首页

职称论文知识库

首页 职称论文知识库 问题

人工智能的论文发表量

发布时间:

人工智能的论文发表量

1.人工智能可能会在教育、医疗、金融、出行、物流等领域发挥巨大作用。2企业里人工智能将从产品设计、原材料购买方案、原材料分配、生产制造、用户反馈数据采集与分析等方面为企业提供全流程支持3.人工智能将能协助银行建立更全面的征信和审核制度

人工智能产业链分为基础层、技术层和应用层。基础层是人工智能产业链的基础,为人工智能提供算力支撑和数据输入,中国在此领域发展时间较短,基础层发展较为薄弱。目前,中国的人工智能企业主要集中在北京、广东、上海和浙江,北京的人工智能发展已经步入快车道。

人工智能产业链全景梳理:基础层发展薄弱

基础层主要提供算力和数据支持,主要涉及数据的来源与采集,包括AI芯片、传感器、大数据、云计算、开源框架以及数据处理服务等。技术层处理数据的挖掘、学习与智能处理,是连接基础层与具体应用层的桥梁,主要包括机器学习、深度学习、计算机视觉、自然语言处理、语音识别等。应用层针对不同的场景,将人工智能技术进行应用,进行商业化落地,主要应用领域有驾驶、安防、医疗、金融、教育等。

近年来,人工智能在技术与应用方面取得了巨大的进展,在国际上具备了一定的竞争力,但是基础层的薄弱仍然是限制中国人工智能发展的关键因素。中国在在基础层发展时间较短,较落后于国际先进水平。 长期以来,中国的芯片大部份依赖进口,计算力方面的基础薄弱,且开源框架受制于国外AI巨头。

基础层的人工智能算力发挥着越来越重要的作用, AI芯片作为人工智能产业发展的核心,将迎来巨大的发展机遇。目前,中国人工智能芯片优秀企业有寒武纪、华为海思、中星微、西井科技、地平线、富瀚微、四维图新、瑞芯微、深鉴科技等。

人工智能产业链区域热力图:北京AI发展步入快车道

根据公开资料整理人工智能优秀企业区域分布热力地图如下,可见,我国人工智能产业链重点企业集中于北京、广东、上海、浙江等地区。

北京作为中国集聚人工智能企业最多的区域,其人工智能产业的链条已经比较完善,覆盖了整个产业链环节,且在产业链的重点细分领域均出现了行业龙头企业。其中,基础层中传感器的行业龙头京东方科技,AI芯片的行业龙头中星微电子、寒武纪、地平线、四维图新等,云计算的百度云、金山云、世纪互联等,数据服务的百度数据众包、京东众智、数据堂等;技术层的机器学习龙头百度IDL、京东DNN等,计算机视觉的商汤科技、旷视科技等,自然语言处理的百度、搜狗、紫平方等,语音识别的出门问问、智齿科技等;应用层的人工智能重点企业也涉及了各个领域。北京正在逐步形成具有全球影响力的人工智能产业生态体系。

—— 更多数据及分析请参考前瞻产业研究院《中国人工智能行业市场前瞻与投资战略规划分析报告》。

11700篇。经查询中国科学院公布的资料显示,日本发布的人工智能论文为11700篇,总量排名世界第三。人工智能是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。

虽然“人工智能”(AI)已经成为一个几乎人人皆知的概念,但对人工智能的定义还没有达成普遍共识。传统的人工智能发展思路是研究人类如何产生智能,然后让机器学习人的思考方式和行为。现代人工智能概念的提出者约翰·麦卡锡认为,机器不一定需要像人一样思考才能获得智能,重点是让机器能够解决人脑所能解决的问题。第四次工业革命正在来临,而人工智能已经从科幻逐步走入现实。从1956年人工智能这个概念被首次提出以来,人工智能的发展几经沉浮。随着核心算法的突破、计算能力的迅速提高、以及海量互联网数据的支撑,人工智能终于在21世纪的第二个十年里迎来质的飞跃,成为全球瞩目的科技焦点。自从2016年AIphaGo战胜李世石之后,全球对于人工智能发展的兴奋与担忧交织难分。即使如此,世界各国已经认识到人工智能是未来国家之间竞争的关键赛场,因而纷纷开始部署人工智能发展战略,以期占领新一轮科技革命的历史高点。对于中国而言,人工智能的发展是一个历史性的战略机遇,对缓解未来人口老龄化压力、应对可持续发展挑战以及促进经济结构转型升级至关重要。本文从科技产出与人才投入、产业发展和市场应用、发展战略和政策环境等方面描绘中国人工智能的发展面貌。科技产出与人才投入1. 论文产出 : 中国人工智能论文总量和高被引论文数量都是世界第一。中国在人工智能领域论文的全球占比从 1997 年 4.26% 增长至2017 年的 27.68%,遥遥领先其他国家。高校是人工智能论文产出的绝对主力,在全球论文产出百强机构中,87家为高校。中国顶尖高校的人工智能论文产出在全球范围内都表现得十分出众。不仅如此,中国的高被引论文呈现出快速增长的趋势,并在 2013 年超过美国成为世界第一。但在全球企业论文产出排行中,中国只有国家电网公司的排名进入全球前 20 位。从学科分布看,计算机科学、工程和自动控制系统是人工智能论文分布最多的学科。国际合作对人工智能论文产出的影响十分明显,高水平论文里中国通过国际合作而发表的占比高达 42.64% 。2. 专利申请 : 中国专利数量略微领先于美国和日本,国家电网表现突出。中国已经成为全球人工智能专利布局最多的国家,数量略微领先于美国和日本,而中美日三国占全球总体专利公开数量的 74%。全球专利申请主要集中在语音识别、图像识别、机器人以及机器学习等细分方向。中国人工智能专利持有数量前 30 名的机构中,科研院所与大学和企业的表现相当,其技术发明数量占比分别为 52% 和48%。企业中的主要专利权人表现差异巨大,尤其是中国国家电网近五年的人工智能相关技术发展迅速,在国内布局专利技术量远高于其他专利权人,而且在全球企业排名中位列第四。

人工智能论文发表量

我国人工智能弯道超车走在世界前列,

文/陈根

人工智能,已经成为中美两国竞争的着力点 。

作为一种变革性技术,人工智能是现代工业发展的产物,具有推动产业革新、提升经济效益和促进 社会 发展的巨大潜力。正是由于具备主导技术发展和推动 社会 形态转变的基本潜质, 因此,人工智能不仅被视为未来创新范式的“技术基底”,更是被世界各国视为推动新一轮 科技 革命和产业变革的关键力量 。

纵观 历史 ,每一次 科技 革命、产业革命及军事变革的耦合与互动,都深刻影响乃至重塑了全球竞争格局。在人工智能的全球博弈中,中美两国作为领先大国,成为人工智能发展最为瞩目的两个国家。而中美两国对于人工智能高地的抢占,更关系着未来国际格局的重塑和全球人工智能的治理。

美国领先,中国跟进

2019年,美信息技术与创新基金会(ITIF)的数据创新中心曾发布百页研究报告《谁将在人工智能角逐中胜出:中国、欧盟或美国?》。报告对中、美、欧人工智能发展现状进行比较测算—— 美国以44.2分领先,中国以32.3分位居第二,欧盟则以23.5分位居第三 。美国的人工智能领先地位彰显无疑,而中国则以追赶之势跟进。

事实上,美国之所以能够占据人工智能全球领先地位,与人工智能在美国的发展密切相关。 1956年,人工智能正式在美国诞生。卡内基梅隆天学、麻省理工学院、IBM公司成为美国最初的3个核心人工智能研究机构。

60年代至90年代初,美国人工智能相关程序设计语言、专家系统等已取得重大进展,产品化方面取得重要成就。 比如,1983年,世界第一家批量生产统一规格电脑的公司诞生。并且,美国开始尝试应用Al研究成果,比如,利用矿藏勘探专家系统PROSPECTOR在华盛顿发现一处矿藏。

而同期的中国,人工智能才刚进入萌芽阶段 。1978年,中国科学大会在北京召开。科学事业思想解放,为中国人工智能产业发展提供基础。同年,“智能模拟”被纳入国家研究计划,中国人工智能产业在国家层面的推动下正式发展。

从研究成果来看,美国在人工智能方面的研究成果在全球处于领先地位 。根据全球最大的引文数据库Scopus的检索结果,2018年美国共发表了16233篇与人工智能有关的同行评审论文。论文数量的快速增长主要发生在2013年之后,5年内增长了2.7倍。

尽管同期中国和欧盟的人工智能论文数量也有类似的快速增长,并且每年发表论文的数量明显超过美国。 但是,就论文质量而言,美国人工智能论文的质量一直大幅度领先于其他地区。 2018年,美国平均每篇论文被引用的次数为2.23次,而中国为1.36 次。美国每个作者被引用的次数也比全球平均水平高出 40%。

尤其是在深度学习领域,美国的发表论文数量远超过其他国家。2015至2018 年,美国共在预印本文库网站arXiv发表了3078篇相关论文,是中国同期的两倍。 近几年,美国每年取得的人工智能专利数量更是占到全球总量的一半左右,专利引证数量占到全球的 60% 。

在关键技术上,美国的研究成果依旧居于世界领先地位 。比如,在计算机视觉领域,谷歌公司和卡内基梅隆大学开发的 Noisy Student方法对图片进行分类的Top-1准确率达到 88.4%,比6年前提高了35个百分点;在云基础设施上训练大型图像分类系统所需的时间,已经从2017年的3个小时减少到 2019年的88 秒,训练费用也从 1112美元下降到12.6美元。

从产业发展来看,根据中国信息通信研究院数据研究中心的《全球人工智能产业数据报告(2019Q1)》研究报告, 截至2019年3月底,全球活跃人工智能企业注达5386家。仅美国就多达2169家,数量远超过其他国家 。中国大陆达1189家,排名第三的英国则为404家。

而从企业 历史 统计来看,美国人工智能企业的发展也早于中国5年。美国人工智能企业最早从1991年萌芽,1998进入发展期,2005后开始高速成长期,2013后发展趋稳。而中国人工智能企业则诞生于1996年,2003年产业进入发展期,在2015年达到峰值后进入平稳期。

美国公司在专利和主导性人工智能收购方面表现更为强劲 。比如,在15个机器学习子类别中,微软和IBM在8个子类别中申请了比其他任何实体公司都更多的专利,包括监督学习和强化学习类。美国公司在20个领域中的12个领域的专利申请处于领先地位,包括农业(迪尔公司)、安全(IBM公司)以及个人设备、计算机和人机互动(微软公司)。

人才储备是美国在人工智能得以领先的又一关键原因。人工智能产业的竞争,可以说,就是人才和知识储备的竞争。 只有投入更多的科研人员,不断加强基础研究,才会获得更多的智能技术 。

根据 MacroPolo 智库的研究,在报告所圈定的顶级人工智能研究人才中,59% 在美国工作,中国占了 11%,与美国有四五倍的差距。剩下的人工智能人才则分布在欧洲、加拿大和英国,人才差异显而易见。

中美角逐,追赶和超越

尽管美国在研究成果和人才储备上具有先发优势,但中国作为后起之秀,在政策的引导和宽松的环境下,正以追赶之势加快跟进美国人工智能产业的发展。

经过多年的积累,中国已在人工智能领域取得了一系列重要成果,形成了自身独特的发展优势。 不论是顶层的设计还是研发资源的投入,亦或是产业的发展,都呈加快追赶的态势,甚至在部分人工智能核心技术领域已可与美国比肩。尽管欲见成效仍需时日,但中美两国对于人工智能高地的抢占,已经开始。

从顶层设计来看,中美有近乎相仿的重视程度。 美国和中国政府都已经把人工智能的发展上升至国家战略,出台发展战略规划,从国家战略层面进行整体推进 。

早在2016 年 10 月,奥巴马政府就发布了两份与人工智能发展相关的重要文件,即《国家人工智能研发战略规划》和《为未来人工智能做准备》。中国政府也在2017年3月,将“人工智能”首次写入全国政府工作报告,并于同年7月发布《新一代人工智能发展规划》,人工智能全面上升为国家战略。

美国人工智能报告体现了美国政府对新时代维持自身领先优势的战略导向。作为最大的发展中国家,中国也在战略引导和项目实施上做了整体规划和部署。并且,美国和中国都在国家层面建立了相对完整的研发促进机制,整体推进人工智能发展。

从研发资源的投入来看,美国政府对研发的资金投入相对不足。 纵向来看,在过去的几十年中,联邦政府用于研发的支出占国内生产总值(GDP)的百分比从1964年的1.86%下降到2018年的0.7%。

目前,美国联邦政府的年度财政赤字已超过1万亿美元,累积的政府债务相当于 GDP的107%。 这些因素都会限制美国政府对人工智能及其相关基础研究的长期资金投入。

横向上看,美国政府对研发的投入正在被中国和欧盟追赶 。美国在全球研发投入中所占的份额从1960年的69%下降到2016年的28%。2000-2015年,美国只占全球研发投入增长的 19%,而中国占到了31%。

2019年8月 31日,上海宣布设立人工智能产业投资基金,仅首期就投入了100亿元人民币,最终规模将达到千亿元人民币,美国联邦政府的投资则是相形见绌。

从产业发展来看,尽管中国AI产业基础层整体实力较弱,少有全球领先的芯片公司,但各大厂商正加快布局追赶,包括百度、阿里、腾讯及华为等厂商在基础层软硬件的加快布局 。

对于技术层来说,中国企业则发展势头良好。 百度、阿里、腾讯和华为等综合型厂商在计算机视觉、自然语言处理、语音识别等核心技术领域均有布局,同时创业独角兽在垂直领域迅速发展。

应用层上,人工智能应用场景多样,中国人工智能企业已在教育、医疗、新零售等领域实现广泛布局,而金融、医疗、零售、安防、教育、机器人等行业亦有为数较多的人工智能企业参与竞争。

着眼未来,我国在人工智能发展方面仍然具有一定优势, 包括对基础理论研究的重视、丰富的技术应用场景、完善的创新生态链、企业数量的规模优势,以及我国在发展人工智能方面的人才优势。

此外,大数据优势是中国发展人工智能的重要优势,人工智能技术发展需要有大量的数据积累进行训练。中国较为完备的工业体系和庞大的人口基数,也使得中国人工智能发展在数据积累方面优势明显。

人工智能的未来难以预测,但可以看到的是,世界的竞争格局将因人工智能而改变。在巨变的环境里,只有通过创新发展以人工智能为代表的新一轮战略前沿技术,成为新竞赛规则的重要制定者、新竞赛领域的重要主导者、新竞赛范式的重要引领者,才能制胜未来而不是尾随未来。

近些年的科技方面在人工智能的的飞速发展,人工智能不仅给我们的日常生活带来了一些新鲜的亮点。神 经 猿 很好的,该学校为全国高职高校提供人工智能、大数据领域实训及学分课程以及高校人工智能实训室、实验室建设。 ..

新一代人工智能是基于新一代信息技术的发展和人类智能活动规律的研究,用于模拟、延伸和扩展人类智能,其呈现出深度学习、跨界融合、人机协同、群智开放和自主智能的新特点。

“十三五”以来,我国新一代人工智能产业的科研活跃度高、国际影响力增强、也涌现了具有国际影响力的AI企业。“十四五”时期我国新一代人工智能产业将如何发展,本文将从发展重点、发展目标两大方面进行分析。

1、“十三五”发展回顾

——科研活跃度高、国际影响力增强

新一代人工智能是基于新一代信息技术的发展和人类智能活动规律的研究,用于模拟、延伸和扩展人类智能,其呈现出深度学习、跨界融合、人机协同、群智开放和自主智能的新特点。

回顾“十三五”,我国在人工智能领域各顶级国际会议上的活跃度和影响力不断提升。数据显示,2018-2019年,我国人工智能领域论文发表量、专利申请量均有所增长;同时,2015-2020年,在全球前100篇人工智能论文高被引论文中,中国产出占21篇,居第二位。

我国也在自动机器学习、神经网络可解释性方法、异构融合类脑计算等领域中都涌现了一批具有国际影响力的创新性成果:

——涌现了具有国际影响力的AI企业

“十三五”以来,我国人工智能企业的国际竞争力也日益凸显。截至2019年末,我国约有797家人工智能企业,占全球人工智能企业总数的14.8%,数量仅次于美国:

同时,据中国科学院大数据挖掘与知识管理重点实验室公布的“2019年全球人工智能企业TOP20榜单”中,中国有7家企业上榜,且中国有5家企业排名榜单前十。

2、“十四五”发展重点解读

——开源算法平台构建、重点领域创新

根据《“十四五”规划纲要和2035年远景目标纲要》,“十四五”期间,我国新一代人工智能产业将着重构建开源算法平台、并在学习推理与决策、图像图形等重点领域进行创新。

此外,在2021年全国“两会”期间,全国人大代表们围绕人工智能的发展与应用建言献策:

——六项重点任务

同时,根据国务院于2017年7月印发的《新一代人工智能发展规划》,其中提出了面向2030年我国新一代人工智能发展的六项重点任务:

3、“十四五”发展目标解读

——2025年:核心产业规模将达4000亿元

根据《新一代人工智能发展规划》,到2025年,我国人工智能基础理论实现重大突破,部分技术与应用达到世界领先水平,人工智能成为带动我国产业升级和经济转型的主要动力,智能社会建设取得积极进展,人工智能核心产业规模将超过4000亿元,带动相关产业规模超过5万亿元;到2030年,我国人工智能理论、技术与应用总体达到世界领先水平。

——2023年:布局建设20个左右试验区

此外,为加快落实《国务院关于印发新一代人工智能发展规划的通知》,科技部于2019年8月印发《国家新一代人工智能创新发展试验区建设工作指引》,旨在有序推动国家新一代人工智能创新发展试验区建设。截至2021年3月末,我国已有14个市+1个县获批建设试验区;至2023年,试验区数量预计将达20个左右。

——各省市发展目标汇总

此外,全国各省市也围绕新一代信息技术产业的产业规模、龙头企业数量等内容,提出了“十四五”时期的发展目标:

—— 更多行业相关数据请参考前瞻产业研究院《中国人工智能行业市场前瞻与投资战略规划分析报告》

人工智能的学术论文发表量

日媒称中国人工智能加速赶超美国,目前我国的人工智能处于什么水平?

根据相关的调查结果显示,中国的人工智能还全球第三名 ,而前两名分别就是 美国和欧洲 ,

由于这两个地区和国家,他们的经济实力,科技实力发展比较强,对于人工智能的重视程度比较强,还有就是他们的发展历史也非常的强,注重吸引人才,注重教育的质量 ,这使得美国和欧洲人工智能的实力非常的强劲 。

人工智能被称为AI,随着经济实力和科技的发展,人工智能不断的在创新和发展 并不断的对现实生活中运用 ,并取得了一系列重要的成就 。等我国的人工智能的相关的产权来看,中国是被公认的人工智能的大国 并且未来是最有希望超越美国的人工智能的国家 。

将对于中国的信息技术产业来说,在人工智能和汽车制造等方面已经领先世界前列的地位,而这些技术决定着这些产业的未来,也决定人工智能产业以后的辉煌。

人工智能的作用有?很多好处哦,从体力上讲,人工智能是超越了人体的,为人体减轻负担的。从而让人们不用很累的劳动工作。从预算来说,人工智能可以收集数据。从时间上来说,人工智能可以,二小24小时工作,解放了人们的生活。解放了人的更多时间从军事上来说,得到老更强大的维护和平的力量。从医疗方面来讲,做手术时更加准确,没有丝毫的误差。更精准。

从救援来说,可以把遇害的人从救援或进程是可以控制人工训练。可以预报天气。让人们带伞。让人们不再出门。可以更好的维护国家的安全。你可以解放人们的双手。可以更好的完成一项任务,而不用人工去完成。现在的人工智能非常广泛,有手机和app,各种智能软件行业设备,医疗,金融,重工业,制造的人。给社会提供了很大的便捷帮助。从而改善了生活。

不断的改进,从而发掘到最好以及提供基本的医疗反馈,需与健康的助理。人工智能在教育方面甚至可以取代一些老师,人工智能可以改变学生们的学习方式方法。在金融领域上,人工智能可以用于个人的理财的应用。可以保证人们的稳定性,安全性。从而有利于更大的投资方面。人工智能还能运用于法律。由于写人们解决不了的问题,可以请求人工智能来帮助更好的解决问题。

新一代人工智能是基于新一代信息技术的发展和人类智能活动规律的研究,用于模拟、延伸和扩展人类智能,其呈现出深度学习、跨界融合、人机协同、群智开放和自主智能的新特点。

“十三五”以来,我国新一代人工智能产业的科研活跃度高、国际影响力增强、也涌现了具有国际影响力的AI企业。“十四五”时期我国新一代人工智能产业将如何发展,本文将从发展重点、发展目标两大方面进行分析。

1、“十三五”发展回顾

——科研活跃度高、国际影响力增强

新一代人工智能是基于新一代信息技术的发展和人类智能活动规律的研究,用于模拟、延伸和扩展人类智能,其呈现出深度学习、跨界融合、人机协同、群智开放和自主智能的新特点。

回顾“十三五”,我国在人工智能领域各顶级国际会议上的活跃度和影响力不断提升。数据显示,2018-2019年,我国人工智能领域论文发表量、专利申请量均有所增长;同时,2015-2020年,在全球前100篇人工智能论文高被引论文中,中国产出占21篇,居第二位。

我国也在自动机器学习、神经网络可解释性方法、异构融合类脑计算等领域中都涌现了一批具有国际影响力的创新性成果:

——涌现了具有国际影响力的AI企业

“十三五”以来,我国人工智能企业的国际竞争力也日益凸显。截至2019年末,我国约有797家人工智能企业,占全球人工智能企业总数的14.8%,数量仅次于美国:

同时,据中国科学院大数据挖掘与知识管理重点实验室公布的“2019年全球人工智能企业TOP20榜单”中,中国有7家企业上榜,且中国有5家企业排名榜单前十。

2、“十四五”发展重点解读

——开源算法平台构建、重点领域创新

根据《“十四五”规划纲要和2035年远景目标纲要》,“十四五”期间,我国新一代人工智能产业将着重构建开源算法平台、并在学习推理与决策、图像图形等重点领域进行创新。

此外,在2021年全国“两会”期间,全国人大代表们围绕人工智能的发展与应用建言献策:

——六项重点任务

同时,根据国务院于2017年7月印发的《新一代人工智能发展规划》,其中提出了面向2030年我国新一代人工智能发展的六项重点任务:

3、“十四五”发展目标解读

——2025年:核心产业规模将达4000亿元

根据《新一代人工智能发展规划》,到2025年,我国人工智能基础理论实现重大突破,部分技术与应用达到世界领先水平,人工智能成为带动我国产业升级和经济转型的主要动力,智能社会建设取得积极进展,人工智能核心产业规模将超过4000亿元,带动相关产业规模超过5万亿元;到2030年,我国人工智能理论、技术与应用总体达到世界领先水平。

——2023年:布局建设20个左右试验区

此外,为加快落实《国务院关于印发新一代人工智能发展规划的通知》,科技部于2019年8月印发《国家新一代人工智能创新发展试验区建设工作指引》,旨在有序推动国家新一代人工智能创新发展试验区建设。截至2021年3月末,我国已有14个市+1个县获批建设试验区;至2023年,试验区数量预计将达20个左右。

——各省市发展目标汇总

此外,全国各省市也围绕新一代信息技术产业的产业规模、龙头企业数量等内容,提出了“十四五”时期的发展目标:

—— 更多行业相关数据请参考前瞻产业研究院《中国人工智能行业市场前瞻与投资战略规划分析报告》

我觉得我国的人工智能处在快速发展的水平,因为现在已经有了很多人工智能的东西。

处于世界前列的水平,因为某些方面确实比美国强,而且生产出了很多震惊世界的产品。

人工智能论文发表数量

人工智能的发展还是渐进式的,慢慢的将会发展成一个很大的产业,好多的商品都会越来越智慧。

文/陈根

人工智能,已经成为中美两国竞争的着力点 。

作为一种变革性技术,人工智能是现代工业发展的产物,具有推动产业革新、提升经济效益和促进 社会 发展的巨大潜力。正是由于具备主导技术发展和推动 社会 形态转变的基本潜质, 因此,人工智能不仅被视为未来创新范式的“技术基底”,更是被世界各国视为推动新一轮 科技 革命和产业变革的关键力量 。

纵观 历史 ,每一次 科技 革命、产业革命及军事变革的耦合与互动,都深刻影响乃至重塑了全球竞争格局。在人工智能的全球博弈中,中美两国作为领先大国,成为人工智能发展最为瞩目的两个国家。而中美两国对于人工智能高地的抢占,更关系着未来国际格局的重塑和全球人工智能的治理。

美国领先,中国跟进

2019年,美信息技术与创新基金会(ITIF)的数据创新中心曾发布百页研究报告《谁将在人工智能角逐中胜出:中国、欧盟或美国?》。报告对中、美、欧人工智能发展现状进行比较测算—— 美国以44.2分领先,中国以32.3分位居第二,欧盟则以23.5分位居第三 。美国的人工智能领先地位彰显无疑,而中国则以追赶之势跟进。

事实上,美国之所以能够占据人工智能全球领先地位,与人工智能在美国的发展密切相关。 1956年,人工智能正式在美国诞生。卡内基梅隆天学、麻省理工学院、IBM公司成为美国最初的3个核心人工智能研究机构。

60年代至90年代初,美国人工智能相关程序设计语言、专家系统等已取得重大进展,产品化方面取得重要成就。 比如,1983年,世界第一家批量生产统一规格电脑的公司诞生。并且,美国开始尝试应用Al研究成果,比如,利用矿藏勘探专家系统PROSPECTOR在华盛顿发现一处矿藏。

而同期的中国,人工智能才刚进入萌芽阶段 。1978年,中国科学大会在北京召开。科学事业思想解放,为中国人工智能产业发展提供基础。同年,“智能模拟”被纳入国家研究计划,中国人工智能产业在国家层面的推动下正式发展。

从研究成果来看,美国在人工智能方面的研究成果在全球处于领先地位 。根据全球最大的引文数据库Scopus的检索结果,2018年美国共发表了16233篇与人工智能有关的同行评审论文。论文数量的快速增长主要发生在2013年之后,5年内增长了2.7倍。

尽管同期中国和欧盟的人工智能论文数量也有类似的快速增长,并且每年发表论文的数量明显超过美国。 但是,就论文质量而言,美国人工智能论文的质量一直大幅度领先于其他地区。 2018年,美国平均每篇论文被引用的次数为2.23次,而中国为1.36 次。美国每个作者被引用的次数也比全球平均水平高出 40%。

尤其是在深度学习领域,美国的发表论文数量远超过其他国家。2015至2018 年,美国共在预印本文库网站arXiv发表了3078篇相关论文,是中国同期的两倍。 近几年,美国每年取得的人工智能专利数量更是占到全球总量的一半左右,专利引证数量占到全球的 60% 。

在关键技术上,美国的研究成果依旧居于世界领先地位 。比如,在计算机视觉领域,谷歌公司和卡内基梅隆大学开发的 Noisy Student方法对图片进行分类的Top-1准确率达到 88.4%,比6年前提高了35个百分点;在云基础设施上训练大型图像分类系统所需的时间,已经从2017年的3个小时减少到 2019年的88 秒,训练费用也从 1112美元下降到12.6美元。

从产业发展来看,根据中国信息通信研究院数据研究中心的《全球人工智能产业数据报告(2019Q1)》研究报告, 截至2019年3月底,全球活跃人工智能企业注达5386家。仅美国就多达2169家,数量远超过其他国家 。中国大陆达1189家,排名第三的英国则为404家。

而从企业 历史 统计来看,美国人工智能企业的发展也早于中国5年。美国人工智能企业最早从1991年萌芽,1998进入发展期,2005后开始高速成长期,2013后发展趋稳。而中国人工智能企业则诞生于1996年,2003年产业进入发展期,在2015年达到峰值后进入平稳期。

美国公司在专利和主导性人工智能收购方面表现更为强劲 。比如,在15个机器学习子类别中,微软和IBM在8个子类别中申请了比其他任何实体公司都更多的专利,包括监督学习和强化学习类。美国公司在20个领域中的12个领域的专利申请处于领先地位,包括农业(迪尔公司)、安全(IBM公司)以及个人设备、计算机和人机互动(微软公司)。

人才储备是美国在人工智能得以领先的又一关键原因。人工智能产业的竞争,可以说,就是人才和知识储备的竞争。 只有投入更多的科研人员,不断加强基础研究,才会获得更多的智能技术 。

根据 MacroPolo 智库的研究,在报告所圈定的顶级人工智能研究人才中,59% 在美国工作,中国占了 11%,与美国有四五倍的差距。剩下的人工智能人才则分布在欧洲、加拿大和英国,人才差异显而易见。

中美角逐,追赶和超越

尽管美国在研究成果和人才储备上具有先发优势,但中国作为后起之秀,在政策的引导和宽松的环境下,正以追赶之势加快跟进美国人工智能产业的发展。

经过多年的积累,中国已在人工智能领域取得了一系列重要成果,形成了自身独特的发展优势。 不论是顶层的设计还是研发资源的投入,亦或是产业的发展,都呈加快追赶的态势,甚至在部分人工智能核心技术领域已可与美国比肩。尽管欲见成效仍需时日,但中美两国对于人工智能高地的抢占,已经开始。

从顶层设计来看,中美有近乎相仿的重视程度。 美国和中国政府都已经把人工智能的发展上升至国家战略,出台发展战略规划,从国家战略层面进行整体推进 。

早在2016 年 10 月,奥巴马政府就发布了两份与人工智能发展相关的重要文件,即《国家人工智能研发战略规划》和《为未来人工智能做准备》。中国政府也在2017年3月,将“人工智能”首次写入全国政府工作报告,并于同年7月发布《新一代人工智能发展规划》,人工智能全面上升为国家战略。

美国人工智能报告体现了美国政府对新时代维持自身领先优势的战略导向。作为最大的发展中国家,中国也在战略引导和项目实施上做了整体规划和部署。并且,美国和中国都在国家层面建立了相对完整的研发促进机制,整体推进人工智能发展。

从研发资源的投入来看,美国政府对研发的资金投入相对不足。 纵向来看,在过去的几十年中,联邦政府用于研发的支出占国内生产总值(GDP)的百分比从1964年的1.86%下降到2018年的0.7%。

目前,美国联邦政府的年度财政赤字已超过1万亿美元,累积的政府债务相当于 GDP的107%。 这些因素都会限制美国政府对人工智能及其相关基础研究的长期资金投入。

横向上看,美国政府对研发的投入正在被中国和欧盟追赶 。美国在全球研发投入中所占的份额从1960年的69%下降到2016年的28%。2000-2015年,美国只占全球研发投入增长的 19%,而中国占到了31%。

2019年8月 31日,上海宣布设立人工智能产业投资基金,仅首期就投入了100亿元人民币,最终规模将达到千亿元人民币,美国联邦政府的投资则是相形见绌。

从产业发展来看,尽管中国AI产业基础层整体实力较弱,少有全球领先的芯片公司,但各大厂商正加快布局追赶,包括百度、阿里、腾讯及华为等厂商在基础层软硬件的加快布局 。

对于技术层来说,中国企业则发展势头良好。 百度、阿里、腾讯和华为等综合型厂商在计算机视觉、自然语言处理、语音识别等核心技术领域均有布局,同时创业独角兽在垂直领域迅速发展。

应用层上,人工智能应用场景多样,中国人工智能企业已在教育、医疗、新零售等领域实现广泛布局,而金融、医疗、零售、安防、教育、机器人等行业亦有为数较多的人工智能企业参与竞争。

着眼未来,我国在人工智能发展方面仍然具有一定优势, 包括对基础理论研究的重视、丰富的技术应用场景、完善的创新生态链、企业数量的规模优势,以及我国在发展人工智能方面的人才优势。

此外,大数据优势是中国发展人工智能的重要优势,人工智能技术发展需要有大量的数据积累进行训练。中国较为完备的工业体系和庞大的人口基数,也使得中国人工智能发展在数据积累方面优势明显。

人工智能的未来难以预测,但可以看到的是,世界的竞争格局将因人工智能而改变。在巨变的环境里,只有通过创新发展以人工智能为代表的新一轮战略前沿技术,成为新竞赛规则的重要制定者、新竞赛领域的重要主导者、新竞赛范式的重要引领者,才能制胜未来而不是尾随未来。

美国斯坦福大学的报告称,从学术期刊上的人工智能相关论文引用率看,2020年中国已经首次超过美国。中国所占比例为20.7%,超过了美国所占的19.8%。据悉,自2012年以来,中国的人工智能论文数量已达24万篇,远远超过美国的15万篇。中国在图像认知和生成等方面取得了优秀成果。

[昱言]第三期人工智能第三部分:人工智能的发展前景

人工智能领域论文发表量

我国人工智能弯道超车走在世界前列,

人工智能产业链分为基础层、技术层和应用层。基础层是人工智能产业链的基础,为人工智能提供算力支撑和数据输入,中国在此领域发展时间较短,基础层发展较为薄弱。目前,中国的人工智能企业主要集中在北京、广东、上海和浙江,北京的人工智能发展已经步入快车道。

人工智能产业链全景梳理:基础层发展薄弱

基础层主要提供算力和数据支持,主要涉及数据的来源与采集,包括AI芯片、传感器、大数据、云计算、开源框架以及数据处理服务等。技术层处理数据的挖掘、学习与智能处理,是连接基础层与具体应用层的桥梁,主要包括机器学习、深度学习、计算机视觉、自然语言处理、语音识别等。应用层针对不同的场景,将人工智能技术进行应用,进行商业化落地,主要应用领域有驾驶、安防、医疗、金融、教育等。

近年来,人工智能在技术与应用方面取得了巨大的进展,在国际上具备了一定的竞争力,但是基础层的薄弱仍然是限制中国人工智能发展的关键因素。中国在在基础层发展时间较短,较落后于国际先进水平。 长期以来,中国的芯片大部份依赖进口,计算力方面的基础薄弱,且开源框架受制于国外AI巨头。

基础层的人工智能算力发挥着越来越重要的作用, AI芯片作为人工智能产业发展的核心,将迎来巨大的发展机遇。目前,中国人工智能芯片优秀企业有寒武纪、华为海思、中星微、西井科技、地平线、富瀚微、四维图新、瑞芯微、深鉴科技等。

人工智能产业链区域热力图:北京AI发展步入快车道

根据公开资料整理人工智能优秀企业区域分布热力地图如下,可见,我国人工智能产业链重点企业集中于北京、广东、上海、浙江等地区。

北京作为中国集聚人工智能企业最多的区域,其人工智能产业的链条已经比较完善,覆盖了整个产业链环节,且在产业链的重点细分领域均出现了行业龙头企业。其中,基础层中传感器的行业龙头京东方科技,AI芯片的行业龙头中星微电子、寒武纪、地平线、四维图新等,云计算的百度云、金山云、世纪互联等,数据服务的百度数据众包、京东众智、数据堂等;技术层的机器学习龙头百度IDL、京东DNN等,计算机视觉的商汤科技、旷视科技等,自然语言处理的百度、搜狗、紫平方等,语音识别的出门问问、智齿科技等;应用层的人工智能重点企业也涉及了各个领域。北京正在逐步形成具有全球影响力的人工智能产业生态体系。

—— 更多数据及分析请参考前瞻产业研究院《中国人工智能行业市场前瞻与投资战略规划分析报告》。

人工智能现在备受大家关注,各个国家的科技团队都开始并致力于钻研人工智能,人工智能产品层出不出,让我们大呼惊奇。在美国,人工智能的发展处于顶尖状态,而我国的人工智能也已经位于第一梯队,不管是从融资规模和新增企业数量上,中国排名仅位于美国之后位居第二。那么我们当前的人工智能的发展状况是什么样的呢?下面我们就给大家介绍一下这个问题。可以说中国的人工智能领域在世界排名第二,这是由于在人工智能领域的国际科技论文发表量和发明专利授权量已居世界第二,依托于庞大的网络和用户,国内拥有先进的语音、视觉、传感等人工智能相关领域的技术优势。中国人工智能的产业十分的发达,并且有极大的优势可以发展人工智能。但是中国的人工智能还是存在着很多的瓶颈问题,这些问题包括人工智能原创性理论基础不强,重大原创成果不足;在基础理论、核心算法以及关键设备、高端芯片、重大产品与系统、基础材料、元器件、软件与接口等方面,与以美国的人工智能发达国家相比还存在较大差距。当然,人工智能产业结构布局还不完善,人工智能人才队伍,特别是尖端人才不能满足发展需求等。可以用一个词来总结中国的人工智能,那就是大而不强。而中国的人工智能开始被很多国家限制,这是因为中国的人工智能发展前景十分好,好的让这些国家眼红,而美国政府正在考虑采取类似的措施,原因也是出于对中国可能获得珍贵的人工智能知识的担忧。中国对机器人和人工智能的兴趣尤其令人担忧,并扬言要对中国投资技术企业进行立法上的限制。 在这里需要给大家说明的是,人工智能中的10%在于算法,20%在于技术,70%在于应用场景和落地。这一推断没错,但是如果在前面30%失去技术优势,后面的70%就没有了什么意义。因此,增强人工智能基础,必须在大数据分析、深度学习、自主协同等方面进行学科理论梳理和研究,开展类脑智能计算、生物仿真等基础技术的研究,以实验室和研究院等形式专注研究成果的产品转化。当然我们需要意识到一个问题,那就是基础理论是根本,基础技术是主干,应用是枝叶。只有根底深厚庞大,主干强劲,人工智能产业才能日益兴荣昌盛。目前人工智能共享技术包括知识计算引擎技术、自然语言处理技术、群体智能关键技术、自主无人系统智能技术、虚拟现实智能建模技术,以及智能计算芯片与系统等。中国人工智能的未来前景还是比较乐观的,但是这些乐观还是多少有一点悲观的,不过相信我们的国家会解决这些问题。

经过多年的持续积累,我国在人工智能领域取得重要进展,国际科技论文发表量和发明专利授权量已居世界第二,部分领域核心关键技术实现重要突破。

语音识别、视觉识别技术世界领先,自适应自主学习、直觉感知、综合推理、混合智能和群体智能等初步具备跨越发展的能力,中文信息处理、智能监控、生物特征识别、工业机器人、服务机器人、无人驾驶逐步进入实际应用,人工智能创新创业日益活跃,一批龙头骨干企业加速成长,在国际上获得广泛关注和认可。

加速积累的技术能力与海量的数据资源、巨大的应用需求、开放的市场环境有机结合,形成了我国人工智能发展的独特优势。

与此同时,我国人工智能整体发展水平与发达国家相比仍存在差距,缺少重大原创成果,在基础理论、核心算法以及关键设备、高端芯片、重大产品与系统、基础材料、元器件、软件与接口等方面差距较大。

科研机构和企业尚未形成具有国际影响力的生态圈和产业链,缺乏系统的超前研发布局;人工智能尖端人才远远不能满足需求;适应人工智能发展的基础设施、政策法规、标准体系亟待完善。

人工智能领域技术能力全面提升为人机协同奠定基础

随着大数据、云计算、互联网、物联网等信息技术的发展,以深度神经网络为代表的人工智能技术飞速发展,人工智能领域科学与应用的鸿沟正在被突破。

图像分类、语音识别、知识问答、人机对弈、无人驾驶等人工智能技术能力快速提升,技术的产业化进程得以开启,人工智能迎来爆发式增长的新高潮。机器在人工智能技术的应用下,在“视觉”“听觉”“触觉”等人体感官的感知能力不断增强。

例如计算机视觉领域中深受关注的Image Net图像识别挑战赛获奖结果表明,2015年,计算机对于图像的识别能力已经超过人类水平,这意味着计算机能够在多种场景下一定程度上替代人类视觉的工作,更高效地完成任务。

同时得益于深度学习算法能力的提升,语音识别、自然语言处理等人工智能算法的不断革新助推计算机视觉产业持续向前。

人工智能技术能力的不断成熟使得机器能够实现越来越人性化的操作。人工智能技术能力的全面提升为人机系统的能力实现奠定了坚实的基础。

相关百科

热门百科

首页
发表服务