首页

职称论文知识库

首页 职称论文知识库 问题

发表金属论文

发布时间:

金属发表论文

腐蚀是金属表面部分或者全部剥离、溶解或软化的化学反应。“生锈”经常被误用或者误解,它仅仅指铁和钢。“腐蚀”不仅包含黑色金属,而且包含有色金属。以下内容主要讨论腐蚀的成因和纠正措施。移除热量是金属加工液最重要的功能之一。 有效移除热量,就能保证刀具的良好使用寿命,以及工件的几何精度。和油相比,水在移除热量方面性能更卓越;但纯水和新加工的金属接触后会导致腐蚀。因此,腐蚀是每位用户,也是水基金属加工液制造商必须面对的问题。干切削过程也会面对腐蚀问题,并不仅仅由水基金属加工液引起。 引起金属表面腐蚀有许多种原因,下面做具体介绍。1季节性腐蚀腐蚀可以发生在一年内的任何时候。一般来说,7~9月的温度和相对湿度较高,在美国东部和中西部更容易发生腐蚀。干旱地区,如克罗拉多州、新墨西哥州、亚利桑那州、犹他州及加州,这些地方的相对湿度较低,腐蚀情况就很少发生。 2手印腐蚀当工件接触人手后,就容易发生腐蚀。搬运过程中新机床和金属工件表面留下的手印,会导致腐蚀。这种情况普遍存在于皮肤呈酸性的人群,以及表面光洁度高的工件。使用手印中和剂能防止类似的手印腐蚀。 随着温度上升,包括腐蚀在内的化学反应速度就会更快。夏季高温和空气中的水分和氧气也是加速腐蚀的原因。当水分凝结在工件表面,就会形成电池的电解液。秋冬季节能提供防锈保护的加工液浓度,当湿度持续上升时,就不再提供有效的防锈保护。 因此,适当的浓度调整非常必要。秋冬季节,浓度1:30(3。3%)已经足够;但湿热季节,浓度可能需要提高到1:25(4%),或者不再看到工件表面生锈为止。需要注意的是,提高中央槽系统的浓度,会导致泡沫和皮炎问题。金属加工液用户也可能需要增加防锈添加剂,这取决于金属加工液的种类、用户对化学品的限制、添加剂的有效性以及所使用的加工液。 3pHpH值是金属加工液控制腐蚀的一个重要参数。超过9的高pH值,可以保护黑色金属,但对有色金属腐蚀防护不利,如:铝、黄铜和青铜。水硬度会影响加工液的平衡,不同地理区域的水硬度是不同的,调节水硬度会优化加工液的表现性能。 单机条件下如果pH值较低,最简单的解决方法是倾倒和清洗,然后按照推荐浓度加新鲜金属加工液。如果是加工黑色金属的中央槽系统,可以用适当添加剂,将pH值调整到8。8~9。2。如果pH值特别高,往往是金属加工液已经受到污染,需要倾倒和换新液。 4污垢再循环金属加工液的金属微粒,往往被认为是“污垢”或“碎屑”。如果没有及时清理,碎屑会在工件表面堆积而形成电池,碎屑下面的金属往往会生锈。单机条件下,应及时排空—清洗—用清水冲洗,按照推荐浓度加新鲜金属加工液。 5水通常水中的化学物质是积累的,会提高加工液的腐蚀程度。所有水包含离子,部分离子富有侵蚀性,会导致大部分金属腐蚀。水含有超过100×106的氯化物、超过100×106的硫化物,或50×106硝酸盐,这些离子被认为富有侵蚀性。 氯化物、硫化物和硝酸盐破坏金属表面的防护层,导致腐蚀。持续加水会提高中央槽系统的氯化物、硫化物和硝酸盐含量。金属加工液使用时间越长,离子的侵蚀性更高。每种金属加工液的配方,都需要维持浓度来发挥“最佳点”。定期检测金属加工液浓度,可以避免加工性能和环境问题。 如果用户怀疑水有侵蚀性时,可取样并通过全分析来确定。当中央槽系统的金属加工液被怀疑导致腐蚀,请取样并检测离子含量。当氯化物、硫化物和硝酸盐浓度超过可接受范围,可使用去离子水或者蒸馏水作为工艺用水,也可选择防腐蚀性能高的金属加工液。 溶解在水中的固体,可以破坏金属加工液很多的渴望性能。最熟悉的例子就是“水硬度”,是由于钙和镁离子溶解在水中引起。二价离子和皂类、润湿剂和乳化剂反应所形成化合物,溶解度会降低。这种不溶解的成分,耗竭机床和工件防锈剂。 硬水指的是含量超过250×106碳酸钙或者15“德国克”(德国硬度标准)。硬度越高,越容易产生腐蚀。电导率是另一个检测金属加工液中溶解离子的方法。高电导率增加了腐蚀、金属加工液的不稳定、残留物和其他问题。超过4MilliSiemens/cm被认为高电导率。 3pHpH值是金属加工液控制腐蚀的一个重要参数。超过9的高pH值,可以保护黑色金属,但对有色金属腐蚀防护不利,如:铝、黄铜和青铜。水硬度会影响加工液的平衡,不同地理区域的水硬度是不同的,调节水硬度会优化加工液的表现性能。 单机条件下如果pH值较低,最简单的解决方法是倾倒和清洗,然后按照推荐浓度加新鲜金属加工液。如果是加工黑色金属的中央槽系统,可以用适当添加剂,将pH值调整到8。8~9。2。如果pH值特别高,往往是金属加工液已经受到污染,需要倾倒和换新液。 4污垢再循环金属加工液的金属微粒,往往被认为是“污垢”或“碎屑”。如果没有及时清理,碎屑会在工件表面堆积而形成电池,碎屑下面的金属往往会生锈。单机条件下,应及时排空—清洗—用清水冲洗,按照推荐浓度加新鲜金属加工液。 5水通常水中的化学物质是积累的,会提高加工液的腐蚀程度。所有水包含离子,部分离子富有侵蚀性,会导致大部分金属腐蚀。水含有超过100×106的氯化物、超过100×106的硫化物,或50×106硝酸盐,这些离子被认为富有侵蚀性。 氯化物、硫化物和硝酸盐破坏金属表面的防护层,导致腐蚀。持续加水会提高中央槽系统的氯化物、硫化物和硝酸盐含量。金属加工液使用时间越长,离子的侵蚀性更高。每种金属加工液的配方,都需要维持浓度来发挥“最佳点”。定期检测金属加工液浓度,可以避免加工性能和环境问题。 如果用户怀疑水有侵蚀性时,可取样并通过全分析来确定。当中央槽系统的金属加工液被怀疑导致腐蚀,请取样并检测离子含量。当氯化物、硫化物和硝酸盐浓度超过可接受范围,可使用去离子水或者蒸馏水作为工艺用水,也可选择防腐蚀性能高的金属加工液。 溶解在水中的固体,可以破坏金属加工液很多的渴望性能。最熟悉的例子就是“水硬度”,是由于钙和镁离子溶解在水中引起。二价离子和皂类、润湿剂和乳化剂反应所形成化合物,溶解度会降低。这种不溶解的成分,耗竭机床和工件防锈剂。 硬水指的是含量超过250×106碳酸钙或者15“德国克”(德国硬度标准)。硬度越高,越容易产生腐蚀。电导率是另一个检测金属加工液中溶解离子的方法。高电导率增加了腐蚀、金属加工液的不稳定、残留物和其他问题。超过4MilliSiemens/cm被认为高电导率。 3pHpH值是金属加工液控制腐蚀的一个重要参数。超过9的高pH值,可以保护黑色金属,但对有色金属腐蚀防护不利,如:铝、黄铜和青铜。水硬度会影响加工液的平衡,不同地理区域的水硬度是不同的,调节水硬度会优化加工液的表现性能。 单机条件下如果pH值较低,最简单的解决方法是倾倒和清洗,然后按照推荐浓度加新鲜金属加工液。如果是加工黑色金属的中央槽系统,可以用适当添加剂,将pH值调整到8。8~9。2。如果pH值特别高,往往是金属加工液已经受到污染,需要倾倒和换新液。 4污垢再循环金属加工液的金属微粒,往往被认为是“污垢”或“碎屑”。如果没有及时清理,碎屑会在工件表面堆积而形成电池,碎屑下面的金属往往会生锈。单机条件下,应及时排空—清洗—用清水冲洗,按照推荐浓度加新鲜金属加工液。 5水通常水中的化学物质是积累的,会提高加工液的腐蚀程度。所有水包含离子,部分离子富有侵蚀性,会导致大部分金属腐蚀。水含有超过100×106的氯化物、超过100×106的硫化物,或50×106硝酸盐,这些离子被认为富有侵蚀性。 氯化物、硫化物和硝酸盐破坏金属表面的防护层,导致腐蚀。持续加水会提高中央槽系统的氯化物、硫化物和硝酸盐含量。金属加工液使用时间越长,离子的侵蚀性更高。每种金属加工液的配方,都需要维持浓度来发挥“最佳点”。定期检测金属加工液浓度,可以避免加工性能和环境问题。 如果用户怀疑水有侵蚀性时,可取样并通过全分析来确定。当中央槽系统的金属加工液被怀疑导致腐蚀,请取样并检测离子含量。当氯化物、硫化物和硝酸盐浓度超过可接受范围,可使用去离子水或者蒸馏水作为工艺用水,也可选择防腐蚀性能高的金属加工液。 溶解在水中的固体,可以破坏金属加工液很多的渴望性能。最熟悉的例子就是“水硬度”,是由于钙和镁离子溶解在水中引起。二价离子和皂类、润湿剂和乳化剂反应所形成化合物,溶解度会降低。这种不溶解的成分,耗竭机床和工件防锈剂。 硬水指的是含量超过250×106碳酸钙或者15“德国克”(德国硬度标准)。硬度越高,越容易产生腐蚀。电导率是另一个检测金属加工液中溶解离子的方法。高电导率增加了腐蚀、金属加工液的不稳定、残留物和其他问题。超过4MilliSiemens/cm被认为高电导率。

我觉得~~你可以去看下(材料化学前沿)、(材料科学)、(纳米技术)等这些期刊里面找下呗~

就是技能进去的这一阵子这个论文怎么发这个论文肯定有办法发的这方法自己看一下

金属腐蚀方向论文怎么发论文的发表的话,肯定要经过导师与学生之间的相互的沟通。

金属论文发表

腐蚀是金属表面部分或者全部剥离、溶解或软化的化学反应。“生锈”经常被误用或者误解,它仅仅指铁和钢。“腐蚀”不仅包含黑色金属,而且包含有色金属。以下内容主要讨论腐蚀的成因和纠正措施。移除热量是金属加工液最重要的功能之一。 有效移除热量,就能保证刀具的良好使用寿命,以及工件的几何精度。和油相比,水在移除热量方面性能更卓越;但纯水和新加工的金属接触后会导致腐蚀。因此,腐蚀是每位用户,也是水基金属加工液制造商必须面对的问题。干切削过程也会面对腐蚀问题,并不仅仅由水基金属加工液引起。 引起金属表面腐蚀有许多种原因,下面做具体介绍。1季节性腐蚀腐蚀可以发生在一年内的任何时候。一般来说,7~9月的温度和相对湿度较高,在美国东部和中西部更容易发生腐蚀。干旱地区,如克罗拉多州、新墨西哥州、亚利桑那州、犹他州及加州,这些地方的相对湿度较低,腐蚀情况就很少发生。 2手印腐蚀当工件接触人手后,就容易发生腐蚀。搬运过程中新机床和金属工件表面留下的手印,会导致腐蚀。这种情况普遍存在于皮肤呈酸性的人群,以及表面光洁度高的工件。使用手印中和剂能防止类似的手印腐蚀。 随着温度上升,包括腐蚀在内的化学反应速度就会更快。夏季高温和空气中的水分和氧气也是加速腐蚀的原因。当水分凝结在工件表面,就会形成电池的电解液。秋冬季节能提供防锈保护的加工液浓度,当湿度持续上升时,就不再提供有效的防锈保护。 因此,适当的浓度调整非常必要。秋冬季节,浓度1:30(3。3%)已经足够;但湿热季节,浓度可能需要提高到1:25(4%),或者不再看到工件表面生锈为止。需要注意的是,提高中央槽系统的浓度,会导致泡沫和皮炎问题。金属加工液用户也可能需要增加防锈添加剂,这取决于金属加工液的种类、用户对化学品的限制、添加剂的有效性以及所使用的加工液。 3pHpH值是金属加工液控制腐蚀的一个重要参数。超过9的高pH值,可以保护黑色金属,但对有色金属腐蚀防护不利,如:铝、黄铜和青铜。水硬度会影响加工液的平衡,不同地理区域的水硬度是不同的,调节水硬度会优化加工液的表现性能。 单机条件下如果pH值较低,最简单的解决方法是倾倒和清洗,然后按照推荐浓度加新鲜金属加工液。如果是加工黑色金属的中央槽系统,可以用适当添加剂,将pH值调整到8。8~9。2。如果pH值特别高,往往是金属加工液已经受到污染,需要倾倒和换新液。 4污垢再循环金属加工液的金属微粒,往往被认为是“污垢”或“碎屑”。如果没有及时清理,碎屑会在工件表面堆积而形成电池,碎屑下面的金属往往会生锈。单机条件下,应及时排空—清洗—用清水冲洗,按照推荐浓度加新鲜金属加工液。 5水通常水中的化学物质是积累的,会提高加工液的腐蚀程度。所有水包含离子,部分离子富有侵蚀性,会导致大部分金属腐蚀。水含有超过100×106的氯化物、超过100×106的硫化物,或50×106硝酸盐,这些离子被认为富有侵蚀性。 氯化物、硫化物和硝酸盐破坏金属表面的防护层,导致腐蚀。持续加水会提高中央槽系统的氯化物、硫化物和硝酸盐含量。金属加工液使用时间越长,离子的侵蚀性更高。每种金属加工液的配方,都需要维持浓度来发挥“最佳点”。定期检测金属加工液浓度,可以避免加工性能和环境问题。 如果用户怀疑水有侵蚀性时,可取样并通过全分析来确定。当中央槽系统的金属加工液被怀疑导致腐蚀,请取样并检测离子含量。当氯化物、硫化物和硝酸盐浓度超过可接受范围,可使用去离子水或者蒸馏水作为工艺用水,也可选择防腐蚀性能高的金属加工液。 溶解在水中的固体,可以破坏金属加工液很多的渴望性能。最熟悉的例子就是“水硬度”,是由于钙和镁离子溶解在水中引起。二价离子和皂类、润湿剂和乳化剂反应所形成化合物,溶解度会降低。这种不溶解的成分,耗竭机床和工件防锈剂。 硬水指的是含量超过250×106碳酸钙或者15“德国克”(德国硬度标准)。硬度越高,越容易产生腐蚀。电导率是另一个检测金属加工液中溶解离子的方法。高电导率增加了腐蚀、金属加工液的不稳定、残留物和其他问题。超过4MilliSiemens/cm被认为高电导率。 3pHpH值是金属加工液控制腐蚀的一个重要参数。超过9的高pH值,可以保护黑色金属,但对有色金属腐蚀防护不利,如:铝、黄铜和青铜。水硬度会影响加工液的平衡,不同地理区域的水硬度是不同的,调节水硬度会优化加工液的表现性能。 单机条件下如果pH值较低,最简单的解决方法是倾倒和清洗,然后按照推荐浓度加新鲜金属加工液。如果是加工黑色金属的中央槽系统,可以用适当添加剂,将pH值调整到8。8~9。2。如果pH值特别高,往往是金属加工液已经受到污染,需要倾倒和换新液。 4污垢再循环金属加工液的金属微粒,往往被认为是“污垢”或“碎屑”。如果没有及时清理,碎屑会在工件表面堆积而形成电池,碎屑下面的金属往往会生锈。单机条件下,应及时排空—清洗—用清水冲洗,按照推荐浓度加新鲜金属加工液。 5水通常水中的化学物质是积累的,会提高加工液的腐蚀程度。所有水包含离子,部分离子富有侵蚀性,会导致大部分金属腐蚀。水含有超过100×106的氯化物、超过100×106的硫化物,或50×106硝酸盐,这些离子被认为富有侵蚀性。 氯化物、硫化物和硝酸盐破坏金属表面的防护层,导致腐蚀。持续加水会提高中央槽系统的氯化物、硫化物和硝酸盐含量。金属加工液使用时间越长,离子的侵蚀性更高。每种金属加工液的配方,都需要维持浓度来发挥“最佳点”。定期检测金属加工液浓度,可以避免加工性能和环境问题。 如果用户怀疑水有侵蚀性时,可取样并通过全分析来确定。当中央槽系统的金属加工液被怀疑导致腐蚀,请取样并检测离子含量。当氯化物、硫化物和硝酸盐浓度超过可接受范围,可使用去离子水或者蒸馏水作为工艺用水,也可选择防腐蚀性能高的金属加工液。 溶解在水中的固体,可以破坏金属加工液很多的渴望性能。最熟悉的例子就是“水硬度”,是由于钙和镁离子溶解在水中引起。二价离子和皂类、润湿剂和乳化剂反应所形成化合物,溶解度会降低。这种不溶解的成分,耗竭机床和工件防锈剂。 硬水指的是含量超过250×106碳酸钙或者15“德国克”(德国硬度标准)。硬度越高,越容易产生腐蚀。电导率是另一个检测金属加工液中溶解离子的方法。高电导率增加了腐蚀、金属加工液的不稳定、残留物和其他问题。超过4MilliSiemens/cm被认为高电导率。 3pHpH值是金属加工液控制腐蚀的一个重要参数。超过9的高pH值,可以保护黑色金属,但对有色金属腐蚀防护不利,如:铝、黄铜和青铜。水硬度会影响加工液的平衡,不同地理区域的水硬度是不同的,调节水硬度会优化加工液的表现性能。 单机条件下如果pH值较低,最简单的解决方法是倾倒和清洗,然后按照推荐浓度加新鲜金属加工液。如果是加工黑色金属的中央槽系统,可以用适当添加剂,将pH值调整到8。8~9。2。如果pH值特别高,往往是金属加工液已经受到污染,需要倾倒和换新液。 4污垢再循环金属加工液的金属微粒,往往被认为是“污垢”或“碎屑”。如果没有及时清理,碎屑会在工件表面堆积而形成电池,碎屑下面的金属往往会生锈。单机条件下,应及时排空—清洗—用清水冲洗,按照推荐浓度加新鲜金属加工液。 5水通常水中的化学物质是积累的,会提高加工液的腐蚀程度。所有水包含离子,部分离子富有侵蚀性,会导致大部分金属腐蚀。水含有超过100×106的氯化物、超过100×106的硫化物,或50×106硝酸盐,这些离子被认为富有侵蚀性。 氯化物、硫化物和硝酸盐破坏金属表面的防护层,导致腐蚀。持续加水会提高中央槽系统的氯化物、硫化物和硝酸盐含量。金属加工液使用时间越长,离子的侵蚀性更高。每种金属加工液的配方,都需要维持浓度来发挥“最佳点”。定期检测金属加工液浓度,可以避免加工性能和环境问题。 如果用户怀疑水有侵蚀性时,可取样并通过全分析来确定。当中央槽系统的金属加工液被怀疑导致腐蚀,请取样并检测离子含量。当氯化物、硫化物和硝酸盐浓度超过可接受范围,可使用去离子水或者蒸馏水作为工艺用水,也可选择防腐蚀性能高的金属加工液。 溶解在水中的固体,可以破坏金属加工液很多的渴望性能。最熟悉的例子就是“水硬度”,是由于钙和镁离子溶解在水中引起。二价离子和皂类、润湿剂和乳化剂反应所形成化合物,溶解度会降低。这种不溶解的成分,耗竭机床和工件防锈剂。 硬水指的是含量超过250×106碳酸钙或者15“德国克”(德国硬度标准)。硬度越高,越容易产生腐蚀。电导率是另一个检测金属加工液中溶解离子的方法。高电导率增加了腐蚀、金属加工液的不稳定、残留物和其他问题。超过4MilliSiemens/cm被认为高电导率。

我觉得~~你可以去看下(材料化学前沿)、(材料科学)、(纳米技术)等这些期刊里面找下呗~

不同的杂志的周期不同,要耐住性子快的在6、7月就可以出刊了。收费刊物要快点,一般三个月左右,不收费的刊物主要看你的论文的质量,周期相对要长一点。如果急用,就找一家正规收费刊物发表,这当中要注意必须确定无疑是正规刊物。道新闻出版署网站查一下就知道了,地址等信息也要一致。1)国内中文核心期刊:速度差异很大,快的一个月左右通知修改或者录用,慢的3个月以上才给修改意见。当然,拒稿的情况,总体来说还是蛮高效,一般一周到一个月拒稿,不至于浪费太多时间;刊出从1年到2年不等;2)国内普通期刊:录用比较快,基本1个月左右给出录用通知,刊出也基本在1年以内;3)国外SCI期刊:慢的4个月才给审稿结果,当然是极少数;刊出时间从半年到1年多不等。总体来说效率比国内期刊高。

作文文档议论文题材上手机跟电脑都是可以谈的,大枣你可以去看一下这个没关系的。我的,你可以去看一下吗?:

发表金属论文

可以在SCI这样的表,专业的期刊上面去发吧,你如果发了之后对你是有好处的

在很大程度上,化学很受人喜爱,因为神奇多变的化学反应可以创造新的物质,让我们的生活更为方便舒适。执著于金属研究的卢柯说,作材料研究是如此地令人激动,有那么多的事情等着我们去发现,去研究!“超音速”的科研经历 卢柯以常人所不能及的“超音速”,20岁念完大学,25岁拿下博士学位,28岁成为研究员,30岁成为博士生导师,32岁任国家重点实验室主任,35岁担任中科院金属研究所所长,37岁当选中国科学院院士,取得了一系列国际公认的高水平科研成果,在《科学》和《物理评论快报》等顶级国际学术期刊发表了一系列论文。大学时就读于机械制造工程系金属材料及热处理专业的卢柯与金属结下了不解之缘,他最喜欢的课程是《金属学》与《金属材料的热处理》。1985年,卢柯从华东工学院(现为南京理工大学)毕业,来到中科院金属研究所攻读硕士学位。在“纳米浪潮”还没有掀起的时候,他较早地进入了后来很热门的纳米领域。攻读博士学位期间,卢柯对非晶态金属的晶化动力学及其微观机制进行了深入研究,在国际上首次提出了非晶态材料的有序原子集团切变沉积化机制,并解释了一系列用经典理论难以解释的实验结果,为以后研究非晶体转变提供了理论依据;修正了被引用10多年的英国科学家斯考特等人确定的Ni-P非晶合金晶化产物间的位向关系;提出非晶态金属的新晶化机制。在新晶化微观机制的基础上,卢柯于1990年提出制备纳米晶体的新方法——非晶晶化法,具有工艺简单、晶粒度易于控制、界面清洁且不含微孔洞等优点。论文在美国J.Appl.Phys及Scripta Metall.Mater.发表后,已被引用数百次。美国《应用物理杂志》审稿人对卢柯的这一成果极为赞赏,指出“非晶晶化法无疑对纳米材料研究具有重要价值”。材料科学家师昌绪认为,这一方法“为纳米材料的发展开辟了一条新途径,有广阔的应用前景”。国际学术刊物Mater.Sci.Eng.Reports邀请他撰写此领域的专题综述。该制备方法的确定,使我国在纳米晶体研究领域一跃进入国际前列,已成为目前国际上公认的纳米材料3种主要制备方法之一。如何使金属具有超塑性——可承受很大的塑性变形而不断裂,成为各国材料学家面临的一道难题。20年前,葛莱特教授曾预测:如果将构成金属材料的晶粒尺寸减小到纳米量级,材料在室温下应具备很好的塑性变形能力。但多年来,尽管预测得到了计算机模拟结果的肯定,各国材料学家的实验结果却令人失望:孔隙大、密度小、被污染等因素使绝大多数纳米金属在冷轧中易出现裂纹,塑性很差。2000年,卢柯课题组在实验室发现了纳米金属铜在室温下的“奇异”性能——即纳米金属铜具有超塑延展性而没有加工硬化效应,延伸率高达5100%。论文在《科学》上发表后,获得世界同行的普遍好评,纳米材料的“鼻祖”葛莱特教授认为,这项工作是“本领域的一次突破,它第一次向人们展示了无空隙纳米材料是如何变形的”。专家指出,“奇异”性能的发现,缩短了纳米材料和实际应用的距离,意味着和普通金属力学性能完全不同的纳米金属,在精细加工、电子器件和微型机械的制造上具有重要价值。卢柯及其课题组的另一项重要成果是关于晶体过热熔化微观机制方面的,发表在2001年第87卷的《物理评论快报》上。很快,材料科学家、剑桥大学教授RobertW.Cahn就在《自然》杂志上给予了专题评论。2003年12月31日,卢柯在《科学》杂志上发表第二篇论文,将铁表层的晶粒细化到纳米尺度,其氮化温度显著降低,这为氮化处理更多种材料和器件提供了可能。表面氮化是工业中广泛应用的一种材料表面处理技术。在表面氮化过程中,材料或钢铁的表面氮化处理往往需要在较高温度下(高于500℃)进行,处理时间长达十几个小时,不仅能耗高,更重要的是,许多材料和工件在如此高温下长时间退火后会丧失其基体的高强度或出现变形,因此,表面氮化技术的应用受到很大限制。大幅度降低氮化温度是长期以来表面氮化技术应用中必须解决的重要技术瓶颈。2004年1月12日,“我国金属材料表面纳米化技术和全同金属纳米团簇研究”被评为“2003年中国十大科技进展”之一。2004年4月16日出版的第304卷《科学》杂志上,第三次出现了卢柯的名字。他们的研究表明,在纳米孪晶铜中获得超高强度的同时还保持了其良好的导电率;而以往的研究表明,对铜进行强化以后,其导电率是下降的。成功的“奥秘” 在别人眼中,卢柯是战无不胜的“百胜将军”,是上天最眷顾的人。只有他和课题组的同志才清楚自己曾经的失败,曾经的气馁。“你们所看到的成绩只是我1%的工作,其余的99%都是失败,都是残酷的现实。在我过去的研究中,经常会走到几乎坚持不下去的时候。”卢柯说。“走不下去的时候,我总是勇敢地承认自己失败了。失败了,再换一个思路接着干。当然,这中间有一个心态调整的过程,但是必须调整到一个好的状态,重新开始。失败其实是科学工作的常态。跳高比赛是以失败而结束的,科学工作则是用一次次的失败来铺路,以成功作为新的起点。当你有了一个灵感,钻进了实验室里,半年,十个月,一年甚至两三年下来才有结果,可结果与你预想的完全不一样,当然沮丧极了。但我们的工作就是这样,你可以沮丧,可以暂时地消沉,但你不可以放弃你的目标。失败了,证明这个思路不对,从某种角度看,它就是你到达终极目标的一个过程。我经常对我的学生说,对自己的思维一定要有极强的信心,Nothing is impossible(没有什么事情是不可能的)!”卢柯成功还有一个奥秘——自从上大学后,他就给自己制定了严格的时间表和工作计划,以非常人的工作节奏始终跑在别人的前头。十几年来,他一丝不苟地走在自己的行程中,不受任何外界的干扰。虽然他现在成了媒体追逐的科学明星,但依然故我。“上天是公平的,它给每个人的时间是一样的,做了这个,就不能做那个。有的人活得很轻松,一天的活儿用两天的时间干,我则希望用半天的时间就能把一天的活儿干完。如果这样算来,我干一天的活儿等于别人干两天的活儿。我在金属所干了18年,等于干了三四十年的活儿,那么,我37岁当院士,这样算起来也并不年轻。”卢柯说。材料学面临最好的机会 卢柯在努力工作、享受研究乐趣的同时,也感受到了材料学家的责任感,“现在是中国各个领域发展的最好时期,也给材料学的研究创造了最好的机会”。卢柯说,中国工业化的进程对材料学科提出了许多严峻的、亟待解决的问题。上个世纪90年代,镍的需求量开始上扬,镍的价格不断上涨,2003年,镍的价格已经达到历史最高水平,供需矛盾尖锐,原因就是中国的工业化。镍是用来做不锈钢的,工业化的显著标志是需要大量的不锈钢。其实,现在所有的原材料都在涨价。如果不发展先进的材料,将面临资源减少,价格上涨,中国的工业化成本将是非常巨大的。

就是技能进去的这一阵子这个论文怎么发这个论文肯定有办法发的这方法自己看一下

腐蚀是金属表面部分或者全部剥离、溶解或软化的化学反应。“生锈”经常被误用或者误解,它仅仅指铁和钢。“腐蚀”不仅包含黑色金属,而且包含有色金属。以下内容主要讨论腐蚀的成因和纠正措施。移除热量是金属加工液最重要的功能之一。 有效移除热量,就能保证刀具的良好使用寿命,以及工件的几何精度。和油相比,水在移除热量方面性能更卓越;但纯水和新加工的金属接触后会导致腐蚀。因此,腐蚀是每位用户,也是水基金属加工液制造商必须面对的问题。干切削过程也会面对腐蚀问题,并不仅仅由水基金属加工液引起。 引起金属表面腐蚀有许多种原因,下面做具体介绍。1季节性腐蚀腐蚀可以发生在一年内的任何时候。一般来说,7~9月的温度和相对湿度较高,在美国东部和中西部更容易发生腐蚀。干旱地区,如克罗拉多州、新墨西哥州、亚利桑那州、犹他州及加州,这些地方的相对湿度较低,腐蚀情况就很少发生。 2手印腐蚀当工件接触人手后,就容易发生腐蚀。搬运过程中新机床和金属工件表面留下的手印,会导致腐蚀。这种情况普遍存在于皮肤呈酸性的人群,以及表面光洁度高的工件。使用手印中和剂能防止类似的手印腐蚀。 随着温度上升,包括腐蚀在内的化学反应速度就会更快。夏季高温和空气中的水分和氧气也是加速腐蚀的原因。当水分凝结在工件表面,就会形成电池的电解液。秋冬季节能提供防锈保护的加工液浓度,当湿度持续上升时,就不再提供有效的防锈保护。 因此,适当的浓度调整非常必要。秋冬季节,浓度1:30(3。3%)已经足够;但湿热季节,浓度可能需要提高到1:25(4%),或者不再看到工件表面生锈为止。需要注意的是,提高中央槽系统的浓度,会导致泡沫和皮炎问题。金属加工液用户也可能需要增加防锈添加剂,这取决于金属加工液的种类、用户对化学品的限制、添加剂的有效性以及所使用的加工液。 3pHpH值是金属加工液控制腐蚀的一个重要参数。超过9的高pH值,可以保护黑色金属,但对有色金属腐蚀防护不利,如:铝、黄铜和青铜。水硬度会影响加工液的平衡,不同地理区域的水硬度是不同的,调节水硬度会优化加工液的表现性能。 单机条件下如果pH值较低,最简单的解决方法是倾倒和清洗,然后按照推荐浓度加新鲜金属加工液。如果是加工黑色金属的中央槽系统,可以用适当添加剂,将pH值调整到8。8~9。2。如果pH值特别高,往往是金属加工液已经受到污染,需要倾倒和换新液。 4污垢再循环金属加工液的金属微粒,往往被认为是“污垢”或“碎屑”。如果没有及时清理,碎屑会在工件表面堆积而形成电池,碎屑下面的金属往往会生锈。单机条件下,应及时排空—清洗—用清水冲洗,按照推荐浓度加新鲜金属加工液。 5水通常水中的化学物质是积累的,会提高加工液的腐蚀程度。所有水包含离子,部分离子富有侵蚀性,会导致大部分金属腐蚀。水含有超过100×106的氯化物、超过100×106的硫化物,或50×106硝酸盐,这些离子被认为富有侵蚀性。 氯化物、硫化物和硝酸盐破坏金属表面的防护层,导致腐蚀。持续加水会提高中央槽系统的氯化物、硫化物和硝酸盐含量。金属加工液使用时间越长,离子的侵蚀性更高。每种金属加工液的配方,都需要维持浓度来发挥“最佳点”。定期检测金属加工液浓度,可以避免加工性能和环境问题。 如果用户怀疑水有侵蚀性时,可取样并通过全分析来确定。当中央槽系统的金属加工液被怀疑导致腐蚀,请取样并检测离子含量。当氯化物、硫化物和硝酸盐浓度超过可接受范围,可使用去离子水或者蒸馏水作为工艺用水,也可选择防腐蚀性能高的金属加工液。 溶解在水中的固体,可以破坏金属加工液很多的渴望性能。最熟悉的例子就是“水硬度”,是由于钙和镁离子溶解在水中引起。二价离子和皂类、润湿剂和乳化剂反应所形成化合物,溶解度会降低。这种不溶解的成分,耗竭机床和工件防锈剂。 硬水指的是含量超过250×106碳酸钙或者15“德国克”(德国硬度标准)。硬度越高,越容易产生腐蚀。电导率是另一个检测金属加工液中溶解离子的方法。高电导率增加了腐蚀、金属加工液的不稳定、残留物和其他问题。超过4MilliSiemens/cm被认为高电导率。 3pHpH值是金属加工液控制腐蚀的一个重要参数。超过9的高pH值,可以保护黑色金属,但对有色金属腐蚀防护不利,如:铝、黄铜和青铜。水硬度会影响加工液的平衡,不同地理区域的水硬度是不同的,调节水硬度会优化加工液的表现性能。 单机条件下如果pH值较低,最简单的解决方法是倾倒和清洗,然后按照推荐浓度加新鲜金属加工液。如果是加工黑色金属的中央槽系统,可以用适当添加剂,将pH值调整到8。8~9。2。如果pH值特别高,往往是金属加工液已经受到污染,需要倾倒和换新液。 4污垢再循环金属加工液的金属微粒,往往被认为是“污垢”或“碎屑”。如果没有及时清理,碎屑会在工件表面堆积而形成电池,碎屑下面的金属往往会生锈。单机条件下,应及时排空—清洗—用清水冲洗,按照推荐浓度加新鲜金属加工液。 5水通常水中的化学物质是积累的,会提高加工液的腐蚀程度。所有水包含离子,部分离子富有侵蚀性,会导致大部分金属腐蚀。水含有超过100×106的氯化物、超过100×106的硫化物,或50×106硝酸盐,这些离子被认为富有侵蚀性。 氯化物、硫化物和硝酸盐破坏金属表面的防护层,导致腐蚀。持续加水会提高中央槽系统的氯化物、硫化物和硝酸盐含量。金属加工液使用时间越长,离子的侵蚀性更高。每种金属加工液的配方,都需要维持浓度来发挥“最佳点”。定期检测金属加工液浓度,可以避免加工性能和环境问题。 如果用户怀疑水有侵蚀性时,可取样并通过全分析来确定。当中央槽系统的金属加工液被怀疑导致腐蚀,请取样并检测离子含量。当氯化物、硫化物和硝酸盐浓度超过可接受范围,可使用去离子水或者蒸馏水作为工艺用水,也可选择防腐蚀性能高的金属加工液。 溶解在水中的固体,可以破坏金属加工液很多的渴望性能。最熟悉的例子就是“水硬度”,是由于钙和镁离子溶解在水中引起。二价离子和皂类、润湿剂和乳化剂反应所形成化合物,溶解度会降低。这种不溶解的成分,耗竭机床和工件防锈剂。 硬水指的是含量超过250×106碳酸钙或者15“德国克”(德国硬度标准)。硬度越高,越容易产生腐蚀。电导率是另一个检测金属加工液中溶解离子的方法。高电导率增加了腐蚀、金属加工液的不稳定、残留物和其他问题。超过4MilliSiemens/cm被认为高电导率。 3pHpH值是金属加工液控制腐蚀的一个重要参数。超过9的高pH值,可以保护黑色金属,但对有色金属腐蚀防护不利,如:铝、黄铜和青铜。水硬度会影响加工液的平衡,不同地理区域的水硬度是不同的,调节水硬度会优化加工液的表现性能。 单机条件下如果pH值较低,最简单的解决方法是倾倒和清洗,然后按照推荐浓度加新鲜金属加工液。如果是加工黑色金属的中央槽系统,可以用适当添加剂,将pH值调整到8。8~9。2。如果pH值特别高,往往是金属加工液已经受到污染,需要倾倒和换新液。 4污垢再循环金属加工液的金属微粒,往往被认为是“污垢”或“碎屑”。如果没有及时清理,碎屑会在工件表面堆积而形成电池,碎屑下面的金属往往会生锈。单机条件下,应及时排空—清洗—用清水冲洗,按照推荐浓度加新鲜金属加工液。 5水通常水中的化学物质是积累的,会提高加工液的腐蚀程度。所有水包含离子,部分离子富有侵蚀性,会导致大部分金属腐蚀。水含有超过100×106的氯化物、超过100×106的硫化物,或50×106硝酸盐,这些离子被认为富有侵蚀性。 氯化物、硫化物和硝酸盐破坏金属表面的防护层,导致腐蚀。持续加水会提高中央槽系统的氯化物、硫化物和硝酸盐含量。金属加工液使用时间越长,离子的侵蚀性更高。每种金属加工液的配方,都需要维持浓度来发挥“最佳点”。定期检测金属加工液浓度,可以避免加工性能和环境问题。 如果用户怀疑水有侵蚀性时,可取样并通过全分析来确定。当中央槽系统的金属加工液被怀疑导致腐蚀,请取样并检测离子含量。当氯化物、硫化物和硝酸盐浓度超过可接受范围,可使用去离子水或者蒸馏水作为工艺用水,也可选择防腐蚀性能高的金属加工液。 溶解在水中的固体,可以破坏金属加工液很多的渴望性能。最熟悉的例子就是“水硬度”,是由于钙和镁离子溶解在水中引起。二价离子和皂类、润湿剂和乳化剂反应所形成化合物,溶解度会降低。这种不溶解的成分,耗竭机床和工件防锈剂。 硬水指的是含量超过250×106碳酸钙或者15“德国克”(德国硬度标准)。硬度越高,越容易产生腐蚀。电导率是另一个检测金属加工液中溶解离子的方法。高电导率增加了腐蚀、金属加工液的不稳定、残留物和其他问题。超过4MilliSiemens/cm被认为高电导率。

发表非金属论文

西南科技大学非金属矿研究所为原国家建材局1988年批准成立的科研机构,现有研究人员9人,其中教授5人,博士4 人。

非金属矿产地质与矿产开发是西南科技大学最早的省部级重点学科“矿产普查与勘探”支撑领域和研究方向之一,也是在全国非金属矿领域有较大影响的重点研究方向。非金属矿研究所在此领域以现代成矿理论、地球化学及成因矿物学的理论和方法,研究非金属矿床地质及地球化学特征、成矿规律等。经20多年的研究,在非金属矿经济地质与成矿系列、非金属矿床地质及成因、非金属矿产开发等重点研究领域取得了一批突出成果,形成了自己的特色和优势。

20世纪80年代以来,研究所在国内率先采用地球化学和稳定同位素地质学的理论和方法研究粘土矿床等非金属矿床,形成了由教授、博士为学术带头人的学术梯队,并已取得了较好的研究成果,在国内外同行和地域经济发展中产生了重要的影响。在80~90年代主编并出版了《非金属矿产地质学》、《非金属矿勘查与评价》等多部本科统编教材。

研究梯队在全国较早提出和研究了“非金属矿床的地球化学”、“非金属矿床成矿系列”和“地质体综合利用”,研究了一系列非金属矿物资源及其矿产开发,先后完成了10余项部省级项目,如“苏州高岭土矿床地球化学及成因研究”、加拿大国际开发署资助的“中加矿物科学合作研究”项目及“四川绿柱石辐照改色机理研究”国家自然科学基金项目等。出版了《苏州高岭土矿床地球化学及成因》、《中国坡缕石》等专著,发表论文120余篇,获省科技进步二、三等奖4项,填补了国内非金属矿研究领域的多项空白,有些项目研究水平达到国内领先和国际先进水平。

近年来,与校董事单位中国工程物理研究院合作,在傅依备院士的指导下开展了放射性核素的地球化学行为及其地球化学屏障特性的研究,重点研究了非金属矿对核素的吸附、固化及其废弃物处置的地质地球化学环境。合作进行了“放射性离子交换树脂水泥固化改进研究”、“废物泥浆及废树脂水泥固化体性能测试”、“新型富铝碱矿渣沸石基锶铯放射性废物固化材料”、“放射性废物的固化基——沸石碱矿渣胶凝材料的工艺及对镅吸附评价”等重大科研项目。此外,还先后负责完成和正在进行一系列国家及省部级科研项目。主要包括自然科学基金项目:“放射性元素U、Sr、Cs的晶格固化处理方法研究”、“放射性核素与固化材料的作用机理”等。共发表学术论文150余篇,获军队科技进步二等奖1项,省部级二、三等奖3项,部分鉴定项目达到了国际先进或国内领先水平。

研究所具有完善配套的关于非金属矿物质组成、结构、物理化学性能、矿物加工的相关测试仪器和设备,可以满足非金属矿产地质、非金属矿产开发等研究的需求。

地址:四川省绵阳市西南科技大学非金属矿研究所 邮编:621010

电话: 传真:

邮箱: 负责人:田熙(所长)

武汉理工大学学报-材料科学版(英文)是国内材料领域重要的综合性学术刊物,刊载材料科学(非金属材料、复合材料、有机高分子材料、金属材料等)的学术论文,重点发表纳米材料、无机非金属材料科学及工程、生物材料、复合材料新技术等学科且受到国家自然科学基金、863项目、十五、十一五等计划项目、973项目等国家级科学基金资助的论文。国家科技部、中国科学文献计量评价研究中心等将本刊认定为“中国科技论文统计源期刊”,“中国科学引文数据库”来源期刊,并作为“中国学术期刊综合评价数据库”来源期刊全文收录。本刊已经被全部六大国际著名检索系统所收录,与世界最大科技出版集团之一Springer合作海外出版发行。

无机非金属材料品种和名目极其繁多,用途各异,因此,还没有一个统一而完善的 无机非金属材料分类 分类方法。通常把它们分为普通的(传统的)和先进的(新型的)无机非金属材料两大类。传统的无机非金属材料是工业和基本建设所必需的基础材料。如水泥是一种重要的建筑材料;耐火材料与高温技术,尤其与钢铁工业的发展关系密切;各种规格的平板玻璃、仪器玻璃和普通的光学玻璃以及日用陶瓷、卫生陶瓷、建筑陶瓷、化工陶瓷和电瓷等与人们的生产、生活休戚相关。它们产量大,用途广。其他产品,如搪瓷、磨料(碳化硅、氧化铝)、铸石(辉绿岩、玄武岩等)、碳素材料、非金属矿(石棉、云母、大理石等)也都属于传统的无机非金属材料。新型无机非金属材料是20世纪中期以后发展起来的,具有特殊性能和用途的材料。它们是现代新技术、新产业、传统工业技术改造、现代国防和生物医学所不可缺少的物质基础。主要有先进陶瓷(advanced ceramics)、非晶态材料(noncrystal material〉、人工晶体〈artificial crys-tal〉、无机涂层(inorganic coating)、无机纤维(inorganic fibre〉等 (1)传统陶瓷 陶瓷在我国有悠久的历史,是中华民族古老文明的象征。从西安地区出土的秦始皇陵中大批陶兵马俑,气势宏伟,形象逼真,被认为是世界文化奇迹,人类的文明宝库。唐代的唐三彩、明清景德镇的瓷器均久负盛名。 传统陶瓷材料的主要成分是硅酸盐,自然界存在大量天然的硅酸盐,如岩石、土壤等,还有许多矿物如云母、滑石、石棉、高岭石等,它们都属于天然的硅酸盐。此外,人们为了满足生产和生活的需要,生产了大量人造硅酸盐,主要有玻璃、水泥、各种陶瓷、砖瓦、耐火砖、水玻璃以及某些分子筛等。硅酸盐制品性质稳定,熔点较高,难溶于水,有很广泛的用途。 硅酸盐制品一般都是以黏土(高岭土)、石英和长石为原料经高温烧结而成。黏土的化学组成为Al2O3·2SiO2·2H2O,石英为SiO2,长石为K2O·Al2O3·6SiO2(钾长石)或Na2O·Al2O3·6SiO2(钠长石)。这些原料中都含有SiO2,因此在硅酸盐晶体结构中,硅与氧的结合是最重要也是最基本的。 硅酸盐材料是一种多相结构物质,其中含有晶态部分和非晶态部分,但以晶态为主。硅酸盐晶体中硅氧四面体[SiO4]是硅酸盐结构的基本单元。在硅氧四面体中,硅原子以sp杂化轨道与氧原子成键,Si—O键键长为162 pm,比起Si和O的离子半径之和有所缩短,故Si—O键的结合是比较强的。 (2)精细陶瓷 精细陶瓷的化学组成已远远超出了传统硅酸盐的范围。例如,透明的氧化铝陶瓷、耐高温的二氧化锆(ZrO2)陶瓷、高熔点的氮化硅(Si3N4)和碳化硅(SiC)陶瓷等,它们都是无机非金属材料,是传统陶瓷材料的发展。精细陶瓷是适应社会经济和科学技术发展而发展起来的,信息科学、能源技术、宇航技术、生物工程、超导技术、海洋技术等现代科学技术需要大量特殊性能的新材料,促使人们研制精细陶瓷,并在超硬陶瓷、高温结构陶瓷、电子陶瓷、磁性陶瓷、光学陶瓷、超导陶瓷和生物陶瓷等方面取得了很好的进展,下面选择一些实例做简要的介绍。 高温结构陶瓷汽车发动机一般用铸铁铸造,耐热性能有一定限度。由于需要用冷却水冷却,热能散失严重,热效率只有30%左右。如果用高温结构陶瓷制造陶瓷发动机,发动机的工作温度能稳定在1 300 ℃左右,由于燃料充分燃烧而又不需要水冷系统,使热效率大幅度提高。用陶瓷材料做发动机,还可减轻汽车的质量,这对航天航空事业更具吸引力,用高温陶瓷取代高温合金来制造飞机上的涡轮发动机效果会更好。 目前已有多个国家的大的汽车公司试制无冷却式陶瓷发动机汽车。我国也在1990年装配了一辆并完成了试车。陶瓷发动机的材料选用氮化硅,它的机械强度高、硬度高、热膨胀系数低、导热性好、化学稳定性高,是很好的高温陶瓷材料。氮化硅可用多种方法合成,工业上普遍采用高纯硅与纯氮在1 300 ℃反应后获得: 3Si+2N2→Si3N4 (1 300 ℃) 高温结构陶瓷除了氮化硅外,还有碳化硅(SiC)、二氧化锆(ZrO2)、氧化铝等。 透明陶瓷一般陶瓷是不透明的,但光学陶瓷像玻璃一样透明,故称透明陶瓷。一般陶瓷不透明的原因是其内部存在有杂质和气孔,前者能吸收光,后者使光产生散射,所以就不透明了。因此如果选用高纯原料,并通过工艺手段排除气孔就可能获得透明陶瓷。早期就是采用这样的办法得到透明的氧化铝陶瓷,后来陆续研究出如烧结白刚玉、氧化镁、氧化铍、氧化钇、氧化钇-二氧化锆等多种氧化物系列透明陶瓷。近期又研制出非氧化物透明陶瓷,如砷化镓(GaAs)、硫化锌(ZnS)、硒化锌(ZnSe)、氟化镁(MgF2)、氟化钙(CaF2)等。这些透明陶瓷不仅有优异的光学性能,而且耐高温,一般它们的熔点都在2 000 ℃以上。如氧化钍-氧化钇透明陶瓷的熔点高达3 100 ℃,比普通硼酸盐玻璃高1 500 ℃。透明陶瓷的重要用途是制造高压钠灯,它的发光效率比高压汞灯提高一倍,使用寿命达2万小时,是使用寿命最长的高效电光源。高压钠灯的工作温度高达1 200 ℃,压力大、腐蚀性强,选用氧化铝透明陶瓷为材料成功地制造出高压钠灯。透明陶瓷的透明度、强度、硬度都高于普通玻璃,它们耐磨损、耐划伤,用透明陶瓷可以制造防弹汽车的窗、坦克的观察窗、轰炸机的轰炸瞄准器和高级防护眼镜等。 光导纤维从高纯度的二氧化硅或称石英玻璃熔融体中,拉出直径约100 μm的细丝,称为石英玻璃纤维。玻璃可以透光,但在传输过程中光损耗很大,用石英玻璃纤维光损耗大为降低,故这种纤维称为光导纤维,是精细陶瓷中的一种。 利用光导纤维可进行光纤通信。激光的方向性强、频率高,是进行光纤通信的理想光源。光纤通信与电波通信相比,光纤通信能提供更多的通信通路,可满足大容量通信系统的需要。 光导纤维一般由两层组成,里面一层称为内芯,直径几十微米,但折射率较高;外面一层称包层,折射率较低。从光导纤维一端入射的光线,经内芯反复折射而传到末端,由于两层折射率的差别,使进入内芯的光始终保持在内芯中传输着。光的传输距离与光导纤维的光损耗大小有关,光损耗小,传输距离就长,否则就需要用中继器把衰减的信号放大。用最新的氟玻璃制成的光导纤维,可以把光信号传输到太平洋彼岸而不需任何中继站。 在实际使用时,常把千百根光导纤维组合在一起并加以增强处理,制成像电缆一样的光缆,这样既提高了光导纤维的强度,又大大增加了通信容量。 用光缆代替通信电缆,可以节省大量有色金属,每公里可节省铜1.1 t、铅2~3 t。光缆有质量轻、体积小、结构紧凑、绝缘性能好、寿命长、输送距离长、保密性好、成本低等优点。光纤通信与数字技术及计算机结合起来,可以用于传送电话、图像、数据、控制电子设备和智能终端等,起到部分取代通信卫星的作用。 光损耗大的光导纤维可在短距离使用,特别适合制作各种人体内窥镜,如胃镜、膀胱镜、直肠镜、子宫镜等,对诊断、医治各种疾病极为有利。 生物陶瓷人体器官和组织由于种种原因需要修复或再造时,选用的材料要求生物相容性好,对肌体无免疫排异反应;血液相容性好,无溶血、凝血反应;不会引起代谢作用异常现象;对人体无毒,不会致癌。目前已发展起来的生物合金、生物高分子和生物陶瓷基本上能满足这些要求。利用这些材料制造了许多人工器官,在临床上得到广泛的应用。但是这类人工器官一旦植入体内,要经受体内复杂的生理环境的长期考验。例如,不锈钢在常温下是非常稳定的材料,但把它做成人工关节植入体内,三五年后便会出现腐蚀斑,并且还会有微量金属离子析出,这是生物合金的缺点。有机高分子材料做成的人工器官容易老化,相比之下,生物陶瓷是惰性材料,耐腐蚀,更适合植入体内。 氧化铝陶瓷做成的假牙与天然齿十分接近,它还可以做人工关节用于很多部位,如膝关节、肘关节、肩关节、指关节、髋关节等。ZrO2陶瓷的强度、断裂韧性和耐磨性比氧化铝陶瓷好,也可用以制造牙根、骨和股关节等。羟基磷灰石〔Ca10(PO4)6(OH)2〕是骨组织的主要成分,人工合成的与骨的生物相容性非常好,可用于颌骨、耳听骨修复和人工牙种植等。目前发现用熔融法制得的生物玻璃,如CaO-Na2O-SiO2-P2O5,具有与骨骼键合的能力。 陶瓷材料最大的弱点是性脆,韧性不足,这就严重影响了它作为人工人体器官的推广应用。陶瓷材料要在生物工程中占有地位,必须考虑解决其脆性问题。 (3)纳米陶瓷 从陶瓷材料发展的历史来看,经历了三次飞跃。由陶器进入瓷器这是第一次飞跃;由传统陶瓷发展到精细陶瓷是第二次飞跃,在这个期间,不论是原材料,还是制备工艺、产品性能和应用等许多方面都有长足的进展和提高,然而对于陶瓷材料的致命弱点──脆性问题没有得到根本的解决。精细陶瓷粉体的颗粒较大,属微米级(10 m),有人用新的制备方法把陶瓷粉体的颗粒加工到纳米级 (10 m),用这种超细微粉体粒子来制造陶瓷材料,得到新一代纳米陶瓷,这是陶瓷材料的第三次飞跃。纳米陶瓷具有延性,有的甚至出现超塑性。如室温下合成的TiO2陶瓷,它可以弯曲,其塑性变形高达100%,韧性极好。因此人们寄希望于发展纳米技术去解决陶瓷材料的脆性问题。纳米陶瓷被称为21世纪陶瓷。 普通无机非金属材料的特点是:耐压强度高、硬度大、耐高温、抗腐蚀。此外,水泥在胶凝性能上,玻璃在光学性能上,陶瓷在耐蚀、介电性能上,耐火材料在防热隔热性能上都有其优异的特性,为金属材料和高分子材料所不及。但与金属材料相比,它抗断强度低、缺少延展性,属于脆性材料。与高分子材料相比,密度较大,制造工艺较复杂。 无机非金属材料用作电子器件 特种无机非金属材料的特点是:①各具特色。例如:高温氧化物等的高温抗氧化特性;氧化铝、氧化铍陶瓷的高频绝缘特性;铁氧体的磁学性质;光导纤维的光传输性质;金刚石、立方氮化硼的超硬性质;导体材料的导电性质;快硬早强水泥的快凝、快硬性质等。②各种物理效应和微观现象。例如:光敏材料的光-电、热敏材料的热-电、压电材料的力-电、气敏材料的气体-电、湿敏材料的湿度-电等材料对物理和化学参数间的功能转换特性。③不同性质的材料经复合而构成复合材料。例如:金属陶瓷、高温无机涂层,以及用无机纤维、晶须等增强的材料

用高温固相反应由锆矿石粉制备锆质颜料锆质颜料是陶瓷、搪瓷、玻璃工业应用较广泛的高温无机颜料 因为它具有非常稳定的晶型结构,所以具有耐高温,物化性能稳定、着色力强等优点。我国锆质颜料主要是用品位较高的氧化锫,二氧化硅与着色元素人工合成的。用这种方怯生产的锫质颜料,成本太高。据《日本特许公报》昭47—8699报道,锆质颜料可用锆英石矿粉按特定的工艺条件直接合成。实验结果表明, 用锆英石矿粉直接合成的无机锆质颜料质置达到国内外同类产品水平。而其生产成本比用原法生产的产品成倍降低。用锆英石矿粉直接合成无机锆质颜料采用的工艺流程如图---------高温固相反应由锆矿石粉制备锆质颜料的工艺流程 主要原料有(1)锫英石: ZrO:≥60 ,工业级,广东等地产。 (2)纯碱I Na 2CO 3/>95 ,工业级,大连等地产。(3) 硫酸2 H 2SO‘/>90% , 工业级,全国各地产。(4)氧化镨2 Pr日OI1>/90%,工业级内蒙、上海等地产。(5)五氧化二钒: V O ≥96 ,工业级, 湖南等地产。(6)铁红;Fe O。≥96 , 工业级, 湖南等地产。(7)铬绿:Cr O。≥96 , 工业级, 湖南等地产。(8)氧化铺:C0~70 , 工业级, 广东, 湖南等地产。锆质颜料的色域非常广泛, 在氧化锆,二氧化硅形成锆英石晶型结构的同时,5【入上述原料(4)一(8)中的一种,则可制备黄、蓝、红、绿、青等不同色调的锆质颜料。本方法的不同之处在于:所用的基术原料锆英石矿粉本身就具有稳定的晶型结构,简单地加入着色离子是不能制备锆质颜料的。也就是说巳具有稳定晶型结构的锆英石不能再着色,所以, 首先必须破坏其晶型结构。具体做法是,在锆英石矿粉中加入一定量的纯碱,在高温下使混台物发生固相反应生成一种易被无机酸分解的中间物质,然后加入一定量的无机酸处理之, 使之分解并生成一种能与着色离子发生固相反应的混合物。此种混合物巳不具有锆英石晶型,在此种混合物中加入着色元素错、钒、铁、铬、钻等的氧化物或盐类及一定量的矿化剂, 高温下物料发生固相反应生成着色的锆英石固溶体。采用APD一10全自动x射线衍射仪对合成的锫质颜料颗粒进行晶型结构分析,测定条件为工作电压40kVt,工作电流20mAt步选扫描20,20。一80℃铜靶。测定结果表明 锫质颜料试样为锆英石晶型结构,无杂质相生成, 纯度较高。将小样与其他样品进行了质量对比,数据表明, 锆质颜料的各项技术指标已达到国内同类产品水平,其中耐温性高于国内水平。锆英石是一种非常稳定的矿物质, 只有在1530~高温下才能分解。考虑到工业化生产,宜尽量在较低的温度下破坏其晶型结构, 我们在锆英石中加入一定量的纯碱, 以使其在850"C~1IO0~C温度下发生固相反应。通过大量的实验证明, 锆英石与纯碱的比例不同,其反应温度亦不相同合成无机颜料时,加入矿化剂的作用主要是使颜料的晶型结构在较低的温度下形成。不仅如此,加入相应的矿化。剂能使着色离子的价态发生变化,使所需要的颜色离子顺利进入颜料晶格。在一定范围内着色离子加入量与颜料的颜色深浅成正比。合成锆质颜料时, 着色元素的加入量是有一定范围的。在此范围内,着色离子加入量与颜料颜色的深浅成正比。但着色离子不能无限量增加, 不同的着色离子对锆离子和硅离子有一定的取代份数, 超过了这个取代份数,就会产生过剩的着色离子,从而影响颜料质量。

金属矿山发表论文

您好,本人也是采矿工作者。采矿方面的论文可以发表到以下期刊:采矿与安全工程学报矿业安全与环保金属矿山矿冶工程煤矿机械矿业研究与开发煤矿安全煤炭学报煤炭工程煤炭科学技术中国矿业大学学报中国矿业有色金属中国煤炭矿山机械西安科技大学学报湖南科技大学学报中南大学学报辽宁工程技术大学学报中国煤炭露天采矿技术河北煤炭建井技术采矿技术矿冶矿业工程江西煤炭科技煤矿爆破煤矿机电煤煤矿现代化中国矿业大学学报:英文版煤矿开采煤炭科技煤炭学报:英文版煤炭技术山东煤炭科技山西焦煤科技能源技术与管理陕西煤炭水力采煤与管道运输广东有色金属学报中国煤层气有色矿山有色金属:矿山部分中国矿山工程中州煤炭黑龙江科技学院学报山东科技大学学报华北科技学院学报太原理工大学学报安徽理工大学学报以上比较详细了,望采纳。

1.周君才,柴建设,凤凰山铜矿急倾斜厚矿体开采中降低矿石损失贫化的途径,《有色金属》(矿山部分)(核心期刊),1988(4)。在首都图书馆给市民讲座2.柴建设等,论矿山借贷报酬率系数的计算与应用,《唐山工程技术学院学报》,1989(2)。3.柴建设,用CTI法进行采矿方法优化选择,《首届全国青年采矿学术会议论文集》,湖南,大庸,1991,124.柴建设等,用数值分析法初选采矿方法,《唐山工程技术学院学报》,1993(2)5.张志礼,柴建设,论采矿方法选择优化系统,《有色金属》(季刊)(核心期刊),1993(3)6.张志礼,柴建设,采矿方法数据库的构建,《有色金属》(矿山部分),1993(3)7.柴建设等,矿床品位指标确定的层次分析方法,《唐山工程技术学院学报》,1993(3)8.柴建设等,价值工程在采矿方法选择中的应用,《唐山工程技术学院学报》,1993(4)9.柴建设,对矾山磷矿采矿方法的再认识,《化工矿山技术》(核心期刊),1994(2)10.柴建设等,寿王坟铜矿深部开采的技术管理,《有色矿山》,1994(3)11.柴建设,用分数维方法模拟矿体表面,《唐山工程技术学院学报》,1994(4)12.柴建设等,分形几何及其在矿石品位和储量计算中的应用,《有色金属矿产与勘探》,1994(6)13.柴建设等,科学与巫术之争-论地质统计学的科学性,《国外金属矿山》,1994(11)14.柴建设等,应用分形方法预测岩石爆破块度,《唐山工程技术学院学报》,1995(1)15.柴建设,矿化模型研究的最新进展,《唐山工程技术学院学报》,1995(2)16.谢贤平,柴建设,地质数据的BP网络分形,《地质与勘探》,1995(2)17.谢贤平,柴建设,矿山优化设计综述,《四川有色金属》,1995(2)18.谢贤平,柴建设,矿产资源开发综合决策的风险分析,《矿产与地质》,1995(6)19.J.Chai etal, Research on the global optimization theory for mining engineering system, Proc. 4th Int. Symp. on Mining Planning and Equipment Selection. Canada, Oct., 1995(ISTP收录)20.柴建设,专家系统在矿业工程中的应用与发展,《河北理工学院学报》,1997(1)21.柴建设,矿体形态模拟的研究,《河北理工学院学报》,1997(4)22.柴建设,矿山企业经济效益的投入产出分析,《河北理工学院学报》,1998(增刊)23.柴建设等,爆破震动对露天矿边坡稳定的影响,《有色矿山》,2000(3)24.徐东强、柴建设、彭永池,金厂峪金矿缓倾斜中厚难采矿体的开采,《有色矿山》,2000(6)25.柴建设等,顶板不稳固的缓倾斜薄至中厚金矿体的开采,《黄金》(核心期刊),2000(3)26.柴建设等,用拉格朗日元法进行矿山边坡的稳定性分析,《矿业研究与开发》,(核心期刊),2000(3)27.柴建设等,金厂峪金矿难采矿体采矿方法实验研究,《金属矿山》(核心期刊),2000(6) (EI收录)28.柴建设,A. J. Sinclair, 由块段误差引起的矿石损失和贫化的量化估算方法,《化工矿物与加工》(核心期刊),2000(6)29.J. Chai etal., The Examination of Safety of Roof Using Supersonic Technique, 2000 International Symposium on Safety Science and Technology, Beijing, China, Aug. 2000(ISTP收录)30.柴建设,张兴凯,合理安全度的确定,2002中国国际安全生产论坛论文集,2002年10月,北京31.柴建设,事故应急救援预案,《辽宁工程技术大学学报》(自然科学版)(核心期刊), 2003(4)32.柴建设,企业安全文化与企业核心竞争力,《现代职业安全》2003(8)33.柴建设,姜亢,在实践中不断提高安全预评价的质量,《中国安全科学学报》(核心期刊)2003(10)34.CHAI Jianshe, Enterprise Safety Culture and Core Competence,首届中国城市与工业安全国际学术会议,2003年10月,南京35.柴建设,建设安全社区构建和谐社会,安全科学理论与实践(第十七届全国高校安全工程学术年会论文集),北京理工大学出版社,2005年8月36.张奇、王永强、柴建设、吕淑然,云雾与凝聚态TNT在密闭空间中爆炸作用的比较,安全科学理论与实践(第十七届全国高校安全工程学术年会论文集),北京理工大学出版社,2005年8月37.吕淑然、柴建设、张奇,露天台阶爆破轴向不耦合装药减震效应研究,安全科学理论与实践(第十七届全国高校安全工程学术年会论文集),北京理工大学出版社,2005年8月38.柴建设、史简,首都经济贸易大学安全与环境工程学院中长期发展战略规划的初步研究,安全与环境工程学术研讨会论文集,化学工业出版社,2005年8月39.傅贵、柴建设、杨甲文、陈秀英,安全学科“工程化”的问题与对策,安全与环境工程学术研讨会论文集,化学工业出版社,2005年8月40.柴建设,中国传统文化与现代安全文化,法制日报,2005年 6月 25 日41.柴建设,事故应急救援预案的编制,中国职业安全健康协会年会论文集,2005年6月42.柴建设,北京大型体育赛事突发事件应急处理,2006中国职业安全健康协会年会论文集43.柴建设,论安全发展的科学内涵,第十九届全国高校安全工程学术年会论文集,200744.柴建设,安全发展的战略要求——加快安全学科发展,中国安全生产报,2007,12,645.Zong-Sheng Li,Jian-She Chai, 1-(4-Aminophenyl)-2-(4-nitrophenyl) ethanone Acta Crystallographica Section E, 2007,1(SCI收录)46.Zong-Sheng Li,Jian-She Chai, Dipyridine [5,10,15,20-tetrakis(4-carboxyphenyl) -prophyrinato]cobalt(Ⅱ)pyridine tetrasolvate monohydrate Acta Crystallographica Section E, 2007,3(SCI收录)47.Zong-Sheng Li,Jian-She Chai, Glycinium 3-nitrophalate Acta Crystallographica Section E, 2007,4 (SCI收录)48.Zong-Sheng Li,Jian-She Chai,Bis[diaquahydrogen(1+)] naphthalene 1,5-disulfonate Acta Crystallographica Section E, 2007,5 (SCI收录)49、Jian-She CHAI ,Cai CHEN,The compilation platform and management system of fire emergency plan at public places,Progress in mining science and safety technology,pts a and B 2344-2347,2007(ISTP收录)50、柴建设,论安全发展的科学内涵,《中国百名专家论安全》煤炭工业出版社,2008,551、柴建设,搞好安全生产推进残疾人事业发展,社会保障研究,2008(1)52、柴建设,安全科学技术研究和应用发展研究,《安全科学与工程学科发展报告》中国科学技术出版社,2008,553、王姝,柴建设,基于社会统计程序(SPSS)回归性分析的尾矿库事故预测模型, 《中国安全科学学报》(核心期刊),2008(12)54、门永生,柴建设,我国尾矿库事故现状及事故防治措施,《中国安全生产科学技术》(核心期刊),2009(1)55、陈文瑛,柴建设,有障碍物开敞空间可燃气云爆炸超压场的数值模拟,《中国安全科学学报》(核心期刊),2009(6)56、柴建设,我国安全科学技术研究与应用最新进展,《中国安全科学学报》(核心期刊),2009(10)57、柴建设,安全没有终点的事业,《中国高校科技与产业化》(核心期刊),2009,958、谢中朋,柴建设,安全工程专业人才培养的课程教学体系研究,《安全发展、人才为本》,2009,1059、柴建设,应急救援应尽快实现科学化规范化专业化,《中国安全生产报》,2010年3月20日(第6版)60、柴建设,赵秀雯,城市埋地天然气管道系统的脆弱性评价模型及其实例应用,《中国安全科学学报》(核心期刊),2010(7)61、CHAI Jianshe, Preliminary Study on Some Issues about Legal System of Production Safety with Chinese Characteristics, 第二届全国安全科学理论研讨会论文集(Proceedings of the 2010 Chinese Seminar on the Principles of Safety Science and Technology, P288-292),Science Press出版,2010年, ISTP收录62、Jianshe CHAI, Research on Disaster Forecast Method of Tailings Dam Based on Man-Machine-Environment System Engineering, 《第十届人-机-环境系统工程大会论文集》, 美国Scientific Research Publishing (SRP)出版发行,2010, ISTP收录63. 赵秀雯,柴建设,城市埋地天然气管道系统脆弱性评估的指标研究,《中国安全生产科学技术》(核心期刊),2011(7)64. Wenying CHEN, Jianshe CHAI, Application of the Cause-Consequence Diagram Model for Quantify Grinding Machine System Safety-Capability. The 5th International Conference on Bioinformatics and Biomedical Engineering (iCBBE2011) EI 收录65. 王韶伟,柴建设,张春明等,核安全文化建设,《中国核工业》2011(10)66. 王韶伟,柴建设,张春明等,福岛核事故凸显日本核安全文化软肋,《中国核工业》2012(4)67. 王超群,柴建设,牛伟伟等,基于ArcGIS Engine研究天然气管道泄漏事故后果评估系统,《中国安全科学学报》,2012.11期(核心期刊)68. 王超群,柴建设,王庆,吕淑然,利用模糊综合评判评价某110kV变电所安全可靠性,《中国安全生产科学技术》,2012.12(核心期刊)69. 于力,柴建设,史强,室内天然气中压出气管道泄漏扩散数值模拟研究, 《安全》,2013.3期70. 史强,柴建设等,核电站主储油罐间火灾喷淋控制效用数值模拟研究, 《建筑科学》,2013.2期(核心期刊)71. Wang Chao-qun, Chai Jian-she, Niu Wei-wei, Research on the Consequence Assessment System of Natural Gas Pipeline Leakage Accidents, Applied Mechanics and Materials Vols.295-298(2013) pp744-74872. 柴建设,核安全文化与核安全监管,《核安全》,2013.3期73. 余少青,陈妍,柴建设,张春明,风险控制在福岛核事故剂量控制中的应用及启示,《核安全》,2013.3期

金属矿地下连续开采技术研究摘 要:改革以来我国的金属矿开采技术得到了很大的发展,尤其在金属矿地下开采方面生产工艺已经接近世界先进水平。本文系统介绍了金属矿地下连续开采的基本知识及开采工艺。并且例举了新疆金属矿地下连续开采的工程实例,对地下金属矿连续开采的目前状况进行了分析,以供广大矿业工作人员参考。 关键词:地下金属矿;连续开采;技术 一、金属矿地下连续开采的基本情况 采矿是通过矿堆的采准、切割和回采三个工艺流程将矿石从地下矿床开采出的过程。采矿方式分地上开采和地下开采两种。近年来,我国地下开采的金属矿山逐渐增多,地下开采的各个工序基本实现了由机械化操作取代手工作业,开采自动化程度明显提高。地下连续开采技术是我国目前地下采矿的先进技术。地下连续开采有两种主要方式,一是当矿体硬度较小时,开采时各个工序连续平行进行施工。二是当矿体硬度大时,开采时分成若干个施工段,不同施工段的各个工序连续平行进行施工,这需要在开采时做好各个工序间的协调工作。 国外地下采矿装备系列齐全,配套完整,机械化程度也高,从凿岩、装药到转运,全部实现了机械化配套作业,各道工序无需手工体力操作,无繁重体力劳动,装备无轨化、液压化、自动化程度较高。地下无轨采矿工艺是目前国际先进采矿工艺技术的标志。国外目前先进的采矿装备已完全实现了无轨化、液压化。在自动化方面,已成功地应用了无人驾驶、机器人作业等新技术。 二、金属矿地下连续开采工艺 1.在对大块矿岩开采时,为提高开采的效率,连续进行落矿、出矿、运输等工艺的回采施工。回采时采用前进式推进顺序,施工过程中不留矿柱。采用这种连续开采的工艺可提高开采效率,经济适用,方便矿块的控制管理和采矿设备调配,将来发展潜力很大。 2.在对地下矿石进行后处理时,采用专门的运输机连续进行矿石的出矿、转运、提升等工艺的施工。使地下矿石开采、运送达到一体化。采用这种工艺可以加快开采速度,近几年来,该工艺应用较广。 3.如果开采的矿岩硬度较大,开采具有一定的难度,可采用连续采矿机实现掘进、挖掘、落矿、出矿、转运等工艺过程的连续化施工。目前,有关专家对这种采矿工艺的研究取得了很大的进展,使其应用前景更加广阔。 三、金属矿山地下连续开采的问题及处理措施 我国自90年代以后,随着科学技术的不断发展,在地下连续开采技术研究方面取得了重大的突破,多项地下连续开采技术已经应用在矿山中。同世界先进国家相比,仍有一定的差距。目前矿山开采中还存在某些问题急需解决。有的矿山在采矿时,将采矿分为矿石和矿柱两个步骤,将收矿柱放在开采矿石后面。这种采矿方法存在如下不足之处:矿柱质量难以保证,所留矿柱截面形态各异,抗压强度低,易产生破坏。矿柱回收结果不理想,能正常回收的矿柱较少,不但浪费了资源,而且降低了采矿效率,延长了采矿作业时间,对地下采矿的经济效益产生很大影响。并且由于采矿步骤多,在管理上也产生许多困难。为了解决上述问题,有关专家不懈的努力,研究出地下连续开采无矿柱法。这种地下连续采矿施工方法如下:将步骤划分成矿段,不留矿柱,回采单元用矿段表示,采用将切割槽割在矿段中部,并把振动机布置在结构底部出矿的方法。矿石由振动车搬运,连续进行出矿、运矿的作业。崩矿过程中及时进行回填,平行进行采切、回采、充填的作业,使采矿工作连续不间断的施工。地下连续无矿柱采矿的实施,表明我国地下金属矿开采技术进入一个新的层次。使矿柱回收困难的问题得到很好的解决,加快了采矿的时间,避免了国家资源的浪费,提高了地下采矿的经济效益。由于减少了采矿步骤且使采矿各工序衔接紧密,连续不间断的开采,为采矿集中管理带来便利,使劳动效率大幅增长。回采时工序安排合理,连续开采,还解决了深部矿体开采时因为地压较大引起的围岩失稳问题。极大的促进了我国矿山开采的现代化进程。另外,地下连续开采的规范还不够完善,各地区对采矿的标准和要求还不统一,虽然重视开采新技术的研究,但对设备的配套及工艺的优化重视程度还不够,对新型设备的推广还不够完善。必须在有关部门的领导下,完善采矿规范标准,加强连续工艺的优化与设备的合理配套。建立与连续开采相适应的理论体系。在不断开发研制新型设备的同时,注重对新型设备的推广应用。使我国的金属矿地下连续开采进一步向现代化迈进。 四、地下连续采矿技术的应用 新疆某铁矿年产矿石能力20万吨。矿区属丘陵地带,气候干燥,夏季雨水较多,年平均降雨量1732.6毫米,冬季气温较低区域内未有大的河流,矿区地震烈度为6度。经勘察矿区深层土质为岩石,浅层为砂砾层。矿床为缓倾斜矿床,矿体为脉状矿体。地下开采的日产量为3000吨。采用地下连续开采方案,用胶带运输机连续运输,地下开采按由上往下的顺序开采。 将整个矿块划分为一个回采单元,矿块厚度即采场宽,相互采场之间不留矿柱,依次连续的进行采切、回采、充填三大工序,回采不允许在同一分层上进行,要分层进行,不同时进行相邻采场的采切。为避免开采时破坏四周土的应力,出现应力集中现象,影响围岩稳定,产生地面塌陷,设计对采空区采用非胶结充填方式处理,可以消除塌陷的危险。这种充填方式工程量较大,生产效率低,回采操作不便。后经专家研究决定,采用连续帷幕随时充填技术。该充填工艺施工时不留矿柱,开采各工序连接紧密,连续性好,而且作为支护的可压缩金属支座支护能力好。确保了采矿的安全,为出矿、转运和充填提供了方便。能对采空区进行及时迅速的回填。此采矿技术开采时采用将整体矿脉一体推进方式。主要的采切工程有:底盘转运巷道、切割巷、出矿漏斗及切割天井。地下连续采矿技术将回填空区用矿岩分离出的废石回填,采用了先进的矿浆输送方式。将深孔连续采矿技术、矿岩分离技术、矿浆输送技术等工艺与技术综合起来应用,实现了回采的高效率,经验证经济效益和社会效益良好。 五、金属矿地下连续开采未来的发展 我国的金属矿地下开采技术和过去相比虽然有了很大的进步,但要赶上并超过世界先进水平尚需不断发展,地下金属矿开采的大型化、数字化、连续化将是未来发展的主要方向。在采矿技术发展的同时需考虑社会效益和经济效益,研制并应用适合地下金属矿连续开采的技术,使矿山的开采与四周生态环境相谐调。有关部门还需组织专家加大对矿岩应力的研究,增加围岩的稳定性,以提高地下开采的安全性。还要加大对充填采矿法的推广力度,并且坚持朝快速化、环保化的方向发展。 六、结语 随着社会的发展,我国的采矿技术也不断进步。其中金属矿地下连续开采的技术已经接近世界先进水平,基本实现了金属矿地下连续开采的连续化和机械化。如何使我国的金属矿地下连续开采技术取得更大的进步,研究出更先进的金属矿地下连续开采技术,仍是广大矿业技术人员今后的努力目标。

1. 第一作者,关于脉状热液金矿床成矿深度的思考,长春科技大学学报(全国金矿地质—找矿学术讨论会金矿专辑),20002. 第一作者,含金石英脉形成机制新探,长春科技大学学报(全国金矿地质—找矿学术讨论会金矿专辑),20003. 第一作者.Genetic implications of Te-minerals in gold deposits in Jiaodong Peninsula, eastern China. Bo-An Jang et al(eds), The 10th Korea-China joint geology symposium on Crustal Evolution in Northeast Asia. 20034. 第一作者.Geodynamic evolution of Eastern Kunlun orogenic belt, western China , Sun Ge et al (eds), Proceedings of Sino-German Cooperation Symposium on Paleontology, Geological Evolution and Environmental Changes of Xinjiang, China, 20045. 第一作者.Precious ore deposits in De’erbugan metallogenic belt, Inner Mongolia Bo-An Jang et al(eds), The 8th Korea-China joint geology symposium on Crustal Evolution in Northeast Asia. 20016. 第一作者.煌斑岩与某些热液矿床关系新探——兼论幔源C-H-O流体的分异演化.地质找矿论丛,19957. 第一作者.胶东地区中新生代区域构造演化与成矿.长春地质学院学报,19948. 第一著者.胶东金矿地质及幔源C-H-O流体分异成岩成矿.长春:吉林人民出版社,19959. 第一作者.试论幔源C-H-O流体与大陆板内某些地质作用.地学前缘,199510. 第一作者.太古代脉状金矿床研究的某些新进展.地质科技情报,199511. 第一作者.再论胶东西部金矿带划分及其意义.吉林大学学报(地球科学版)(矿床学专辑),200312. 第一作者.自然界存在幔源“类岩浆”吗?中国地质,199513. 第一作者.内蒙拜仁达坝银铅锌多金属矿床成矿条件研究,吉林大学学报(地球科学版),200814. 第一作者.胶东西部金矿化空间定位机制研究, 胶东金矿地质研讨会论文集,199015. 第一作者.山东招远金矿床地质特征、金矿化时空分布及成矿预测,地球科学(中国地质大学-武汉-学报),1988,(2)16. 通讯作者,美国卡林型金矿与我国西部卡林型金矿的异同,地质与资源,200317. 通讯作者,青海东昆仑肯德可克钴铋金矿床成矿特征及找矿方向,地质与勘探,200318. 通讯作者,青海东昆仑肯德可克钴金铋矿床成矿条件及成矿机理初探,矿物岩石地球化学通报,200419. 通讯作者,青海东昆仑肯德可克金-有色金属矿床矿物特征研究,世界地质,2003,(1):50--5620. 通讯作者,青海驼路沟钴矿床地质特征及找矿方向研究,地质找矿论丛,200421. 通讯作者,区域地球化学中大面积、低浓度分带异常评价——以督冷沟铜钴矿发现为例,地质地球化学,2003,16(3)22. 通讯作者,山东招远灵山-北截断裂的重新厘定及其意义,地质找矿论丛,200423. 通讯作者.地幔流体研究进展.地质科技情报, 2001,20(3):21-2624. 通讯作者.东南亚北加里曼丹新生代碰撞造山带演化与成矿.吉林大学学报(地球科学版),2004,32(2):193--20025. 通讯作者.马来西亚沙捞越Punda走滑构造及其动力学成因, 吉林大学学报(地球科学版),2003,31(4)26. 通讯作者.额尔古纳地块北缘早古生代后碰撞花岗岩的发现及其地质意义.科学通报,2005,50(20):2278--2288. SCI检索,英文版:WU Guang, SUN Fengyue, ZHAO Caisheng, LI Zhitong, ZHAO Ailin, PANG Qingbang & LI Guangyuan. 2005. Discovery of Early Paleozoic post-collisional granites in northern margin of the Erguna massif and its geological significance. 2005 Vol.50 No. 23 .2733-274327. 通讯作者.吉林省东部韧性剪切带特征及其与金银成矿关系.地质与勘探,200428. 通讯作者.马来西亚沙捞越邦达、什兰江控矿角砾岩筒构造对比研究及其找矿意义.世界地质,200329. 通讯作者.马来西亚沙捞越西部Punda金铜矿床构造控矿作用及找矿意义,地质与勘探,200430. 通讯作者.上黑龙江盆地金矿床地质特征及成因探讨.矿床地质,2006,25(3)31. 通讯作者.辽东地区后仙峪及翁泉沟硼矿床流体包裹体特征研究,现代地质,2007,21(4):645--65332. 通讯作者.额尔古纳成矿带西北部金矿床流体包裹体研究,岩石学报,2007,23(09):2227—2240.SCI检索33. 通讯作者. 胶东地区地幔捕虏体中黄铁矿含金性及其意义,黄金,2005,26(11):7--1034. 通讯作者.山东招远灵山沟金矿床成矿流体特征研究,黄金,2007,28(6):13--1735. 通讯作者.山东招远金岭金矿埠上矿区矿体空间定位机制研究,黄金,2007,28(1):13--1936. 通讯作者.吉林珲春小西南岔地区重砂金矿物的指示意义,黄金,2008,29(1):16--2037. 通讯作者.青海北巴颜咯拉山地区浊积岩中金(锑)矿成矿地质特征—以大场—加给陇洼一带为例.黄金,2007,28(9):8--1338. 通讯作者.内蒙拜仁达坝银铅锌多金属矿床矿物特征研究,世界地质,2008(待刊)39. 通讯作者.青海路沟钴矿床地质特征及成因研究,世界地质,2008(待刊)40. 通讯作者. 青海东昆仑乌兰乌珠尔铜矿金属矿物特征及意义,地质与资源,2006,15(3):191--19941. 通讯作者.Study on the geological features of Gaotaigou borate deposit, south Jilin Province, Journal of Geoscientific Research in. Northeast Asia ,2006,():42. 通讯作者.青海东昆仑鸭子沟多金属矿的成矿年代学研究,地质科学,2008(待刊)43. 通讯作者.青海东昆仑卡尔却卡铜矿床流体包裹体特征研究,世界地质,2008(待刊)44. 通讯作者.大功率电法在山东招远庄头刘家一带金矿勘查中的应用,吉林大学学报(地球科学版)(矿床学专辑),2003,33(增):53--5645. 通讯作者. 青海东昆仑肯得可克钴铋金矿地质特征及矿床成因初探,吉林大学学报(地球科学版)(矿床学专辑),2003,33(增):47—5246. 通讯作者.马来西亚什兰江金矿床控矿角砾岩筒构造研究意义, 吉林大学学报(地球科学版)(矿床学专辑),2003,33(增):41—4647. 第二作者.胶东西北部山上原家金矿金银矿物组合研究,黄金,2000,21(9):4--748. 第二作者. 河南枪马金矿床410脉深部成矿远景预测评价,黄金,2001,22(4):4--749. 第二作者(执笔). Northeast China's Mineral Resources Situation and Regional Cooperation, Journal of Geoscientific Research in. Northeast Asia 1999, (1):14—19,50. 第二作者,基于专家证据权重法的成矿远景区划与评价——以东昆仑地区金矿为例,地质科技情报,2006,25(1):41-4651. 第二作者. 韧性剪切带向剪破裂的转化与成岩成矿作用,地质力学学报,1997,3(1):38--4452. 第二作者,胶东地区裸露含金构造的地球化学评价,吉林大学学报(地球科学版),2005,3553. 第二作者,内蒙古虎拉林金矿矿床地质特征及成因探讨.黄金,2006,27(10):6—1254. 第二作者.内蒙古虎拉林金矿矿化富集规律和找矿远景评价.世界地质,2007,26(4):397-40255. 第二作者.北京市万庄金矿控矿构造类型及控矿特征,吉林大学学报(地球科学版),2004,34(2):206—21056. 第二作者.青海东昆仑成矿带综合选区研究.中国地质,2007,34(6):1101-110857. 第二作者.北京万庄金矿床流体包裹体研究,地质科技情报,2004,23():58. 第二作者. 基于专家证据权重法的成矿远景区划与评价——以东昆仑地区金矿为例.地质科技情报,2006,25(1):41-4659. 第二作者.青海大场金矿流体包裹体特征及地质意义,矿床地质,2005, 24(3):305-31660. 第二作者.山东招远金岭金矿埠南矿区1#脉流体特征及成矿物理化学条件研究,大地构造与成矿学,2004,(3)61. 第二作者.中生代敦化-密山断裂大规模左旋平移及其对金矿床形成的控制作用,大地构造与成矿学,2002,62. 第二作者.专家证据权重法及其东昆仑地区的应用,地质与勘探, 2005, 41(4): 88−94.63. 第二作者.河南灵宝枪马金矿床流体包裹体研究及其地质意义, 吉林大学学报(地球科学版)(矿床学专辑),2003,33(增):34--4064. 第三作者(执笔).山东招掖成矿带构造岩浆活动与成矿,地球科学,1987,(4):65. 第三作者.基于GIS的区域重磁空间信息集成研究,地球物理学进展,200666. 第三作者.马来西亚沙捞越州的矿业及其投资环境,中国矿业,200467. 第三作者.脉金矿床深部成矿远景预测评价的石英热爆裂特征填图法,岩石学报,2000.SCI检索68. 第三作者.蒙古-鄂霍茨克成矿带中段金矿床地质特征及构造背景.矿床地质,2006a,25(增刊):51-5469. 第三作者.青海肯德可克钴铋金矿钴铋金的赋存状态及工艺特性研究,矿产综合利用,200570. 第三作者.动力系统转换与分级构造成金机理, 吉林大学学报(地球科学版)(矿床学专辑),2003,33(增):27--3371. 作者之一. Preliminary metallogenic belt and mineral deposit maps for northeast Asia. 2003,多国合作项目成果。美国地质调查局(USGS)发表,USGS PUBLISHING WAREHOUSE72. 第三作者.马来西亚砂捞越州的矿业及其投资环境,中国矿业,2004,(4):73. 第三作者.流体研究与成矿预测,矿床地质,1997,16(3):278-288(部分文章未统计)

相关百科

热门百科

首页
发表服务