首页

职称论文知识库

首页 职称论文知识库 问题

怎么发表宇宙论文

发布时间:

怎么发表宇宙论文

一般来说,论文发表流程如下:第一步,确定自己将要发表的论文内容,以及发表需求。第二步,选择与自己论文题材相关的期刊,核实期刊论文真伪。第三步,了解想要刊登的期刊的征稿的要求,阅读其刊登发表过的论文,看自己的论文在这些期刊上发表是否合适,其次,了解这些刊物的审稿周期等。第四步,将自己的的论文上传,通过国内的四大权威数据库如知网、万方、维普、龙源查询核实。

发表论文的整个流程,简单概括就是:定稿-选择期刊-审核-通过/返修-支付费用-定版-排版校对-印刷-出刊邮寄-上传数据库接下来按照步骤详细说说每个发表环节以及注意事项。定稿:其实就是写论文,这个我也不是专业的,所以不多说,仅从发表的角度简单说几句。1.关于论文主题:如果你的文章是准备用来发表的,尤其是准备投稿普刊,那么有些选题千万不要碰,比如港ao台、疫情、涉党涉政、宗教、神学、封jian迷xin、校园bao力等等,不要问为什么,这类主题写了大概率发表不出去!即便有收的,审核也严格,论文内容不能有不适合刊登的点。选择期刊:我个人认为这是发表论文最重要的一个环节,这个说起来很简单,做起来其实很难,很耗费精力和时间。选择期刊分为两步——第一步,大家务必要先弄清楚自己对期刊的要求,尤其是因为评职称、评奖学金、保研等这些原因需要发表论文的,一定要先去看看学校、单位对期刊的具体要求是什么,比如期刊等级,是要普刊、学报还是核心?是不是非知网收录的期刊不可?最晚什么时候需要提交评审材料?第二步,选择的期刊一定要是正规的学术期刊,即该期刊要在国家新闻出版总署可查,并且在知网、万方、维普这三个数据库(至少一个)稳定、正常更新,且收学术论文,别你在总署能查到某个期刊,数据库也稳定更新,结果人家根本不收学术性论文(比如《中国经济评论》),而你还傻傻地去投稿。而总署可查、数据库稳定更新也只能保证期刊确实存在,(青墨手打严禁复制粘贴)却不能保证你发的就一定是正刊本身,毕竟存在不少盗版刊物,所以收到录用后一定要先打杂志社电话查稿,确认文章确实被正刊录用了再付款安排。慎发电子刊、报刊、增刊,因为认可度不高,所以除非单位、学校明文规定可用,否则不要发;不要发假刊、套刊,尤其是期刊网的刊物,前面那几个还只是不太正规,但好歹是真的,假刊、套刊直接就是假的!!!假的东西能有用吗?第三步,弄清楚对期刊的要求后,根据要求去选择合适的期刊。这里需要说到投稿的两种方式:自投和找中介代发如果你是准备自己投稿,那么——首先,一定要找到官方投稿方式,可以去各数据库下载期刊的版权页,上面都会有投稿邮箱但如果你时间比较紧张、着急出刊,又或者实在没有精力去收集筛选期刊信息,那么也可以找中介代发(仅指普刊,核心找代发性价比太低了),不需要你自己花时间去找期刊,只要告知论文主题和对期刊的要求,就能给你推荐最合适的期刊。以上,发表论文的大致流程就是如此。

刊号:CN31-1385/N 出版:上海科学技术出版社《科学》编辑部 地址:上海钦州南路71号 邮编:200235 《空间科学学报》空间科学是当代高科技发展的前沿领域之一,《空间科学学报》是我国空间研究界有影响综合性刊物。所刊载的内容由以空间本身为研究对象的研究成果和与空间环境有关的基础研究,应用研究及技术研究成果构成,报道的主要学科分支包括空间天文学、空间物理学、空间化学与地质学、空间生命科学、微动科学、空间材料科学和空间地球科学等。主要栏目有:理论研究、探测与实验、综述、研究简报,学报动态等等。 期刊分类: 双月刊 创刊年份: 1981 国内刊号: CN 11-1783/V 国际刊号: ISSN 0254-6124 邮发代号: 2-562 定价: 20元/期 主管单位: 中国科学院 主办单位: 中国科学院空间科学与应用研究中心 中国空间科学学会 编辑单位: 《空间科学学报》编辑部 天体物理学报(英文版)Chinese Journal of Astronomy and Astrophysics简 介: 创刊时为中文期刊,2001年改为英文刊。主要刊登天文学和天体物理学领域的原创性研究论文。主要栏目和报道范围:“研究快报”用来报道天文观测的新结果及新理论;“特约综述”聘请国际知名天文学家就某些热点问题进行专题评述。 期刊分类: 双月刊 创刊年份: 1981 国内刊号: CN 11-4631/P 国际刊号: ISSN 1009-9271 邮发代号: 2-187 定价: 20元/期 主管单位: 中国科学院 主办单位: 中国科学院北京天文台 编辑单位: CJAA编辑部

说实话外文期刊,本科学历发表有写困难,可以帮你尝试下。

宇宙论文发表

是齐奥尔科夫斯基。

1903年,俄罗斯的康斯坦丁·齐奥尔科夫斯基发表了《利用喷气工具研究宇宙空间》的论文,深入论证了喷气工具用于星际航行的可行性。

在齐奥尔科夫斯基一生中,他最感兴趣、花费精力最多、取得成就最大的领域是航天。在很小的时候,有关星际航行的问题已经开始强烈地吸引着他。他在1911年回忆说:"在过去很长时间里,我也和其他人一样,认为火箭不过是一种少有用途的玩具。

齐奥尔科夫斯基认为:要想环绕地球轨道必须克服地球引力,达到必须具备的速度,需要使用液氧和液氢作为推进剂的多级火箭。火箭的推进剂经过燃烧室燃烧之后,产生高温高压气体,经过喷管加速喷出,产生反作用力推动火箭前进。

齐奥尔科夫斯基不但提出了密封舱和空间站的设想,还设计了多级火箭、火箭推进器方案,以及在太空生存密封生态循环系统,为航天员提供食品和氧气等设想。

《利用喷气工具研究宇宙空间》

《利用喷气工具研究宇宙空间》阐明了火箭飞行理论,论述了将火箭用于星际交通的可能性,提出了液体燃料火箭的思想和原理图,并完成了世界上第一架喷气发动机的计算。这本划时代航天史书提出了齐奥尔科夫斯基公式:火箭飞行速度同火箭发动机喷气速度、火箭质量、燃料质量关系的公式。

在其30多年的生涯中,HST已经进行了 140多万次观测 ,科学家依据其观测数据,撰写了 超过18000篇论文 。

它的后期目标定位于遥远的漩涡星系,并帮助绘制了暗物质的区域图。对HST图像的分析,甚至帮助科学家们获得了 2011年的诺贝尔奖 ——发现宇宙的膨胀速度正在加快。

也因此,人们如此评价HST: 当地球上有问题时,哈勃会回答 。

HST的“十大发现”

在HST其后的工作时间里,天文观测取得了巨大成功,天文学领域据此发表了大量观测、分析、研究性论文,且引用率很高。

HST拍摄了大量宇宙空间、星系和恒星的照片;在不同波段对宇宙进行了 长期观测 ;观测到距地球130亿光年的 原始星系 ,发出的光芒来自大爆炸后刚形成的宇宙早期;发现了5颗 太阳系行星 。

此外,它还在黑洞、类星体、恒星诞生与死亡、宇宙年龄、暗物质等方面的观测研究中取得了 突出成果 。

截止到2006年,HST在轨运行了15年,得到了许多激动人心的发现,拍摄了 45亿张 精美的天文照片。人们对它的发现进行了总结,评出了最重大的“十大发现”:

HST的主要任务之一就是帮助天文学家 测定宇宙的准确年龄 。

天文学家用HST观测到仙女 星座 和其它星群中的造父变星,以确定宇宙的膨胀速度和年龄。HST将宇宙的年龄精确到 130亿至140亿年之间 。目前,最新的研究结果将宇宙年龄精确到了 137亿岁 。

HST在对 暗能量 的研究工作中扮演了 重要角色 。

暗能量是一种神秘形态的力,起到宇宙气体“踏板”的作用,加快了宇宙膨胀的速度。

HST关于超新星的资料,帮助研究者揭示这种神秘力量在宇宙中 持续存在 。

HST完成了对太阳系外一颗行星大气层化学构成的 直接测量 。

在一颗木星大小的行星大气中,它发现了钠、氢、碳和氧元素。

这一观测结果证明,HST和其它望远镜可以从一些天体的大气中进行化学构成的 采样工作 。

HST给天文学家提供了遥远的星系照片,反映了宇宙 诞生之初 的景象,为科学家进一步了解宇宙的 起源和演变 提供了宝贵的资料。

HST拍摄了M87椭圆星系的图像,观测资料证实大多数星系的中心都具有一个 巨大的黑洞 。

1999年1月23日HST捕捉到了 伽马射线暴 的景象,这是当时纪录过的 最大规模 的一次伽马射线暴。

拍摄的图像显示,这些放射线的短暂闪光来自于遥远的星系,这些星系以非常快的速度形成众多恒星。

图像还确定了这些爆炸来源于一些 巨大星体的瓦解 。

天文学家使用HST追踪到一些类星体的“家”( 宿主星系 ),并且证明它们位于这些星系的 中心区域 。

HST拍摄到了猎户星云中的 原行星盘 ,资料证明,烤盘形状的尘埃盘围绕着年轻恒星的现象很平常。

HST拍摄到了1994年7月名为苏梅克·列维9号的 彗星断裂 成21个碎块 撞击木星 的情景,撞击所产生的蘑菇形火球冲击到了木星上空。

HST拍摄到的一组在跳跃的颜色中烁烁发光的 行星状星云 ,向人们描绘了垂死恒星的最后色彩。

行星状星云是一些即将消亡的恒星所抛射出的气体外壳,HST拍到的图像显示,行星状星云就像雪花一样,没有任何两个是完全一样的。

HST在第二次维修前的巨大成就

到1997年4月,HST已工作了7年,这期间它取得了丰硕的科学成果。

来自全世界20多个国家的2000多名科学家,利用HST进行了11万多次科学观测,并在分析的基础上撰写了1346篇论文。

这期间HST取得的主要成就包括:增进了人类对 宇宙年龄和大小 的了解;证明某些星系中央存在 超高质量的黑洞 ;观察了数千个星系和星系团,探测到了宇宙诞生早期的“ 原始星系 ”,使科学家有可能跟踪研究宇宙发展的 历史 ;对神秘的 类星体 和其存在的环境进行了深入观测;更深入揭示了恒星的不同 形成过程 ;对宇宙诞生早期恒星形成过程中 重元素的组成 进行了研究;揭示了已死亡的恒星周围 气体壳 的复杂组成;对猎户座星云中年轻恒星周围的尘埃环进行了观测,揭示出银河系中存在其他 行星系统 ;对 苏梅克彗星与木星相撞 进行了详细观测;对火星等 行星 进行了观测;发现木星的两颗卫星——木卫二和木卫三的大气层中 存在氧 。

HST第二次维修安装的 近红外相机 及 多目标分光计和图像摄谱仪 ,使望远镜能够跟踪 宇宙大爆炸后10亿年左右 形成的古老星系,并能详细观测黑洞、膨胀的星系、爆炸后的恒星以及众多天体。

第二次维修工作使HST的 寿命得到提高 ,观测能力 进一步增强 ,观测光波段延伸到 近红外 范围。

创造早期宇宙成像的黄金时代

HST在多次维修过程中,更换了所有的原装观测仪器。

其中有两件新仪器非常重要,分别是第三次维修时安装的 高级巡天相机(ACS) 和第五次维修时安装的 宽视场相机3号(WFC3) 。

ACS在可见光到红外光中能 穿越宇宙级的距离 ,非常适合测量 红移星系 和 中等到大型星系团 。

WFC3用于观测研究 各演化阶段 的星系,从极遥远的年轻星系到较近的恒星系统,也包括太阳系内的行星系统和系外行星。

它的主要特点是 跨越电磁频谱 的能力,从紫外线到可见光,并进入近红外(NIR)波段,其在近红外源获得的全新高清晰图像,使之成为后继者韦伯望远镜的重要先驱。

WFC3的广谱“全色”覆盖范围与ACS是极好的补充,两者协同工作,被认为创造了一个新的 早期宇宙成像的黄金时代 ,为天文学家提供了当时 最佳观测功能 ,在宽波长范围内提供了极好的 宽视场成像质量 。

探索 早期宇宙和星系

HST在早期宇宙和星系观测方面的重要成果,可追溯到 宇宙大爆炸数亿年后 的情形,对认识早期宇宙、早期星系具有重要意义。

这些成果大都采用HST的 超深场模式 (Ultra Deep Field)拍摄,采用的仪器前期主要是ACS,2009年后则以高ACS与WFC3的组合为主。

这种观测模式一般在 极小的天区范围 进行,约为满月直径的十分之一,视场范围内包含约5500个星系,最暗星系的亮度是人眼所能看到的亮度的 百亿分之一 ,即使用先进的观测仪器也非常难以“看到”,因此经常采用“ 引力透镜 ”原理将观测源发出的光线进行聚焦、放大。另外,拍摄这样一张极远的宇宙图像,往往需要 多次、长时间曝光 。

>>>

2003年9月24日至2004年1月16日间,HST对南天区鲸鱼座和波江座附近的天炉座一小片天区,进行了 800次曝光 ,总曝光时间达 11.3天 ,最终拍摄了一张照片。

照片中最小、最红的小点显示的遥远星系,约有100个,可能是当时 已知最遥远的星系 ,存在于 宇宙大爆炸后8亿年 的时候。

>>>

2009年,HST在近红外光下拍摄了 更远、更深 的宇宙图像。

当年8月,HUDF09团队利用新安装的WFC3红外通道,对前述同一天区进行观测,拍摄过程共4天,总曝光时间 173000秒 。

照片显示的星系红移量Z达到8 8.5,推算出这是 宇宙大爆炸后6亿年 的情景。

>>>

2012年11月16日,HST在大熊 星座 附近的一个小天区进行了极深场拍摄,并且利用了周围巨大的星系团产生的引力透镜放大效应,获得了一个名为 MACS0647-JD 的星系照片。

MACS0647-JD只在红色波长下发光,是一个 非常年轻 的星系,估计形成于 宇宙大爆炸后4.2亿年 ,其直径约600光年,比银河系(直径150000光年)小约250倍。

早期的星系一般都 极不稳定 ,在此后的数十亿年间将发生无数次碰撞,然后逐渐形成我们能看到的巨大宇宙结构。

在接下来的130亿年中,MACS0647-JD可能会与其他星系和星系碎片发生数十、数百甚至数千次 合并事件 ,这一观测成果将有助于科学家了解宇宙在第一批恒星和星系出现时如何形成。

没有最远,只有更远!

HST和宇航局另一个重要的红外天文卫星(运行于地球跟随日心轨道) 斯皮策太空望远镜 (SpitzerSpace Telescope,缩写为 SST )单独或共同作出的发现,不断改写着观测最远星系的 历史 。

正应了那句话“ 没有最远,只有更远! ”

>>>

2015年5月和9月,发现了两个最远星系候选者,前者被命名为 EGS-zs8-1星系 ,距离地球约131亿光年;后者被命名为 EGS8p7星系 ,距离地球约132亿光年。

按照目前对宇宙年龄的估计,它们分别诞生于大爆炸 6亿年 和 5亿年 后。

EGS-zs8-1星系的红移是此前测量中 最高 的,最初由HST和SST识别,后来使用夏威夷凯克天文台10米望远镜进行了详细观测。

根据这些观测和分析结果,研究人员认为EGS-zs8-1中的恒星“年龄在1亿到3亿年之间”,是 非常年轻的恒星 ,也是 宇宙诞生后的第一批恒星 。因而,EGS-zs8-1在当时被认为是迄今为止被观测到的 最古老星系之一 。

观测结果还表明,EGS-zs8-1形成恒星的速度是银河系的80倍, 非常活跃 。

此外,根据SST在该星系和其他早期星系中观察到的独特颜色,科学家认为可能是这些星系中的原始气体相互作用导致 大质量年轻恒星快速形成 所造成。

对该星系的进一步研究,有可能揭示在早期星系和年轻恒星里形成 重元素的类型和数量 。

>>>

2018年,在观测SPT-CLJ0615-5746星系团时,HST非常幸运地发现了 SPT0615-JD星系 。

这是一个很小的、处于 胚胎期 的星系,距离大爆炸仅 5亿年 ,HST是借助引力透镜原理,拍摄到了这个星系的照片。

天文学家估计,这个小星系的质量不超过30亿太阳质量(大约是银河系质量的1/100),直径不到2500光年,只有小麦哲伦星云的一半。该星系被认为是大爆炸后不久即出现的 年轻星系的原型 。

虽然在早期时代,已经看到了一些其他的原始星系,但由于它们的小尺寸和巨大距离,看起来都像是小小的红点。

然而,在一个巨大的前景星系团的引力场作用下,不仅放大了背景星系发出的光,而且还将目标星系也放大成了小弧形(约2弧秒长)。

结合HST和SST的数据,该新生星系的红移值高达10,其时间可回溯到 133亿年前 ,即宇宙诞生后4~5亿年。

科学家指出,这个星系已经处于 HST探测能力的极限 ,后续工作将由韦伯太空望远镜继续,包括早期宇宙中 恒星诞生、演化的细节 以及 早期星系的子结构 问题。

>>>

2014年1月5日-9月28日,HST利用ACS和WFC3的红外通道,在南天波江座附近,又观测一个非常遥远的星系,并将其取名 Tayna ,意思是“第一个出生”。

这次观测和成像也利用了引力透镜原理,大大增强了星系的光线亮度,使其看起来比正常亮度高20倍。

根据其红移数据,科学家估计它距离我们 约有133亿年 ,相当于 宇宙诞生后4亿年 ,是当时发现的 最远天体 。

它的大小与大麦哲伦星云相当,里面的恒星形成速度为大麦哲伦星云内恒星形成速度的10倍。

>>>

HST于2015年2月11日和2015年4月3日对北天区进行深入观测,并于2016年3月3日在大熊 星座 方向发现了可能是迄今为止已知的 最远星系 ,但当时并未估计出该星系的红移量。

2017年4月,北京大学科维理天文与天体物理研究所江林华领衔的国际团队利用世界上最先进的地基红外望远镜之一——夏威夷山上10米口径的凯克望远镜,对这个星系进行了深度光谱观测,基于光谱分析和计算得出该星系的准确红移为 10.957 ,证实其为 134亿光年 之外的星系,即这个星系只有 3 4亿岁 。

由于该星系红移量高达11,因此将其命名为 GN-z11 ,其中z就代表红移。

研究团队不仅从光谱中读出了准确红移,也读出了其他信息。

光谱显示有三条发射线,由碳和氧的二次电离气体发出,表明该星系中已有丰富的非氢非氦元素。该信息暗示,新发现的星系可能 并非宇宙中的第一代星系 。

这个发现对理解宇宙早期星系和恒星形成有重要意义,为研究宇宙 极早期天体 打开了一扇窗口。

HST和SST联合成像显示,GN-z11比银河系小25倍,恒星质量仅为银河系的1%。然而,GN-z11的成长速度非常快,形成恒星的速度大约是银河系的20倍。

>>>

HST和SST对于宇宙极深处和极早期的观测和取得的成果已经今科学家万分激动。

红外波段更宽、仪器观测精度更高的韦伯望远镜应当能够观察到 更遥远 、 距离大爆炸仅几亿年 的早期宇宙和第一批恒星、星系面貌,有可能取得更具突破性的成果。

说实话外文期刊,本科学历发表有写困难,可以帮你尝试下。

我院2017届本科毕业生张雅鹏在《NATURE》发文, 首次在太阳系外行星大气中发现和测量同位素

南京大学天文与空间科学学院 昨天

一国际天文研究团队首次探测到系外行星大气中的 碳同位素13C ,并发现其相对含量高于地球标准(图1)。这有助于研究者们追溯此类行星的形成与演化 历史 。相关研究论文(标题为“The 13CO-rich atmosphere of a young accreting super-Jupiter”)于2021年7月15日在《自然》(Nature)杂志发表。该论文的第一作者 张雅鹏 2017年本科毕业于 南京大学天文与空间科学学院 ,现为荷兰莱顿天文台博士研究生。

图1: 探测系外行星大气中的同位素(想象图) Daniëlle Futselaar

1穆朗玛峰 应用广泛的同位素 同位素(isotope)是指同一化学元素的不同种类。这些同位素虽然质子数目相同,却有着不同的中子数目。例如,包含6个质子以及6个中子的碳原子是最常见的12C,但也有碳原子含有7个或8个中子,称为13C或14C。虽然它们的化学性质相近,但各种同位素的形成过程和对环境的反应却不尽相同。因而,同位素被广泛应用于各种研究领域——从癌症、心血管疾病的检测,到气候变化以及化石年龄的推断等。天文学家亦利用同位素来研究恒星与星际介质的演化,太阳系以及系外行星的起源。

2

丰富多样的系外行星

迄今天文学家们已发现超过四千颗系外行星,并且这一数字仍在迅猛增长。而绝大多数系外行星却与我们太阳系内的行星有着巨大的差异。它们或有着极高的质量(例如,“超级木星” super-Jupiter),或占据着的极近的轨道(“热木星” hot-Jupiter)……系外行星的多样性给行星形成理论带来了新的挑战。许多最基本的问题仍困扰着天文学家:行星的形成路径究竟是自上而下,还是自下而上?它们形成于何处?轨道是否迁移?……解开这些谜题的钥匙之一便是系外行星的大气成分,它们如同化石遗迹一般记载着这些行星遥远的过去。

图2: 行星形成环境示意图。行星诞生于恒星周围的原行星盘中,一氧化碳CO是碳元素的主要载体。CO雪线代表CO为气态或固态的分割线。位于CO雪线内侧的两颗行星代表太阳系木星和海王星当前的位置,而TYC 8998 b则远位于CO雪线之外。在如此遥远的距离,大部分CO冻结在固态物质表面,成为行星形成的主要原材料。由于13C更易结合在固态表面,导致最终构成的行星中更富含13C。

3 用同位素追溯系外行星起源 研究者们利用欧洲南方天文台(ESO)的甚大望远镜(VLT),发现在一颗名为TYC 8998-760-1 b的超级木星大气中两种碳同位素的比例不同寻常。这颗行星的重量几乎是太阳系木星的14倍,距离地球300光年。这是天文学家们首次实现对遥远系外行星中同位素的观测。他们利用不同的光谱吸收信号分辨出13CO和12CO(一氧化碳分子的两种同位素形式),并测定两者的相对含量。天文学家们预期星际介质中13C和12C的含量比例约为1:70,但这颗行星大气中的13C却要多一倍。这颗行星大气中13C的“超标”,为我们揭示其可能的起源过程提供了线索 (图2)。张雅鹏解释说:“这颗超级木星距离其宿主恒星十分遥远,是日地距离的160多倍。在如此远距离下,原行星盘(protoplanetary disk)中更多的13C冻结在固体物质表面。而这些固体物质被诞生于此的行星所吸收,造就了如今观测到的富含13C的大气”。 因此,通过测定大气中同位素相对含量,研究者们得以追溯行星形成的位置以及周围的物质环境。

该论文的通讯作者、莱顿大学教授Ignas Snellen说:“这一发现为研究系外行星大气与行星形成之间的关联开辟了一条新的路径。今后,天文学家们将会把同位素观测扩展到多样化的系外行星系统中,向揭秘行星起源更进一步。现在,这仅仅是个开始!”

有关宇宙的论文怎么发表

刊号:CN31-1385/N 出版:上海科学技术出版社《科学》编辑部 地址:上海钦州南路71号 邮编:200235 《空间科学学报》空间科学是当代高科技发展的前沿领域之一,《空间科学学报》是我国空间研究界有影响综合性刊物。所刊载的内容由以空间本身为研究对象的研究成果和与空间环境有关的基础研究,应用研究及技术研究成果构成,报道的主要学科分支包括空间天文学、空间物理学、空间化学与地质学、空间生命科学、微动科学、空间材料科学和空间地球科学等。主要栏目有:理论研究、探测与实验、综述、研究简报,学报动态等等。 期刊分类: 双月刊 创刊年份: 1981 国内刊号: CN 11-1783/V 国际刊号: ISSN 0254-6124 邮发代号: 2-562 定价: 20元/期 主管单位: 中国科学院 主办单位: 中国科学院空间科学与应用研究中心 中国空间科学学会 编辑单位: 《空间科学学报》编辑部 天体物理学报(英文版)Chinese Journal of Astronomy and Astrophysics简 介: 创刊时为中文期刊,2001年改为英文刊。主要刊登天文学和天体物理学领域的原创性研究论文。主要栏目和报道范围:“研究快报”用来报道天文观测的新结果及新理论;“特约综述”聘请国际知名天文学家就某些热点问题进行专题评述。 期刊分类: 双月刊 创刊年份: 1981 国内刊号: CN 11-4631/P 国际刊号: ISSN 1009-9271 邮发代号: 2-187 定价: 20元/期 主管单位: 中国科学院 主办单位: 中国科学院北京天文台 编辑单位: CJAA编辑部

地球来自太阳系。太阳系来自于庞大的银河系。但还有许多像银河系一样庞大的星系。甚至可能在宇宙外还有很多个宇宙。每一个宇宙里都有一个你。每个你都在做一模一样的事情!

一般一个月以内,主编直接拒稿的话,会给你回复的。你也可以直接咨询。涉密的文件或数据当然不能发表,如果属于科研成果且符合相关法律的话,当然可以投稿~

宇宙随着空间范围的增大,物质逐步增多,引力场也相应地增强,下面我给大家分享关于宇宙的科技论文,大家快来跟我一起欣赏吧。

奇妙的宇宙世界

关键词:镜子假说,奇点无限大,纯粹的运动,能量货币论。

论文 摘要: 边缘星球的速度是不是光速?如果命题成立,那么边缘星球的另一面光线是无法发散的。如果以光线逃不出宇宙边缘而论,因为宇宙的总质量大于光线的逃逸能量,光线就会弯曲,在宇宙边缘徘徊。甚至像有人预言的,再无穷的直线在宇宙中也能弯成一个圈,任何光线将形成一个闭合。因此宇宙边缘就是一个全反射的大镜子

宇宙大爆炸,超新星的爆发,常使人与原子的裂变、衰变、跃迁相 联系,与炸药爆炸相联系。然而它们又有本质上的不同。宇宙大爆炸,其机制完全超出了人们的想象,喷发的竟是些基本粒子。各种闪耀着光芒的力的触发现象,有着怎样的奥秘呢?

宇宙大爆炸喷发出的基本粒子,它们是如此基本以致我们怀疑宇宙奇点的存在,我们失去了大与小的观念。粒子的形成是瞬间的,而在那一瞬间我们失去了对时间的理解。粒子的每一次快速吸引与组合都以毫秒、纳秒 计算 ,极大与极小瞬间达到统一。极大与极小又带来了数量多少的认知,那些比质子、 电子 还基本的粒子到底有多少呢?这些粒子竟组成了三千亿个星系!这些粒子的多少几乎引起了我们对感觉的怀疑。是的,将两个镜子相对而立,中间放两个小球,在相对的镜子里你能看到多少个小球呢?无数!电脑也能模拟出无穷,在屏幕保护程序中你能看到图形延续的尽头吗?看不到,如果有可能的话它会一直延续下去,并且它也如人的面孔一样永远不会重复。这是不是一种幻觉?光线的传播是我们的唯一的凭证,如果我们不相信光线,我们就得不到任何实在的真理。

既然我们造出了镜子,我们就有理由相信宇宙的边缘有可能是一面面耦合的镜子,或许像足球的内部一样。镜子从各个不同的角度与方向反射,以造成宇宙形象在感官上看起来的无穷。我们所说的宇宙的边缘,是星球能达到的,而不是光线能达到的。由边缘星球的距离,我们才能知道光达到的距离,也是宇宙寿命的年限。而边缘恒星向外辐射的一面,光是怎样发散的呢?边缘星球的速度是不是光速?如果命题成立,那么边缘星球的另一面光线是无法发散的。如果以光线逃不出宇宙边缘而论,因为宇宙的总质量大于光线的逃逸能量,光线就会弯曲,在宇宙边缘徘徊。甚至像有人预言的,再无穷的直线在宇宙中也能弯成一个圈,任何光线将形成一个闭合。因此宇宙边缘就是一个全反射的大镜子。

我们不知道镜子是光滑的还是凹凸不平的,我们只知道宇宙在扩散,镜子也在扩张。我们看到的每一次超新星的爆发,各个镜子在一同相互反射中会导致多个同一物像一同发生作用的假象。这犹如你在由几十、几百个太阳能电池板的玻璃面上看到了几十、几百个太阳!而由于光线传播缓慢的 历史 性,镜子远近的不同,甚至不同的镜子处于神秘的且不同的四维及四维以上的时空里而使光线与历史发生严重扭曲。扭曲会使星系的大小、颜色甚至立体弯曲构象等一切都发生变化。因此我们看到的多个不同星系,甚至外形、时空的远近很不相同,其实它们是同一星系不同侧面、不同维度、不同历史时期的外部景象,甚至是无数平行时空同时存在的表现。

镜子假说只是一种假说与推论,然而它极有可能导致我们对 科学 的失望,使科学走向死胡同。然而我们对它完全不用在意,在我们的现实生活中,在我们的周围,在我们的 社会圈、生物圈、大气圈等数量级上,它是完全站不住脚的。即使如此,假如你团起一团泥巴,你能说一下它有多少个原子吗?这团泥巴是实在的,因此原子的数目是实在的,它是一定的。极多并不能够引起恐惧,极多只是一种客观存在。我们利用隧道显微镜可以对原子的个数进行清点。电子虽然以光速运转,然而它们各自的区域十分明显。

如果把原子变成房间,这团泥巴就是一个现实中的“超级立方体”,如果你进入其中,但并没有机关,你能顺利出来吗?电子的旋转并不能对你造成威胁,真正的威胁是极速的接近光速的旋转能将时空严重搅乱并使时空扭曲,原子核的巨大引力也会使时空产生漩涡塌缩,因此找准方位并顺利出来几乎是不可能的。我们在显微镜中所看到的“球体”的原子,都是因为他们本身结构而发生时空严重扭曲的东西,它们真的都是些球体吗?我们能数出它们的个数,但它们是否真的能论“个”?

现代 大型望远镜的深空探测使我们看到了宇宙的原始风貌,我们对宇宙大爆炸能够再一次回放。我们看到一个小点在放光,慢慢扩大。小点是一个圆亮斑,圆的周缘是宇宙的边缘,而圆斑的外围没有运动与能量的承载,也既没有时空,没有时空的东西是什么?它是漆黑一片!我们不能再推理了,因为无论怎么说它都是荒谬不可信的。然而有一点我们是确信的,就是假如实在论学说成立,假如这个球存在,这样“物质是实在的,星系有三千亿个”,同样“一团泥巴里有无数的原子,尽管无数,它也是数目一定的”,这些都可以成立了。

很显然“漆黑一片”的推理是错误的,因为我们的任何望远镜都逃不出这个亮斑的范围,并且看到的仅仅是这个亮斑中的一小部分,我们永远无法看到亮斑的外围。这种结论使我们失望,同时也使我们有了一个惊人的发现,既时空影像达到一定维度其构象产生了隧道效应,或者称其为纸筒效应。因为它只有时间与空间两个变量,我们称其为宇宙的四维纸筒影像模型 ,简称纸筒模型。这个纸筒对我们认知真理的过程是一个严重的阻碍,在短期内无法打破,或者说我们逃不出这个宇宙,我们摆脱不了这个宇宙的总能量的束缚。然而如果我们永远摆脱不了这个时空及“看守”这块时空的巨大能量,我们就永远看不到宇宙的外部世界。这也给我们提供了一个信息,就是外宇宙是有可能存在的,但它采取了宇宙能量对光线巧妙地完全屏蔽的方法,使我们怎么也找不到它。

由此我提出本宇宙、外宇宙与前宇宙的概念。外宇宙是我们宇宙外部的总宇宙世界,我们逃出我们的本宇宙,就到达了一个“五维空间”,这样我们就能真切的看到我们的四维宇宙构象是怎样的一个管道系统(这仅仅是个假设),管道不断的弯曲,有可能有交叉联合的地方,这就是所谓的时光隧道。如果我们的飞船如子弹般直线穿梭,冲出了管道的壁(这个壁并不远,或许就在我们的身边,只要我们的速度足够大。这个壁有可能是柔性的并能自动愈合),但很快就冲进另一个管道进入本宇宙的另一个时空段(这个时空段有可能很小,或者几秒钟的距离),这就是所谓的时空折叠的UFO式旅行。我们难以想象这是否会造成时空管道的千疮百孔!前宇宙是我们所能看到的,如果宇宙是不断循环的话,如果我们幸运的话,当我们的太空望远镜功率足够大,我们穿越了奇点临界,随着视野一片亮光的闪过,我们看到的将是前宇宙那遍布超级黑洞的处于垂死边缘的景象。黑洞造成光的折射,这是一个五彩斑斓的彩球世界。

宇宙在爆炸初期,基本粒子在极短时间内快速组合,新物质急速产生。基本粒子体积是极小的,极小的体积是否就意味着它们相互组合时间的极快呢?我们从它们极短的寿命周期或许就会明白它们是处于一个与我们截然不同的另一个时间极快的时空之中。然而极快的组合速度就意味着极大的力吗?我们知道原子核内巨大的能量就是极大力的真实表现,是否是力造成了我们现实世界各个数量级时空的断层?

如果我们有一个单位换算,如果我们能进入微型粒子之中,我们不能保证介子的寿命比地球的寿命还长,我们可以高效率的快速完成生物进化与现代高技术文明。然而那不过是立于地球上的人们眼中的“快速”与“高效率”罢了。我们不知道这里面是否有高级文明的世界,因为它们湮灭的速度使我们看不到它们的结构。

宇宙奇点是比原子还小,还是无限大?它的极小与极快,是否是因为高密度以及由此引起的时空的弯曲而造成的假象?然而我们不可以将宇宙想的太复杂,如果将奇点想得无限大,宇宙进化的初始是一个漫长的过程,就必然否认运动与体积的存在,将我们在现实中能依据的东西在宇宙中抹杀掉。我们一定是要依据现实的,在离开提及的存在与相对运动的不可靠性下,我们的理论无法进行。然而正如前文所述,循环论毕竟是一种可以理解的存在。我们很难理解宇宙的不均匀爆炸与初始粒子的快速结合;我们也不清楚为什么随着小粒子的不断兼并与大物质的逐步合成,极快的时空怎么就给改变了;为什么光和粒子能极速运动,而到了大块物质速度竟给降了下来。由于速度的下降而造就的不同时空,不是一种并行关系,而是一种包含与被包含的关系。我们看不到另一个时空,当它能够显现出来,就已经小到装进我们的感光细胞里。它就是这种奇妙的关系。

莫名的速度下降,也是一种能量储存的结果。运动的能量被储存进固定的几何结构中,基本物由原来的放荡不羁到被束缚产生相对静止,运动也就降下来了。如果我们压桌子压不动,这里面就含有运动的力。

然而运动的极限就是达到光速,它使力淋漓尽致的发挥了出来,力不再储存而变成了它的本原存在。粒子要么就达到光速,能量完全变为运动,粒子不再有压力与质量。光子没有了质量,同时也不成为实体物质了。粒子要么就小于光速,能量必定遭到了储存,就有了质量与手掌压力。这就是光磁能量为什么没有压力的感觉的原因,这也同时意味着,凡有固体压力感的东西,就永远达不到真正的光速。困难的解决是实体束缚力能否真正解决,能量得到释放,使我们能够做光速旅行,同时飞船不致分解变成光磁能源。

我们试想是否还有超光速的东西。真正的极速是没有任何实体感觉而唯有运动。可见光虽于人没有神经感觉,却能被反射,被吸收,遭到扼杀。伽马射线越往上,产生的阻遏力越小。真正的极速是没有任何的阻遏并能畅通无阻的,同时没有任何感觉,包括机器仪表所能得到的感应!于是它让我们失去任何察觉的可能。它没有视力感受,没有热浪的灼伤与辐射的危害,它在宇宙中具有绝对的穿透性与不衰减性,对任何物质也没任何影响。不衰减,不被吸收,于我们也没有感觉,而我们却也不能怀疑它的存在。它只存在于我们的观念之中,并且是宇宙的极限存在,它唯一的表现形式就是纯粹的运动。

宇宙的初始扩张是不均衡的,如果过于均衡的话,宇宙中就只会有各种射线,而没有从能量到物质再到黑洞的完美渐变性。这其中要有一种程序,一种编码。如果奇点内部有编制的话,它比生物的生理构造更加复杂,机制更加繁琐。它使宇宙中的物质与能量,使分属各个不同数量级又相对独立的东西,形成了交互作用,这是一个相互交融的统一体。

我们知道光子运动是最快的,基本粒子其次,原子也十分快速。星球运动虽然很快,但再快也达不到光速,也没有基本粒子快。这在一定程度上支持了能量储存与运动释放学说。我们一直不知道能波为何具有绝对运动的形式,虽然它几乎不受任何引力作用,原因就是它能量的绝对释放。

然而从月球到地球再到太阳各自的公转速度,以致河外星系、总星系以至整个宇宙的扩张,却表现出了数量级越大,运动速度越快的现象,最远的星系接近光速,这就是大质量产生大能量的结果,这种巨大的能量竟导致运动与质量的关系向相反的方向变化。

我们看到过星系的碰撞发出巨大的火花与强烈的声波,也看到过液体炸药的威力,看到过基本粒子剧烈对撞的惊心动魄的一面。在不同的数量级上我们能否对它们进行比较呢?如果我们把它们都看作相等大小,我们会怎样认知呢?我们会得出它们的剧烈程度是一样的结论,甚至在相对比较中我们会迷失。

这是越深入原子内部,能量越大,然而越大块的物质又包含更多的化学键等轻微能量之故。事实证明它们具有众多不可比性,如果我们把它们都换算成基本能量呢?黑洞的威力,氢弹的威力,与粒子碰撞的威力就有了可比性,表现为大物质大能量。

宇宙存在的两个定律,既大质量慢相对运动,小质量快相对运动定律,及大物质大能量,小物质小能量定律。二者是相互影响的,也具有相对性。

我们发现,在宇宙中并不是有着等级结构,制度十分严格。并不是因为星系太巨大了,就发射恒星;而恒星也不因其巨大,就发射原子,而原子这一级才有资格发出光线。不管是大到星系团,还是小到基本射线,它们都有一个特点,都以基本光子,一份一份的能量作为基本单位!我们把这种论断,叫做能量原子说,或能量货币论。这一论断也建立在实在论的能量基本思想上,也是我们实在论的研究中的一个重要的立足点,既能量不可再分,一份能量为1hv。我们把它称为宇宙分币,它或许应纳入宇宙的本位换算中,起到重要的实在论的换算作用。

或许我们因为四维及更多维度而迷茫,因为相对论而使许多定理不适用,然而任何知识都具有相对稳定性。在一份能量还没有再次分解以前,在能量实在作为宇宙本源存在的认知具有稳固地位以前,能量货币论将如牛顿经典力学一样,在人类的认知 历史 中发挥巨大作用。

点击下页还有更多>>>关于宇宙的科技论文

浩瀚宇宙论文怎么写好发表

描写宇宙浩瀚的段落如下:

1、在美丽而神秘的宇宙中,人们只能望洋兴叹。点点的繁星好似颗颗明珠,镶嵌在天幕下,闪闪地发着光。淘气的小星星在蓝幽幽的夜空划出一道金色的弧光,像织女抛出一道锦线。严冬的夜晚,几颗赤裸的星星可怜巴巴地挨着冻,瑟瑟发抖几乎听得见它们的牙齿冷得捉对儿厮打的声音。

2、浩瀚的宇宙,往往给予人们神秘的色彩,一望无际的尽头,是否还有人们期待的第二个地球呢?极美的星夜,天上没有一朵浮云,深蓝色的天上,满缀着钻石般的繁星。亮晶晶的星儿,像宝石似的,密密麻麻地撒满了辽阔无垠的夜空。

3、宇宙中的星星,它是那么大,那么亮,整个广漠的天幕上只有它一个在那里放射着令人注目的光辉,像一盏悬挂在高空的明灯。清晨,大风雪停下来了,不过还得过好久才天亮。几颗残星偷偷地睁开眼窥视那一片雪白的银白世界。渐渐地,残星闭上昏昏欲睡的眼睛,在晨空中退隐消失。好一颗流星在夜空里划出银亮的线条,就像在探寻着世界里最美好的未来。

4、外太空星际空间,那么在如此广袤的星际空间中,除了可以看得见的各种星云外,还有没有别的物质存在呢? 直到19世纪末,很多人还认为星际空间是一无所有的真空。进入本世纪后,天文学家才发现有不少表明星际空间存在物质的迹象。

5、乳白色的银河,从西北天际,横贯中天,斜斜地泻向那东南大地。夏天的星星就像调皮的孩子一般逗人喜爱。几颗大而亮的星星挂在夜空,仿佛是天上的人儿提着灯笼在巡视那浩瀚的太空。星空倒映在这汹涌的海面上,便随波上下跳舞,时现时灭。宇宙的秘密,还要我们继续挖掘。

我是一名大三的学生,最近有些想法,想写篇论文,大学生发表论文一些什么社也要收钱吗?

这个世界,那么大,能相遇,不容易,苏暖觉得她一定是积了好几辈子的福气才换来遇见他们,青春那么短,怎么可以不珍惜,世界那么大,我们居然能相遇。

研究生发表资格论文,如何找到适合投稿的期刊?

宇宙概述论文怎么写好发表

地球来自太阳系。太阳系来自于庞大的银河系。但还有许多像银河系一样庞大的星系。甚至可能在宇宙外还有很多个宇宙。每一个宇宙里都有一个你。每个你都在做一模一样的事情!

宇宙就是天地万物的总称。宇宙一词最早出现于战国时代尸校的《尸子》一书中。尸佼认为:“上下四方曰宇,往古来今曰宙。”这样,我们可以知道“宇”是表示空间,“宙”是表示时间。空间和时间的概念,随着历史的演进而逐渐发展。宇宙的界限,随着天文学的进步而逐渐扩大。我们的祖先由于受条件的限制,只能用眼睛观测大地万物,因而错误地认为宇宙是有边界的,所以人们常说“近在眼前,远在天边”。虽然先祖关于宇宙边界的认识有失偏颇,但他们在2300多年前就巧妙地把时间和空间结合在一起,这一点是值得肯定的。而欧洲在中古以前,还是把空间与时间割裂开来的。关于宇宙的思想,我们的祖先要比当时的西方人丰富得多。随着科学技术的发展,观测工具日益先进,人们对宇宙的认识逐步加深,从太阳到太阳系,再扩展到银河系,河外星系、星系团、总星系。现已能观测到200多亿光年的宇宙深处,这个范围内包含了10亿个以上的星系。“物理宇宙”即从物理现象上进行解释的宇宙。它在空间上是无边无沿的,在时间上是无始无终的,部分为人们所见,即“观测到的宇宙”,大部分是人们的观测所不能及的。宇宙分为凝聚结构宇宙与耗散结构宇宙,凝聚结构的宇宙是无生命的宇宙,那时的宇宙是一个巨大的黑洞,所有的物质能量都向宇宙的核心收缩,慢慢的凝聚成一个巨大的物质能量团。这时的宇宙中的物质(质量体)转化成能量的速度远远的小于能量转化成物质的速度,所以宇宙便凝聚成一个超巨物质能量团。宇宙的这种状态并不能长久维持,当宇宙收缩到一定的程度后,由于其内部的温度与压强的升高,物质转化成能量的速度慢慢的变快,而能量转化成物质的速度慢慢的变慢,当这种变化到了一个临界点后,整个宇宙便发生逆转,逐渐物质转化成能量的速度远远的大于能量的速度,整个宇宙开始急剧澎涨,达到一定的程度后,宇宙便发生大爆炸,于是宇宙便开始释放与辐射能量,这便是耗散宇宙的开始,耗散宇宙便是生命宇宙。因此,宇宙是散则生,聚则死;而生命是聚则生,散则死。宇宙与生命是如此的辨证统一的。在以地球为中心的40万亿公里的范围内,没有第二个可供人类生存的星球了

没分不写。至少200

无才贫农准备写一篇关于宇宙演化的论文,名字是《九礼宇宙人体无字天书》。试图用古老而全新的全息多维思维全面的展示宇宙、人体、万物的全息多维时空结构。古学借鉴《黄帝内经》等,今学借鉴《全息生物学》等,无间隔因素的描述无穷无量的各种宇宙真象。一粒种子演化成大树和每一粒种子的演化;一个受精卵细胞演化成人体和人类历史的演化;全息多维时空的各种全息要素和全息对应关系;太极的种类和不同的五行排列顺序等等。以此为基础,找出他们与宇宙的全息对应关系,推理宇宙的演化过程,然后用现代科学的实际观测对照,消除不同时空的时间差异来验证,反复循环论证,力图达到无间隔的天地作证,最全面的展示宇宙演化的历史。把天文学、地理地质学、人类历史、人体解剖生理卫生,细胞分子学等等百科知识全部用人体科学的线索统一贯串,全息对应出宇宙演化的主题和规律原理。万物的无穷结构对应无数美丽的神话故事。

相关百科

热门百科

首页
发表服务