,冬天,爸爸为了节省灯油,吃完晚饭就要他上床睡觉,高斯自己做了个油灯,在微弱的灯光下全神贯注地读书到深夜。15岁时,他就读了牛顿、欧拉、拉格朗日等著名数学家的数学著作,并熟练地掌握了微积分理论。高斯的成功,不是天上掉下来的,而是刻苦学习得来的。他把科学研究工作看得高于一切。妻子病重时,高斯正在钻研一个深奥的数学问题。仆人几次来叫他:如果您不立刻过去,就不能见她最后一面了!高斯却说:叫她等一下,等到我过去。直到他把手头的研究告一段落,这才勿勿跑去看望妻子。

高斯就是这样,天资聪明,更勤奋好学,最后成为著名的数学家,被誉为数学王子。1855年2月23日,高斯逝世,终年78岁。

高斯(Gauss1777~1855)生于Brunswick,位于此刻德国中北部。他的祖父是农民,父亲是泥水匠,母亲是一个石匠的女儿,有一个很聪明的弟弟,高斯这位舅舅,对小高斯很照顾,偶而会给他一些指导,而父亲能够说是一名「大老粗」,认为只有力气能挣钱,学问这种劳什子对穷人是没有用的。

高斯很早就展现过人才华,三岁时就能指出父亲帐册上的错误。七岁时进了小学,在破旧的教室里上课,老师对学生并不好,常认为自己在穷乡僻壤教书是怀才不遇。高斯十岁时,老师考了那道著名的「从一加到一百」,最后发现了高斯的才华,他明白自己的潜力不足以教高斯,就从汉堡买了一本较深的数学书给高斯读。同时,高斯和大他差不多十岁的助教Bartels变得很熟,而Bartels的潜力也比老师高得多,之后成为大学教授,他教了高斯更多更深的数学。

老师和助教去拜访高斯的父亲,要他让高斯理解更高的教育,但高斯的父亲认为儿子就应像他一样,作个泥水匠,而且也没有钱让高斯继续读书,最后的结论是去找有钱有势的人当高斯的赞助人,虽然他们不明白要到哪里找。经过这次的访问,高斯免除了每一天晚上织布的工作,每一天和Bartels讨论数学,但不久之后,Bartels也没有什么东西能够教高斯了。

1788年高斯不顾父亲的反对进了高等学校。数学老师看了高斯的作业后就要他不必再上数学课,而他的拉丁文不久也凌驾全班之上。

1791年高斯最后找到了资助人布伦斯维克公爵费迪南(Braunschweig),答应尽一切可能帮忙他,高斯的父亲再也没有反对的理由。隔年,高斯进入Braunschweig学院。这年,高斯十五岁。在那里,高斯开始对高等数学作研究。并且独立发现了二项式定理的一般形式、数论上的「二次互逆定理」(LawofQuadraticReciprocity)、质数分布定理(primenumertheorem)、及算术几何平均(arithmeticgeometricmean)。

1795年高斯进入哥廷根(Gttingen)大学,因为他在语言和数学上都极有天分,为了将来是要专攻古典语文或数学苦恼了一阵子。到了1796年,十七岁的高斯得到了一个数学史上极重要的结果。最为人所知,也使得他走上数学之路的,就是正十七边形尺规作图之理论与方法。希腊时代的数学家已经明白如何用尺规作出正2m×3n×5p边形,其中m是正整数,而n和p只能是0或1。但是对于正七、九、十一边形的尺规作图法,两千年来都没有人明白。而高斯证明了:

一个正n边形能够尺规作图若且唯若n是以下两种形式之一:

1、n=2k,k=2,3,

2、n=2k×(几个不同「费马质数」的乘积),k=0,1,2,

费马质数是形如Fk=22k的质数。像F0=3,F1=5,F2=17,F3=257,F4=65537,都是质数。高斯用代数的方法解决二千多年来的几何难题,他也视此为生平得意之作,还交待要把正十七边形刻在他的墓碑上,但之后他的墓碑上并没有刻上十七边形,而是十七角星,因为负责刻碑的雕刻家认为,正十七边形和圆太像了,大家必须分辨不出来。

1799年高斯提出了他的博士论文,这论文证明了代数一个重要的定理:

任一多项式都有(复数)根。这结果称为「代数学基本定理」(FundamentalTheoremofAlgebra)。

事实上在高斯之前有许多数学家认为已给出了这个结果的证明,但是没有一个证明是严密的。高斯把前人证明的缺失一一指出来,然后提出自己的见解,他一生中一共给出了四个不同的证明。

等差数列。

1.18岁的高斯发现了质数分布定理和最小二乘法。通过对足够多的测量数据的处理后,可以得到一个新的、概率性质的测量结果。在这些基础之上,高斯随后专注于曲面与曲线的计算,并成功得到高斯钟形曲线(正态分布曲线)。其函数被命名为标准正态分布(或高斯分布),并在概率计算中大量使用。

2.在高斯19岁时,仅用没有刻度的尺子与圆规便构造出了正17边形(阿基米德与牛顿均未画出)。并为流传了2000年的欧氏几何提供了自古希腊时代以来的第一次重要补充。 三角形全等定理 高斯在计算的谷神星轨迹时总结了复数的应用,并且严格证明了每一个n阶的代数方程必有n个复数解。在他的第一本著名的著作《数论》中,作出了二次互反律的证明,成为数论继续发展的重要基础。

2.1792年高斯进入布伦兹维克的卡罗琳学院继续学习。1795年,公爵又为他支付各种费用,送他入德国著名的哥丁根大学,这样就使得高斯得以按照自己的理想,勤奋地学习和开始进行创造性的研究。1799年,高斯完成了博士论文,回到家乡布伦兹维克,正当他为自己的前途、生计担忧而病倒时─虽然他的博士论文顺利通过了,已被授予博士学位,同时获得了讲师职位,但他没有能成功地吸引学生,因此只能回老家-又是公爵伸手救援他。公爵为高斯付诸了长篇博士论文的印刷费用,送给他一幢公寓,又为他印刷了《算术研究》,使该书得以在1801年问世;还负担了高斯的所有生活费用。所有这一切,令高斯十分感动。他在博士论文和《算术研究》中,写下了情真意切的献词:"献给大公","你的仁慈,将我从所有烦恼中解放出来,使我能从事这种独特的研究"。

3.1806年,公爵在抵抗拿破仑统帅的法军时不幸阵亡,这给高斯以沉重打击。他悲痛欲绝,长时间对法国人有一种深深的敌意。大公的去世给高斯带来了经济上的拮据,德国处于法军奴役下的不幸,以及第一个妻子的逝世,这一切使得高斯有些心灰意冷,但他是位刚强的汉子,从不向他人透露自己的窘况,也不让朋友安慰自己的不幸。人们只是在19世纪整理他的未公布于众的数学手稿时才得知他那时的心态。在一篇讨论椭圆函数的手稿中,突然插入了一段细微的铅笔字:"对我来说,死去也比这样的生活更好受些。"

4.为了不使德国失去最伟大的天才,德国著名学者洪堡(B.A.VonHumboldt)联合其他学者和政界人物,为高斯争取到了享有特权的哥丁根大学数学和天文学教授,以及哥丁根天文台台长的职位。1807年,高斯赴哥丁根就职,全家迁居于此。从这时起,除了一次到柏林去参加科学会议以外,他一直住在哥丁根。洪堡等人的努力,不仅使得高斯一家人有了舒适的生活环境,高斯本人可以充分发挥其天才,而且为哥丁根数学学派的创立、德国成为世界科学中心和数学中心创造了条件。同时,这也标志着科学研究社会化的一个良好开端。

5.高斯有"数学王子"、"数学家之王"的美称、被认为是人类有史以来"最伟大的四位数学家之一"(阿基米德、牛顿、高斯、欧拉)。人们还称赞高斯是"人类的骄傲"。天才、早熟、高产、创造力不衰、……,人类智力领域的几乎所有褒奖之词,对于高斯都不过分。

高斯他幼年时就表现出超人的数学天才。11岁时发现了二项式定理,17岁时发明了二次互反律,18岁时发明了正十七边形的尺规作图法,解决了两千多年来悬而未决的难题,他也视此为生平得意之作,还交待要把正十七边形刻在他的墓碑上,但后来他的墓碑上并没有刻上十七边形,而是十七角星,因为负责刻碑的雕刻家认为,正十七边形和圆太像了,大家一定分辨不出来。他发现了质数分布定理、算术平均、几何平均。21岁大学毕业,22岁时获博士学位。1804年被选为英国皇家学会会员。从1807年到1855年逝世,一直担任格丁根大学教授兼格丁根天文台长。在成长过程中。幼年的高斯主要是力于母亲和舅舅。高斯的外祖父是一位石匠,30岁那年死于肺结核,留下了两个孩子:高斯的母亲罗捷雅、舅舅弗利德里希。

历史贡献高斯分布 18岁的高斯发现了质数分布定理和最小二乘法。通过对足够多的测量数据的处理后,可以得到一个新的、概率性质的测量结果。在这些基础之上,高斯随后专注于曲面与曲线的计算,并成功得到高斯钟形曲线(正态分布曲线)。其函数被命名为标准正态分布(或高斯分布),并在概率计算中大量使用。 在高斯19岁时,仅用没有刻度的尺子与圆规便构造出了正17边形(阿基米德与牛顿均未画出)。并为流传了2000年的欧氏几何提供了自古希腊时代以来的第一次重要补充。 三角形全等定理 高斯在计算的谷神星轨迹时总结了复数的应用,并且严格证明了每一个n阶的代数方程必有n个复数解。在他的第一本著名的著作《数论》中,作出了二次互反律的证明,成为数论继续发展的重要基础。在这部著作的第一章,导出了三角形全等定理的概念。 天体运动论 高斯在他的建立在最小二乘法基础上的测量平差理论的帮助下,结算出天体的运行轨迹。并用这种方法,发现了谷神星的运行轨迹。谷神星于1801年由意大利天文学家皮亚齐发现,但他因病耽误了观测,失去了这颗小行星的轨迹。皮亚齐以希腊神话中“丰收女神”(Ceres)来命名它,即谷神星(Planetoiden Ceres),并将以前观测的位置发表出来,希望全球的天文学家一起寻找。当时24岁的高斯得悉后只花了几个星期,通过以前的三次观测数据,用他的最小二乘法得到了谷神星的椭圆轨道,计算出了谷神星的运行轨迹。尽管两年前高斯就因证明了代数基本定理获得博士学位,同年出版了他的经典著作《算术研究》,但还是谷神星的轨道使他一举名震科坛。奥地利天文学家 Heinrich Olbers在高斯的计算出的轨道上成功发现了这颗小行星。从此高斯名扬天下。高斯将这种方法著述在著作《天体运动论》(Theoria Motus Corporum Coelestium in sectionibus conicis solem ambientium )中。 数学上的成就 高斯发明了最小二乘法原理。高斯的数论研究总结在《算术研究》(1801)中,这本书奠定了近代数论的基础,它不仅是数论方面的划时代之作,也是数学史上不可多得的经典着作之一。高斯对代数学的重要贡献是证明了代数基本定理,他的存在性证明开创了数学研究的新途径。高斯在1816年左右就得到非欧几何的原理。 他还深入研究复变函数,建立了一些基本概念发现了着名的柯西积分定理。他还发现椭圆函数的双周期性,但这些工作在他生前都没发表出来。1828年高斯出版了《关于曲面的一般研究》,全面系统地阐述了空间曲面的微分几何学,并提出内蕴曲面理论。高斯的曲面理论后来由黎曼发展。 高斯一生共发表155篇论文,他对待学问十分严谨,只是把他自己认为是十分成熟的作品发表出来。其著作还有《地磁概念》和《论与距离平方成反比的引力和斥力的普遍定律》等。 地理测量 高斯设计的汉诺威大地测量的三角网为了获知任意一年中复活节的日期,高斯推导了复 活节日期的计算公式。 在1818年至1826年之间高斯主导了汉诺威公国的大地测量工作。通过他发明的以最小二乘法为基础的测量平差的方法和求解线性方程组的方法,显著的提高了测量的精度。出于对实际应用的兴趣,他发明了日光反射仪,可以将光束反射至大约450公里外的地方。高斯后来不止一次地为原先的设计作出改进,试制成功被广泛应用于大地测量的镜式六分仪。 高斯亲自参加野外测量工作。他白天观测,夜晚计算。五六年间,经他亲自计算过的大地测量数据,超过100万次。当高斯领导的三角测量外场观测已走上正轨后,高斯就把主要精力转移到处理观测成果的计算上来,并写出了近20篇对现代大地测量学具有重大意义的论文。在这些论文中,推导了由椭圆面向圆球面投影时的公式,并作出了详细证明,这套理论在今天仍有应用价值。汉诺威公国的大地测量工作直到1848年才结束,这项大地测量史上的巨大工程,如果没有高斯在理论上的仔细推敲,在观测上力图合理精确,在数据处理上尽量周密细致的出色表现,就不能完成。在当时条件下布设这样大规模的大地控制网,精确地确定2578个三角点的大地坐标,可以说是一项了不起的成就。 为了用椭圆在球面上的正形投影理论以解决大地测量中出现的问题,在这段时间内高斯亦从事了曲面和投影的理论,并成为了微分几何的重要理论基础。他独立地提出了不能证明欧氏几何的平行公设具有‘物理的’必然性,至少不能用人类的理智给出这种证明。但他的非欧几何理论并未发表。也许他是出于对同时代的人不能理解这种超常理论的担忧。相对论证明了宇宙空间实际上是非欧几何的空间。高斯的思想被近100年后的物理学接受了。 高斯试图在汉诺威公国的大地测量中通过测量Harz的Brocken--Thuringer Wald的Inselsberg--哥廷根的Hohen Hagen三个山头所构成的三角形的内角和,以验证非欧几何的正确性,但未成功。高斯的朋友鲍耶的儿子雅诺斯在1823年证明了非欧几何的存在,高斯对他勇于探索的精神表示了赞扬。1840年,罗巴切夫斯基又用德文写了《平行线理论的几何研究》一文。这篇论文发表后,引起了高斯的注意,他非常重视这一论证,积极建议哥廷根大学聘请罗巴切夫斯基为通信院士。为了能直接阅读他的著作,从这一年开始,63岁的高斯开始学习俄语,并最终掌握了这门外语。最终高斯成为和微分几何的始祖(高斯,雅诺斯、罗巴切夫斯基)中最重要的一人。 日光反射仪 出于对实际应用的兴趣,高斯发明了日光反射仪。日光反射仪可以将光束反射至大约450公里外的地方。高斯后来不止一次地为原先的设计作出改进,试制成功了后来被广泛应用于大地测量的镜式六分仪。 磁强计 19世纪30年代,高斯发明了磁强计,辞去了天文台的工作,而转向物理研究。他与韦伯(1804-1891)在电磁学的领域共同工作。他比韦伯年长27岁,以亦师亦友的身份进行合作。1833年,通过受电磁影响的罗盘指针,他向韦伯发送了电报。这不仅仅是从韦伯的实验室与天文台之间的第一个电话电报系统,也是世界首创。尽管线路才8千米长。1840年他和韦伯画出了世界第一张地球磁场图,而且定出了地球磁南极和磁北极的位置,并于次年得到美国科学家的证实。

高斯,德国数学家、天文学家、物理学家。1777年生于德意志一个贫苦农民家庭。高斯是数学史上少有的天才。很多人都认为伟大的科学家和才子都出自书香门第,家里人可以对他的智力进行较早的开发。可是,高斯的出身却正好推翻了这一论断。高斯的祖父是一个朴实的德国农民,父亲也以种果树为生,母亲则是一个穷石匠的女儿。由于家贫,他的母亲在34岁时才做新娘,而他父亲这时已经40岁了。父亲根本就没有指望他能读书长学问,也根本不可能对他进行早期教育。幸运的是,高斯有一个聪明的舅舅,他是一位心灵手巧的织绸能手,虽然文化不高,但知道许多故事。这位舅舅也十分喜欢高斯,常常通过给他讲故事来教育他。高斯的父亲整天忙于自己的事,根本没有时间照顾小高斯。只要高斯不哭,他就专心算自己的账。而小高斯则经常在旁边一声不响地看父亲算账。有一次,还在牙牙学语的高斯像往常一样聚精会神地看父亲算账。父亲一边算,一边直摇头,算来算去也算不出一个结果来,过了好久,才自言自语地报出一个结果。父亲紧缩的眉头终于舒展了,点上一支烟,深深地吸了一口,一边准备把答案写下来。可是小高斯在一旁却用小手敲击着桌子,不停地摇头,向父亲示意这个结果是不正确的,然后自己从小嘴中慢慢地说出了一个数字。父亲感到十分惊异,儿子还不会说话,怎么会报数呢?他突然灵感一现,莫不是高斯说的是自己所计算的正确答案。于是,父亲抱着好奇的心理,重新进行演算,答案竟然真的和高斯说的一样,高斯对了!父亲高兴极了,逢人便夸自己的儿子还不会说话就会做数学了。此后,高斯的父亲发现高斯具有良好的天赋,于是决定全家省吃俭用送他去读书。1795年10月,高斯远离家乡来到他渴望已久的哥廷根大学深造。很快,那里丰富的数学藏书深深地吸引了他。在哥廷根大学的第一年,高斯就用代数方法解决了两千多年来对正几边形用直尺和圆规几何作图的世界性难题。同时,他还证明了单用圆规和直尺根本不可能作出正七边形、正九边形、正十一边形、正十三边形和正十四边形。也就是说,高斯用一般性的方法归纳证明哪些正多边形可以用直尺和圆规做出来,哪些做不出来。他的这种思想已经超越他所在时代的方法论水平,具有很高的创意。少年高斯的这一数学思想,将数学的方法论研究带入了一个新领域。有一天,高斯带着他正十七边形可以用几何作图的代数证明去找哥廷根大学的数学教授卡斯特请教。高斯说明来意后,卡斯特先是大吃一惊,然后哈哈大笑起来。他根本不相信一个19岁的少年能解决这道两千多年来的数学难题。为了让卡斯特对他的证明感兴趣,高斯换了一个说法:“卡斯特教授,我曾经解出过一道十七次方的代数方程。”“年轻人,别开玩笑了。科学是神圣的,容不得半点虚假。”卡斯特一脸严肃地说。“但这是真的。教授,我把这个十七次方程化简成了一个低次方程。”高斯冷静地答道。“噢,那好吧,让我看看你的‘杰作’吧!”卡斯特略带怀疑、甚至嘲讽的口气说道,把高斯的手稿接了过去。不看则罢,看了之后,卡斯特大吃一惊:这个少年太神奇了,其中的运算推理极其严密,看不出半点漏洞。卡斯特马上让高斯把证明过程重新整理,然后由他推荐到一家著名数学杂志上去发表。高斯小小的年纪就引起了世界数学界的注意,他自己也对这个发现十分得意。他在日记中写道:“这是多么干净利索、周密漂亮!我死以后,要在墓碑上镌刻一个正十七边形,以纪念我在少年时代最伟大的发现!”高斯是数学领域继欧几里德、牛顿、欧拉以后最伟大的数学家,有人称之为“数学之王”。

受高斯影响没发表论文

在数学史上,高斯与黎曼是两个如雷贯耳的名字。这两位伟大的数学家有很多相似之处:都是德国人;都在哥廷根大学教过书;同为几何学史上划时代的人物;都既是数学家又是物理学家;以他们姓氏命名的数学概念都有几十个等等。    学数学的人大多都知道他们是师徒,高斯是黎曼的博士论文导师。话说青出于蓝而胜于蓝,长江后浪推前浪,对这师徒二人谁更厉害没有一个标准的说法,下面大家可以评一评这俩师徒谁更牛。    说到高斯,大家马上想起来的很可能是在他童年时巧算1+2+3+···+100的事迹,童年时的高斯就如此了得,一般来说长大之后那还得了。他成年之后的神迹给了我们一个肯定的回答,他确实是不同凡响,1796年高斯19岁,发现了正十七边形的尺规作图方法, 解决了自欧几里德以来近2000年悬而未决的一个难题。 同年,高斯发表并证明了二次互反律,这是他的得意之作,一生曾用八种方法证明,称之为“黄金律”。1799年,高斯完成了博士论文,获黑尔姆施泰特大学的博士学位,年仅22岁,这一时代伟大的数学序幕才刚刚拉开。      在这里应该谈谈非欧几何学,非欧几何是19世纪数学的一个伟大发现,它是由鲍耶、罗巴切夫斯基所独立发现,但从后来高斯的数学日记来看,伟大的高斯早在他两位几十年之前就已经独自发现了非欧几何,当时的他年仅19岁,够吓人吧!现在很多人19岁才刚进大学吧!高斯当时就明白了这种几何是正确的,但考虑到数学界很可能不能接受而未将他的研究发表,仅仅是记入了他的数学日记中。多进行研究少发表论文从此成为高斯的一大习惯,他的很多研究成果都未发表而仅仅只是记录在他的数学日记中。在以后多年的研究生涯中,高斯的研究几乎遍及纯粹数学与应用数学的各个领域,包括数论、复分析、微分几何、代数学等等,当然还有他所钟爱的物理学。在这里不一一叙述,高斯因此获得了“数学王子”的美誉,也与阿基米德、牛顿、欧拉并列为数学史上四大数学家。    相比之下,黎曼就没有他老师那么多的故事与神迹,他1826年出生于一个普通牧师家庭,上中小学时并没有展露出多少数学才能,但有一次不得不提及,上中学时,黎曼向一位老师借了一本数学著作,那是法国著名数学家勒让德800多页的名著《数论》,仅仅一个星期后黎曼便将此书归还,并向那位借他书的老师说:“这是一部伟大的著作,我已经掌握了它”,那位老师不大相信的问了他书中所讲的几个困难之处,黎曼竟都能够对答如流,那老师默然。应该说这是有关黎曼青少年时期很少的神迹记载之一,他这一时期的其他事迹很少见于记载。    1845年19岁的黎曼进入哥廷根大学学习哲学和神学。在此期间他也去听了一些数学讲座,包括高斯关于最小二乘法的讲座等。在得到父亲的允许后,他改学数学。在大学期间有两年去柏林大学就读 ,受到雅克比和狄利克雷的影响。1851年,黎曼在高斯指导下获得博士学位,时年25岁,博士论文有关复变函数的基础问题,得到了对学术极为苛刻的高斯的少有的热情称赞,因此论文黎曼成为了复变函数论的奠基人之一。    学数学的人未必对黎曼很了解,但大多都知道有一门伟大的学问叫做黎曼几何,这开始于黎曼1854年在哥廷根大学发表的题为《论作为几何学基础的假设》的演说,由此创立了黎曼几何学。黎曼将曲面本身看成一个独立的几何实体,而不是把它仅仅看作欧几里得空间中的一个几何实体。1915年,爱因斯坦运用黎曼几何和张量分析工具创立了新的引力理论——广义相对论。应该说对于广义相对论的创立,黎曼功不可没。数学界公认,黎曼几何是黎曼对数学的最大贡献,由此黎曼成为了近现代最伟大的几何学家,没有之一。      1859年,黎曼发表了著名论文《不超过已知数的素数个数》,在此文中黎曼首先提出了用复变函数论,特别是用ζ函数研究数论的新思想和新方法,从而开创了解析数论的新时期,并在这篇论文中提出了让很多大数学家望而却步的黎曼猜想。除了复变函数、黎曼几何、解析数论的研究外,黎曼对实分析、偏微分方程、数学物理等领域亦有重大贡献,他不仅是一位伟大的数学家,还是一位物理学家,他对引力与电和磁的关系的研究在物理学中有一定推动作用。       说了这么多,大家可能早已感到对这两位数学巨匠很难分出高下,好吧!让我们来看看同为德国人的数学大师克莱因对他们的评价。    关于高斯:他时常不发表他最美的结果,会有什么原因使他在达到目标前的一瞬间出现了这种奇异的停顿?可能的原因要在一种沮丧中去寻找,他在自己最成功的工作中常陷入某种沮丧而不能自拔......。对过于紧张的多产,他的首创精神和意志力量终于不胜其才,对于像他这样早熟而又热情的具有创造性的人,才思汹涌激荡终于使他心力交瘁。    关于黎曼:黎曼的直觉确实是光辉耀目,他那无所不包的天才超越了他的所有同时代人。不论在哪个地方,只要他的兴趣被激发起来,他都会从头开始,从不让自己被传统引入歧途。黎曼的羞怯甚至是笨拙的举止常遭到同事们的嘲笑,他时常神情忧郁,哀伤地回应这些攻击。他与周围的世界完全隔绝,过着一种无比丰富的内心生活。我们从黎曼身上看到了一个典型的亲切的天才:从外表看,他是平静的,而且有点古怪;但从内心看,则是充满了活力和力量。     读完此文的你对这两位数学巨匠又会有怎样的评价呢?

高斯是德国数学家 ,也是科学家,他和牛顿、阿基米德,被誉为有史以来的三大数学家.高斯是近代数学奠基者之一,在历史上影响之大,可以和阿基米德、牛顿、欧拉并列,有“数学王子”之称. 他幼年时就表现出超人的数学天才.1795年进入格丁根大学学习.第二年他就发现正十七边形的尺规作图法.并给出可用尺规作出的正多边形的条件,解决了欧几里得以来悬而未决的问题. 高斯的数学研究几乎遍及所有领域,在数论、代数学、非欧几何、复变函数和微分几何等方面都做出了开创性的贡献.他还把数学应用于天文学、大地测量学和磁学的研究,发明了最小二乘法原理.高理的数论研究 总结 在《算术研究》(1801)中,这本书奠定了近代数论的基础,它不仅是数论方面的划时代之作,也是数学史上不可多得的经典著作之一.高斯对代数学的重要贡献是证明了代数基本定理,他的存在性证明开创了数学研究的新途径.高斯在1816年左右就得到非欧几何的原理.他还深入研究复变函数,建立了一些基本概念发现了著名的柯西积分定理.他还发现椭圆函数的双周期性,但这些工作在他生前都没发表出来.1828年高斯出版了《关于曲面的一般研究》,全面系统地阐述了空间曲面的微分几何学,并提出内蕴曲面理论.高斯的曲面理论后来由黎曼发展.高斯一生共发表155篇论文,他对待学问十分严谨,只是把他自己认为是十分成熟的作品发表出来.其著作还有《地磁概念》和《论与距离平方成反比的引力和斥力的普遍定律》等. 1801年高斯有机会戏剧性地施展他的优势的计算技巧.那年的元旦,有一个后来被证认为小行星并被命名为谷神星的天体被发现当时它好像在向太阳靠近,天文学家虽然有40天的时间可以观察它,但还不能计算出它的轨道.高斯只作了3次观测就提出了一种计算轨道参数的方法,而且达到的精确度使得天文学家在1801年末和1802年初能够毫无困难地再确定谷神星的位置.高斯在这一计算方法中用到了他大约在1794年创造的最小二乘法(一种可从特定计算得到最小的方差和中求出最佳估值的方法在天文学中这一成就立即得到公认.他在《天体运动理论》中叙述的方法今天仍在使用,只要稍作修改就能适应现代计算机的要求.高斯在小行星“智神星”方面也获得类似的成功. 由于高斯在数学、天文学、大地测量学和物理学中的杰出研究成果,他被选为许多科学院和学术团体的成员.“数学之王”的称号是对他一生恰如其分的赞颂. 以上回答你满意么?

高斯最著名的故事莫过于小学时计算1+2+3+...+100的值。当时高斯上小学,老师在班上出了这样一道题,叫大家算。那个老师以为至少要20分钟以后才会有答案,正想休息一下,谁知屁股还没坐稳高斯就说算出来了。老师很惊讶,问他怎么算的,他就说先算1+100=101,2+99=101,。。。这样一共有50个101,因此结果是5050。还有一个故事,是高斯19岁的时候,本来他打算学法律的,结果不经意间解决了一个2000年的数学难题,那就是只用直尺和圆规17等分圆周。高斯还证明了当且仅当N=2^(2^n)+1时,能够用尺规N等分圆周。从此高斯对数学的兴趣大增,并走上了数学研究的道路,成了一名伟大的数学家。

相关百科

热门百科

首页
发表服务