首页

职称论文知识库

首页 职称论文知识库 问题

ai论文发表量

发布时间:

ai论文发表量

我国人工智能弯道超车走在世界前列,

近些年的科技方面在人工智能的的飞速发展,人工智能不仅给我们的日常生活带来了一些新鲜的亮点。神 经 猿 很好的,该学校为全国高职高校提供人工智能、大数据领域实训及学分课程以及高校人工智能实训室、实验室建设。 ..

“说实话,我很不喜欢「人工智障」这个词。”

在与掘金志的聊天中,一位从事计算机视觉方向的算法工程师多次表示,他讨厌这个词很久了,几乎是本能的反感,即便只是一种调侃,在他看来都是一种嘲讽。

这种嘲讽就好像是,一名路人,对着自己刚刚学会爬的孩子冷嘲热讽:这孩子真笨,连路都不会走。

他甚至坦言,如果身边有同事使用这个词自嘲,他会刻意与之保持距离,因为这种自嘲实属对自己的工作、对专业知识的“不尊重”。

拥有他这种技术性癖好的工程师不在少数,在掘金志询问的多个从业人员之中,都表达了类似观点:通常被问及人工智能水平时,类似表述以 「弱人工智能」 为准。

某负责品牌传播与公关的业务专员透露,如果在对外交流中使用了「人工智障」之类的词,被举报或是被公司发现,“直接影响绩效考核”,因为这类不专业的表述很可能导致负面的传播效果。

在与这些人的谈话中,掘金志发现,在AI圈内,从业者对于AI有着清晰的认知,在外宣的时候,对AI的负面化表述都较为严谨。

然而,在圈外,接二连三发生的各种AI事故,让大众对AI的真实能力产生诸多怀疑,关于人工智能变成人工智障的言论甚嚣尘上,唱衰人工智能的声音时常见诸报端。

表面上,这只是一场关于AI的舆论争议。但,其实质却是企业与大众对AI话语权的争夺,并会直接影响到AI的推广、落地与应用。

“如果大众无法对新技术形成有效的认知,那么新技术的推广则是非常缓慢的。” 某传媒大学在读研究生表示,大众对于新技术的接受能力是逐层递进的,这个进程很容易受到舆论影响,而负面舆论则存在一种 「爆破效应」 ,可能会直接摧毁此前建立起的「信任基础」。

比如自动驾驶,公众对其的信任基础很薄弱,出现多次事故之后,这种信任实际上已经消耗殆尽。

相关调研报告显示,自动驾驶一哥——特斯拉FSD在国内的激活率不足10%,甚至相当一部分人没有开通AP服务,即便在开通的人群中,也很少有人会使用AP功能。

这种现象固然有其客观原因(比如路侧数据不够、算法能力有限),但从舆论传播的角度看,自动驾驶的一次失误,比起传统 汽车 的十次车祸更加严重,从而也给自动驾驶的进一步落地,带来阻碍。

那么,如何给大众建立起对AI的有效认知,推动AI更快、更广泛地落地?

掘金志通过采访之后认为: 媒体报道、企业外宣、大众知识普及教育 ,是三个最主要的途径。而围绕着大众展开的各种「认知教育」,也注定是一场旷日持久的「攻坚战」。

人工智能应用有一个有趣的悖论: 当一种AI技术已经非常普及的时候,人们普遍不会认为这就是AI。

好比上世纪八九十年代,一台黑白电视机可能是划时代的象征,需要手动调频;但现在遥控型的彩色电视机成为标配,人们也不觉得这就算智能。又比如,小区停车场通过车牌识别进出、刷脸进入小区等,在近几年开始普及,但人们很少将之与AI联系起来,即便这里面实际上用了各种识别算法、芯片等等。

在大众的认知里,人工智能理所应当达到电影里机器人的水平,或者近似人一样地思考、行动。

“大众有时对于人工智能过于乐观,甚至高估。” 中国计量大学信息学院副教授、人工智能专业负责人杨力认为,作为走向 社会 的新技术,人们对AI的理解并不全面,认为AI应该无所不能,这种认知与实际并不相符。

在掘金志看来,大众对于人工智能的认知比较浅层,这主要表现在两个方面:

这种浅层认知很容易被诱导,而在一些不着边际的宣传之下,AI本身的能力被过分夸大,大众对AI产生盲目「自信」或高估。

“外行看热闹,内行看门道。”

杨力表示,以人脸识别为例,5年前可能人们会觉得很神秘、先进,但在经过消费类电子的普及之后,许多人觉得人脸识别已经没什么难度了。当他给学生们授课讲人脸识别时,同学们都觉得这已经是很成熟的技术,“并不新鲜,难度不大。”

但其实人脸识别距离高度智能化还有很长一段距离,在许多复杂场景下,很难捕捉到有效的人脸信息。并且,人脸识别在小规模(数据库较小)场景下效果很好,但当数据库非常大的时候,识别的准确率就没那么高了。

“大众由于缺少专业知识,很容易把复杂问题简单化,但从事AI研究的人对此却非常谨慎,普通人觉得简单的技术,从业者可能会觉得‘这个做不了,那个做不了’,简单而言, 就是望山跑死马的感觉。 ”

掘金志发现,由于缺少专业的通识教育,大众对于人工智能的了解渠道比较单一,多数是通过媒体报道、企业宣传这两种途径来触及AI,只有小部分人会自发研读相关书籍、学习课程,以增进了解。

从传播的角度看,如果受众获取信息的渠道有限,那么该信息渠道的控制人将具有信息传递的「控制权」,形成一种「舆论垄断」的局面,而信息在经过多次传播之下,极易「失真」。

实际上,这种「失真」是在所难免的。在AI的传播过程当中,形成了圈内和圈外两大群体,由于人工智能本身属于较高门槛的专业,圈内(企业)和圈外(普通受众)之间的连接,主要通过媒体来实现。

但媒体宣传存在问题是,许多从业者要么科班出身,要么跨界转型,真正懂AI的媒体人只有少数。并且媒体本身随着大数据、互联网技术的变化,进一步下沉到各平台,又造就了无数自媒体,形成了媒体界良莠不齐的局面。在流量导向的环境下,各种消息报道层出不穷,而这类信息又存在「放大效应」(比如标题过于惊乍),以至于大众接受到的信息与实际信息存在「误差」。

在人工智能最为火热的时候,不少AI企业为了拿融资、打知名度,纷纷投放广告、软文,宣传产品,造成人工智能已经能够大规模落地的假象。后来AI遇冷,大众对AI的调侃某种程度上可以看作是前期宣传过于猛烈的一种「反噬」。

当然,圈内也注意到大众传媒存在的局限,不少企业在重要的社交平台上都开辟了宣传渠道,但由于内容差异(比如太垂直、产品推广)或渠道差异,并不符合C端属性,多数AI企业无法直接建立起与大众的有效连接。

因此,在“企业-媒体-大众”这一传播链条下,由于大众传媒本身存在机制缺陷,导致大众很难在参差不齐的信息中,建立起对AI的有效认知。然而企业又不得不依赖大众传媒来宣传AI, 这种内在矛盾,是造成圈内与圈外对AI产生「认知差异」的重要原因。

“归根到底,还是AI人才太少。”在杨力看来,人才是推动产业发展的核心力量,当前AI处于爬坡阶段,技术本身的问题是造成大众对AI产生质疑的根本因素,舆论传播一定程度上加剧了这种影响。

解铃还须系铃人,不论是AI纵深发展,还是横向传播, 只有AI人才,可以给AI「正名」, 但现阶段的情况是,国内AI人才极度紧缺。

“应用型人才真的太少了。”杨力感叹道,当AI从空中楼阁走向田间地头,懂技术又懂行业的人“真的不多”。

而在工信部《人工智能产业人才发展报告(2019-2020)》(下称“报告”)里,预计我国人工智能产业内有效人才缺口达 30 万,而这仅是两年前的数据。实际上,在过去的两年里,根据掘金志观察,AI企业对人才的需求持续旺盛,整个AI产业的应用人才缺口进一步拉大。

作为技术/知识密集型产业,AI的人才准入门槛较高,对学历、工作经验非常看重。

根据报告,2019年AI企业发布的岗位中,仅有11.9%的岗位接受专科学历;也仅有5.4%的岗位接受1年以下工作经验的求职人才;接受提供应届生的岗位仅占3.3%。

这意味着要从事AI行业,基本上要求本科学历,同时,由于多数AI企业缺乏人力、资金和动力去培养应届毕业生(至少一年以上),企业对应届毕业生的需求并不旺盛,而更青睐那些拥有知识储备和实践经验的人才, 这种“排新”性质的招聘需求,又加重了人才短缺情况。

除此之外,AI对人才的专业性要求极强,尤其是算法研究、应用开发等岗位,60%以上岗位要求具备计算机、数学相关专业背景。

各种线性条件约束下,原本就短缺的AI人才,显得更加「紧俏」。

一位AI初创公司HR告诉掘金志,招人是一件很困难的事,“专业、学校、工作经历筛选下来,符合条件的人很少,加上公司要的是进来立马能产出的人,还要考虑薪资这些因素,优秀的人才很难招到;而走校招的话,优秀的毕业生早早被互联网、明星AI公司签下,剩下的也更青睐大公司。筛选去筛选来,选择真的不多。”

除了缺少与行业相结合的应用型人才以外,在杨力的观察之中,AI的另一个人才缺口, 是能够“扎下心来做基础性工作”的理论研究型人才。

根据斯坦福发布的《2022年人工智能报告》,虽然我国在AI 期刊论文的引用数、会议论文发表数量以及在人工智能专利申请数量上排名世界第一,但在AI会议论文被引数上却远落后于欧美。并且,一些创新性的基础理论、前沿 科技 的研究仍以欧美为主。

“很多人工智能的基础理论,都是由外国人/机构提出来的,比如现在比较火热的深度学习。”

杨力表示,这与我国人工智能起步较晚有很大关系,要弥补这样的差距,除了要加强对基础理论研究的资金、人才投入以外,也应该建立起标准的AI人才培养体系,为AI研究提供源源不断的人才活力。

“学校是培养人才的摇篮,理想的情况是, 一部分学生毕业以后从事理论研究,更多的毕业生进入行业,通过产学研联动,来推动AI的落地。”

掘金志了解到,当前我国人工智能产业已经初步形成“政产学研一体化”人才培 养生 态体系,但仍然处于起步阶段。2019年,人工智能专业正式获批列入本科专业名单,国内诸多高校开始自建或与企业共建人工智能学院(研究院),并开设AI专业。

然而,对于如何培养专业的AI人才,各大高校也正处于摸索之中,尚未形成行之有效的范式。

2019年,国内人工智能专业正式获批,被列入本科专业名单,但开办专业需要经过课程建设、实验条件、专业申报等流程,多数学校于近两年才开始正式招生。

换句话说,距离最早的一批AI本科生毕业,离毕业也还需要大概一到两年的时间。

如何把这一批新生培养成才,来填补当前存在的人才缺口,是一件并不容易的事情。此外,未来的第一批毕业生,其综合能力是否达标也极具象征意义。

“一方面,人工智能专业学的内容很难, 以前很多研究生阶段才开设的课程,现在放到本科阶段来学了, 对学生是一种压力,对老师的教学方式、技巧也带来挑战;另一方面,如何将人才培养与 社会 需求结合起来,让学生能够学以致用,也是难点。”

作为人工智能领域的资深学者,杨力在多年的执教生涯中,除了对AI有着深入的研究与思考外,也 探索 出了一些关于培养AI人才的「方法论」。

“首先要尊重学习规律。” 杨力告诉掘金志,AI本身对实践能力的要求较高,这就不能照搬传统学科的培养模式,即大一大二侧重于理论,大三大四侧重于专业。而应该理论和实践并用,先学习、再实践,在实践中学习,然后呈“螺旋式上升”。

在具体举措方面,他表示,可以通过成立 「科创小组」 的模式,鼓励学生以团队协作的方式参加各种学习竞赛、研究课题。

这种小组模式的优势在于:小组覆盖全体学生,通过团队协作,形成内部互帮互助的学习氛围,让成员都能参与到实践之中,成为一个「利益团体」;并且,小组的持续时间覆盖学生的整个大学生涯,所有成员都能共享「利益成果」。同时,小组成员之间互相帮助,从某种程度上也能给老师减轻压力。

“其次要因材施教,激发学生对AI的求知欲、 探索 欲。”

杨力表示,学生对AI的学习兴趣也呈现出明显的「二八定律」,即20%的学生求知欲很强,而80%的学生兴趣一般。

“对于这20%的学生,你只需要告诉他怎样做到最好,并且告诉他这个过程中需要注意的事项、细节,其余的无需太过关心;而对于80%的学生,他们的兴趣没那么高,就需要比较细致的指导,并且需要搭配一些「强制指派」,例如直接分配任务让他们参加。”

“再而,通过激励机制来刺激学生的创作灵感。”

比如,在课程设计时,将创新性纳入评分标准之中,以课程成绩来驱动学生进行创新。

例如,在做某个案例时,如果学生只是根据老师列的步骤照猫画虎,其成绩最高可能也就刚好及格,而剩下的分数则全靠个人创意和发挥。

“大多数学生需要老师给一些推力,而成绩就是最好的激励。”杨力表示,学生为了拿更高的绩点,便不得不“多费心思”,而不是敷衍了之,最终交上来的作品“往往有很多意想不到的亮点”。

“最后,教师与学生之间要形成良性互动的正循环。”

本科教学存在的一个普遍问题是,学生与教师之间的互动较弱,或者只存在于课堂之上,课外的联系非常少,“上课是师生,下课是路人”的情况并不少见。

在杨力看来,如果老师仅仅把教学当作是一种工作任务来完成,那么学生也会采取应付的态度。相反,如果老师富有责任感,学生也会受到其“以身作则的影响“,更有进取意识。

因而,老师可以通过带项目、线上线下互动等方式与学生沟通,来了解学生的需求,给自身的教学工作进行反馈,而这种反馈最终又将通过教学的方式来触及学生,形成「师生共赢」的局面。

除了培养AI人才方法论外,杨力也指出,培养人工智能专业人才需要 破除「唯研究生论」。

“读人工智能专业必须读研究生,不读研究生就没有前途。”

不少人持有这样的观点,但杨力却坚决表示反对。他认为,原来很多研究生的课程已经下放到本科来学,本科阶段的人才培养成体系之后,学生的理论、实践能力将能够满足AI行业的基本需求,一味追求研究生教育,只会造成AI圈越来越卷,无助于缓解行业人才短缺情况。

“当然,研究生教育也很重要,但研究生人才培养可能更应该倾向于基础理论方面, 而AI的规模化落地,需要更多应用型人才去推动。”

举个例子:很多传统制造业引进了人工智能,比如机械臂、自动化生产设备等,但由于缺少应用型人才,企业买回去的设备不知道该怎么使用,也不知道如何做到效益最大化,更不懂运营维护。

这样的岗位,并不需要从业者非常深厚的理论功底,而是有AI基础,又懂行业的人才。而在传统产业智能化升级过程中,类似的人才缺口非常大。

“实际上,当AI走向各行各业、落地之后,对人才的需求也会发生变化,而在本科阶段,通过理论学习加上与专业相关的 社会 实践,也能培养出优秀的人才。”

在刚结束的冬奥会上,杨力教授带领他的团队做了一个智能辅助技术,可通过视频来实现对选手动作进行回顾与分析,给裁判打分给予参考。

虽然只是一个比较简单的行为识别,模型并不精巧,市场上有很多AI公司具备开发该技术的能力。但让人欣慰的是,这个项目一经提出,学生们便踊跃参加,在导师的指引下,一步步挖掘数据、标注、建模、训练、测试,整个过程持续两周之久,大部分工作由学生完成,而且是在春节期间,有同学甚至因为出力不够而深感抱歉。

“Talk is cheap.”在杨力看来,这个项目别人有能力做,然而只有他们去落地实践了,并且整个项目由大一学生完成,过程远重于结果, 他们“代表着AI领域的新生力量。”

做这个项目也并非一帆风顺。

该项目的成员,中国计量大学信息学院 21级人工智能专业学生,蒋正阳告诉掘金志,小组在建模的时候,要么网络太大训练太慢,要么网络太小而不适合要求,难以达到预期目标。同时,训练也会遇到算力不够的情况。

经过多次失败尝试之后,小组不得不求助于杨力教授,后者补充了一种网络结构,该结构下,模型变得相对“较轻”,训练也可以符合预期。

最终,小组成功研发出“单板滑雪AI裁判技术”。该技术可在画面模糊、相机高速运动、长距离全景画面等复杂场景下,对运动员是否抓板进行精准识别,从而为裁判打分提供依据,助力「冬奥公平」。

“我们的专业知识有限,需要继续加强理论学习。通过这个项目,我们了解了从零开始做项目的过程、方法、难度,积累了经验。当然,最后看到项目跑出来的结果,内心还是很欣喜的。”蒋总结道。

杨力认为,遇到问题很正常,关键在于去行动、实践了。“人在学走的路上,会跌倒很多次,但不能因为跌倒,就只学爬,这样永远也不会走。”

这何尝不是国内AI发展的缩影。

在经历无人问津的韬光养晦期之后,国内AI于10年开始蓬勃发展,商汤、旷视、云从、依图等一众AI公司先后诞生,受到资本热捧,撑起国内AI的希望。但激情燃烧之后,随之而来的是行业落地难、商业化难、变现难等各种质疑。

如今的AI,正处于从爬到走的摸索期,磕磕碰碰、跌倒摔倒等时有发生,也被大众调侃成「人工智障」。

但杨力对此并不沮丧,反而感到乐观, 因为“有越来越多的企业、越来越多的人才参与到AI的发展、推广、落地之中”, 在“政产学研”模式的推动之下,AI也将被掀开神秘面纱,显露出最真实的样子,而大众在未来也会对AI形成一个“全面、客观”的认知。

在掘金志与多位AI从业者的交流过程中,几乎所有人都对AI充满希望,即便AI仍然处于「弱人工智能」阶段,他们仍然坚信,AI有着光明的未来。

“AI的浩海不止于边边角角,而在于改变世界。”开篇吐槽「人工智障」的那位工程师告诉掘金志,即便改变世界的路途,充满坎坷,但 “因为热爱,所以坚持。”

而对于大众的一些调侃和质疑,他迟疑了一下,回道:

“请给AI一些包容。”雷峰网雷峰网

前瞻产业研究院《中国人工智能行业市场前瞻与投资战略规划分析报告》

——综述篇——

第1章: 人工智能行业综述及数据来源说明

1.1 人工智能行业界定

1.1.1 人工智能的界定

1.1.2 人工智能相似概念辨析

1.1.3 《国民经济行业分类与代码》中人工智能行业归属

1.2 人工智能行业分类

1.3 人工智能行业监管规范体系

1.3.1 人工智能专业术语说明

1.3.2 人工智能行业监管体系介绍

1、 中国人工智能行业主管部门

2、 中国人工智能行业自律组织

1.3.3 人工智能行业标准体系建设现状(国家/地方/行业/团体/企业标准)

1、 中国人工智能标准体系建设

2、 中国人工智能现行标准汇总

3、 中国人工智能即将实施标准

4、 中国人工智能重点标准解读

1.4 本报告研究范围界定说明

1.5 本报告数据来源及统计标准说明

1.5.1 本报告权威数据来源

1.5.2 本报告研究方法及统计标准说明

——现状篇——

第2章: 全球人工智能行业市场发展现状及趋势

2.1 全球人工智能行业发展现状分析

2.1.1 全球人工智能发展所处阶段

2.1.2 全球人工智能行业发展概况

2.1.3 全球人工智能企业增长情况

2.1.4 全球人工智能行业布局分析

1、 企业布局情况

2、 AI领域高层次人才分布情况

2.1.5 全球人工智能行业竞争分析

1、 区域竞争情况

2、 企业竞争

2.2 全球人工智能行业投资现状分析

2.2.1 全球人工智能整体投资规模分析

2.2.2 全球人工智能融资轮次情况分析

2.2.3 全球人工智能企业融资情况分析

2.3 欧洲人工智能行业发展现状分析

2.3.1 欧洲人工智能市场发展现状

2.3.2 欧洲人工智能市场投资现状

2.3.3 欧洲人工智能市场应用领域

2.3.4 欧盟人脑工程项目(HBP)

1、 项目概况

2、 项目内容

3、 经验和启示

2.4 美国人工智能行业发展现状分析

2.4.1 美国人工智能市场发展现状

2.4.2 美国人工智能市场投资现状

2.4.3 美国人工智能企业数量分析

2.4.4 美国人工智能市场应用领域

2.4.5 美国大脑研究计划(BRAIN)

2.5 日本人工智能行业发展现状分析

2.5.1 日本人工智能市场发展现状

2.5.2 日本人工智能市场投资现状

2.5.3 日本人工智能市场企业数量分析

2.5.4 日本人工智能市场应用领域

2.5.5 日本大脑研究计划(MINDS)

2.6 全球人工智能行业发展趋势分析

2.6.1 全球人工智能行业整体发展趋势

2.6.2 全球人工智能行业技术发展趋势

第3章: 中国人工智能行业市场发展现状分析

3.1 中国人工智能行业所处发展阶段分析

3.2 中国人工智能行业发展现状分析

3.2.1 中国人工智能行业市场规模

3.2.2 中国人工智能企业层次和技术分析

3.2.3 人工智能热点细分领域分析

3.2.4 人工智能行业人才培养体系分析

1、 人工智能人才供需情况

2、 人工智能人才培养情况

3.3 4.3 中国人工智能行业生态格局分析

3.3.1 人工智能行业生态格局基本架构

3.3.2 人工智能行业基础资源支持层

1、 运算平台

2、 数据工厂

3.3.3 人工智能行业技术实现路径层

3.3.4 人工智能行业应用实现路径层

3.3.5 人工智能行业未来生态格局展望

1、 基础资源支持层实现路径

2、 AI技术层的实现路径

第4章: 中国人工智能行业市场竞争状况及融资并购分析

4.1 中国人工智能行业市场竞争布局状况

4.1.1 中国人工智能行业竞争者入场进程

4.1.2 中国人工智能行业竞争者省市分布热力图

4.1.3 中国人工智能行业竞争者战略布局状况

4.2 中国人工智能行业市场竞争格局分析

4.2.1 中国人工智能行业企业竞争集群分布

4.2.2 中国人工智能行业企业竞争格局分析

4.3 中国人工智能行业市场集中度分析

4.4 中国人工智能行业波特五力模型分析

4.4.1 中国人工智能行业供应商的议价能力

4.4.2 中国人工智能行业消费者的议价能力

4.4.3 中国人工智能行业新进入者威胁

4.4.4 中国人工智能行业替代品威胁

4.4.5 中国人工智能行业现有企业竞争

4.4.6 中国人工智能行业竞争状态总结

第5章: 中国人工智能行业投资现状及趋势分析

5.1 中国人工智能投融资规模分析

5.1.1 中国人工智能投融资规模

5.1.2 中国人工智能投融资轮次分布

5.2 中国人工智能投资企业分析

5.2.1 人工智能领先企业投资情况

5.2.2 人工智能行业独角兽企业

5.3 中国人工智能细分领域现状

5.3.1 人工智能细分领域投资结构

5.3.2 计算机视觉领域投资分析

5.3.3 语音识别领域投资分析

5.3.4 自然语言处理领域投资分析

5.3.5 机器学习领域投资分析

5.4 中国人工智能投资区域分布

5.5 中国人工智能行业投资趋势分析

第6章: 中国人工智能产业链全景梳理及配套产业发展分析

6.1 中国人工智能产业结构属性(产业链)分析

6.1.1 中国人工智能产业链结构梳理

6.1.2 中国人工智能产业链生态图谱

6.2 人工智能基础层分析

6.2.1 人工智能基础层功能分析

6.2.2 AI芯片市场分析

1、 AI芯片定义及分类

2、 AI芯片发展阶段

3、 AI芯片市场规模

4、 AI芯片竞争格局

6.2.3 云计算市场分析

1、 云计算行业发展历程

2、 云计算行业市场规模

3、 云计算行业竞争格局

6.3 中国人工智能技术层分析

6.3.1 人工智能技术层功能分析

6.3.2 人工智能技术层代表企业

6.4 中国人工智能应用层分析

第7章: 中国人工智能行业细分市场发展状况

7.1 中国人工智能行业细分市场结构

7.2 中国人工智能市场分析:机器学习

7.2.1 机器学习市场概述

7.2.2 机器学习市场发展现状

7.2.3 机器学习发展趋势前景

7.3 中国人工智能市场分析:机器视觉

7.3.1 机器视觉市场概述

7.3.2 机器视觉市场发展现状

7.3.3 机器视觉发展趋势前景

7.4 中国人工智能市场分析:语音识别

7.4.1 语音识别市场概述

7.4.2 语音识别市场发展现状

7.4.3 语音识别发展趋势前景

7.5 中国人工智能市场分析:自然语言处理

7.5.1 自然语言处理市场概述

7.5.2 自然语言处理市场发展现状

7.5.3 自然语言处理发展趋势前景

7.6 中国人工智能行业细分市场战略地位分析

第8章: 中国人工智能行业细分应用市场需求状况

8.1 中国人工智能行业下游应用场景/行业领域分布

8.1.1 中国人工智能应用场景分布(有什么用?能解决哪些问题?)

1、 应用场景一

2、 应用场景二

3、 应用场景三

8.1.2 中国人工智能应用行业领域分布及应用概况(主要应用于哪些行业?)

1、 人工智能应用行业领域分布

2、 人工智能各应用领域市场渗透概况

8.2 中国智慧安防领域人工智能需求潜力分析

8.2.1 中国智慧安防发展状况

1、 智慧安防发展现状

2、 智慧安防趋势前景

8.2.2 中国智慧安防领域人工智能需求特征及产品类型

8.2.3 中国智慧安防领域人工智能需求现状分析

8.2.4 中国智慧安防领域人工智能需求趋势前景

8.3 中国智慧金融领域人工智能需求潜力分析

8.3.1 中国智慧金融发展状况

1、 智慧金融发展现状

2、 智慧金融趋势前景

8.3.2 中国智慧金融领域人工智能需求特征及产品类型

8.3.3 中国智慧金融领域人工智能需求现状分析

8.3.4 中国智慧金融领域人工智能需求趋势前景

8.4 中国智慧医疗领域人工智能需求潜力分析

8.4.1 中国智慧医疗发展状况

1、 智慧医疗发展现状

2、 智慧医疗趋势前景

8.4.2 中国智慧医疗领域人工智能需求特征及产品类型

8.4.3 中国智慧医疗领域人工智能需求现状分析

8.4.4 中国智慧医疗领域人工智能需求趋势前景

8.5 中国智能机器人领域人工智能需求潜力分析

8.5.1 中国智能机器人发展状况

1、 智能机器人发展现状

2、 智能机器人趋势前景

8.5.2 中国智能机器人领域人工智能需求特征及产品类型

8.5.3 中国智能机器人领域人工智能需求现状分析

8.5.4 中国智能机器人领域人工智能需求趋势前景

8.6 中国智能家居领域人工智能需求潜力分析

8.6.1 中国智能家居发展状况

1、 智能家居发展现状

2、 智能家居趋势前景

8.6.2 中国智能家居领域人工智能需求特征及产品类型

8.6.3 中国智能家居领域人工智能需求现状分析

8.6.4 中国智能家居领域人工智能需求趋势前景

8.7 中国人工智能行业细分应用市场战略地位分析

第9章: 全球及中国人工智能行业代表性企业布局案例研究

9.1 全球及中国人工智能代表性企业布局梳理及对比

9.2 全球人工智能代表性企业布局案例分析(可定制)

9.2.1 Google(谷歌)

1、 人工智能发展战略

2、 企业运营状况

3、 企业人工智能业务布局状况

4、 企业人工智能业务销售网络布局

5、 企业人工智能业务市场地位及在华布局

9.2.2 Microsoft(微软)

1、 人工智能发展战略

2、 企业运营状况

3、 企业人工智能业务布局状况

4、 企业人工智能业务销售网络布局

5、 企业人工智能业务市场地位及在华布局

9.3 中国人工智能代表性企业布局案例分析(可定制)

9.3.1 百度

1、 人工智能发展战略

2、 人工智能市场布局

3、 人工智能代表产品分析

4、 人工智能市场地位

5、 人工智能研发水平

6、 企业智能融资历程

7、 人工智能应用案例分析

9.3.2 华为

1、 人工智能发展战略

2、 人工智能市场布局

3、 人工智能代表产品分析

4、 人工智能市场地位

5、 人工智能研发水平

6、 企业智能融资历程

7、 人工智能应用案例分析

9.3.3 阿里巴巴

1、 人工智能发展战略

2、 人工智能市场布局

3、 人工智能代表产品分析

4、 人工智能市场地位

5、 人工智能研发水平

6、 企业智能融资历程

7、 人工智能应用案例分析

9.3.4 科大讯飞

1、 人工智能发展战略

2、 人工智能市场布局

3、 人工智能代表产品分析

4、 人工智能市场地位

5、 人工智能研发水平

6、 企业智能融资历程

7、 人工智能应用案例分析

9.3.5 寒武纪

1、 人工智能发展战略

2、 人工智能市场布局

3、 人工智能代表产品分析

4、 人工智能市场地位

5、 人工智能研发水平

6、 企业智能融资历程

7、 人工智能应用案例分析

9.3.6 格灵深瞳

1、 人工智能发展战略

2、 人工智能市场布局

3、 人工智能代表产品分析

4、 人工智能市场地位

5、 人工智能研发水平

6、 企业智能融资历程

7、 人工智能应用案例分析

9.3.7 旷视科技

1、 人工智能发展战略

2、 人工智能市场布局

3、 人工智能代表产品分析

4、 人工智能市场地位

5、 人工智能研发水平

6、 企业智能融资历程

7、 人工智能应用案例分析

9.3.8 优必选

1、 人工智能发展战略

2、 人工智能市场布局

3、 人工智能代表产品分析

4、 人工智能市场地位

5、 人工智能研发水平

6、 企业智能融资历程

7、 人工智能应用案例分析

9.3.9 思必驰

1、 人工智能发展战略

2、 人工智能市场布局

3、 人工智能代表产品分析

4、 人工智能市场地位

5、 人工智能研发水平

6、 企业智能融资历程

7、 人工智能应用案例分析

9.3.10 博联智能

1、 人工智能发展战略

2、 人工智能市场布局

3、 人工智能代表产品分析

4、 人工智能市场地位

5、 人工智能研发水平

6、 企业智能融资历程

7、 人工智能应用案例分析

——展望篇——

第10章: 中国人工智能行业发展环境洞察

10.1 中国人工智能行业经济(Economy)环境分析

10.1.1 中国宏观经济发展现状

10.1.2 中国宏观经济发展展望

10.1.3 中国人工智能行业发展与宏观经济相关性分析

10.2 中国人工智能行业社会(Society)环境分析

10.2.1 中国人工智能行业社会环境分析

10.2.2 社会环境对人工智能行业发展的影响总结

10.3 中国人工智能行业政策(Policy)环境分析

10.3.1 国家层面人工智能行业政策规划汇总及解读(指导类/支持类/限制类)

1、 国家层面人工智能行业政策汇总及解读

2、 国家层面人工智能行业规划汇总及解读

10.3.2 重点省/市人工智能行业政策规划汇总及解读(指导类/支持类/限制类)

1、 重点省/市人工智能行业政策规划汇总

2、 重点省/市人工智能行业发展目标解读

10.3.3 国家重点规划/政策对人工智能行业发展的影响

10.3.4 政策环境对人工智能行业发展的影响总结

10.4 人工智能行业技术环境分析

10.4.1 人工智能技术发展现状

1、 人工智能重点技术发展状态

2、 人工智能重大技术成果

10.4.2 人工智能相关专利情况分析

10.4.3 技术环境对行业发展的影响分析

10.5 中国人工智能行业SWOT分析(优势/劣势/机会/威胁)

第11章: 中国人工智能行业市场前景预测及发展趋势预判

11.1 中国人工智能行业发展潜力评估

11.2 中国人工智能行业未来关键增长点分析

11.3 中国人工智能行业发展前景预测(未来5年数据预测)

11.4 中国人工智能行业发展趋势预判(疫情影响等)

第12章: 中国人工智能行业投资战略规划策略及建议

12.1 中国人工智能行业进入与退出壁垒

12.1.1 人工智能行业进入壁垒分析

12.1.2 人工智能行业退出壁垒分析

12.2 中国人工智能行业投资风险预警

12.3 中国人工智能行业投资机会分析

12.3.1 人工智能行业产业链薄弱环节投资机会

12.3.2 人工智能行业细分领域投资机会

12.3.3 人工智能行业区域市场投资机会

12.3.4 人工智能产业空白点投资机会

12.4 中国人工智能行业投资价值评估

12.5 中国人工智能行业投资策略与建议

12.6 中国人工智能行业可持续发展建议

图表目录

图表1:人工智能的界定

图表2:人工智能相关概念辨析

图表3:《国民经济行业分类与代码》中人工智能行业归属

图表4:人工智能的分类

图表5:人工智能专业术语说明

图表6:中国人工智能行业监管体系

图表7:中国人工智能行业主管部门

图表8:中国人工智能行业自律组织

图表9:中国人工智能标准体系建设

图表10:中国人工智能现行标准汇总

图表11:中国人工智能即将实施标准

图表12:中国人工智能重点标准解读

图表13:本报告研究范围界定

图表14:本报告权威数据资料来源汇总

图表15:本报告的主要研究方法及统计标准说明

图表16:人工智能行业发展历程

图表17:2019-2021年全球人工智能市场规模(单位:亿美元)

图表18:2019-2021年全球人工智能独角兽数量情况(单位:家)

图表19:全球科技巨头人工智能布局情况

图表20:截至2022年全球人工智能领域高层次学者数量前十国家(单位:人次)

图表21:2019-2021年全球人工智能独角兽企业数量前三国家(单位:家)

图表22:2030年全球各地区人工智能产值占GDP比重预测分析(单位:%)

图表23:2022年全球人工智能企业TOP20(单位:家)

图表24:全球人工智能细分领域企业竞争格局分析

图表25:2013-2022年全球人工智能投融资情况(单位:亿元,起)

图表26:2022年全球人工智能融资轮次分布情况(按事件数)(单位:起,%)

图表27:2022年全球人工智能企业融资事件汇总

图表28:截止到2022年11月欧洲人工智能重点政策汇总

图表29:2014-2022年欧洲人工智能市场投资情况(单位:亿元,起)

图表30:截至2022年11月欧洲人工智能部分投融资情况

图表31:人脑计划阶段分析

图表32:人脑计划搭建的6个信息平台介绍

图表33:欧盟人脑计划启示

图表34:截止2022年11月美国人工智能重点政策汇总

图表35:2014-2022年美国人工智能市场投资情况(单位:亿元,起)

图表36:截至2022年11月美国人工智能部分投融资情况

图表37:2022年全球人工智能企业数量分布情况(单位:%)

图表38:美国最成功的10个人工智能应用案例

图表39:2014-2025年美国大脑研究计划投资预算(单位:百万美元)

图表40:日本人工智能工程表内容

图表41:截至2022年日本人工智能部分投融资情况

图表42:日本十大AI初创公司

图表43:日本人工智能应用情况

图表44:日本Brain/MINDS计划研究机构与内容

图表45:全球人工智能行业整体发展趋势

图表46:全球人工智能行业技术发展趋势

图表47:中国人工智能发展阶段

图表48:2018-2022年中国人工智能产业规模情况(单位:亿元)

图表49:2022年中国人工智能企业层次分布(单位:%)

图表50:2022年中国人工智能企业核心技术分布(单位:%)

图表51:2011-2022年十大A1热点

图表52:人工智能各技术方向岗位人才供需比

图表53:人工智能各职能岗位人才供需比

图表54:全国首批建设“人工智能”(080717T)本科新专业高校名单

图表55:2018-2022年中国新增开设“人工智能”本科专业学校数量(单位:所)

图表56:中国龙头企业与高校合作或共建人工智能学院汇总

图表57:人工智能产业生态格局的三层基本架构

图表58:人工智能技术层的运行机制

图表59:人工智能应用实现路径层案例分析

图表60:中国人工智能行业竞争者入场进程

图表61:中国人工智能行业竞争者区域分布热力图

图表62:中国人工智能行业竞争者发展战略布局状况

图表63:中国人工智能行业企业战略集群状况

图表64:中国人工智能行业企业竞争格局分析

图表65:中国人工智能行业国产替代布局状况

图表66:中国人工智能行业市场集中度分析

图表67:中国人工智能行业供应商的议价能力

图表68:中国人工智能行业消费者的议价能力

图表69:中国人工智能行业新进入者威胁

图表70:中国人工智能行业替代品威胁

图表71:中国人工智能行业现有企业竞争

图表72:中国人工智能行业竞争状态总结

图表73:2013-2022年中国人工智能行业投融资情况(单位:亿元,起)

图表74:2022年中国人工智能融资轮次分布情况(按事件数)(单位:起,%)

图表75:人工智能领先企业投资情况

图表76:2022年中国人工智能行业独角兽排行榜(单位:亿元)

图表77:中国人工智能行业主要投资细分领域情况

图表78:2016-2022年中国计算机视觉领域投融资情况(单位:亿元,起)

图表79:截至2022年11月中国计算机视觉领域部分投融资情况

图表80:2016-2022年中国语音识别领域投融资情况(单位:亿元,起)

图表81:截至2022年11月中国语音识别领域部分投融资情况

图表82:2016-2022年中国自然语言处理领域投融资情况(单位:亿元,起)

图表83:截至2022年11月中国自然语言处理领域部分投融资情况

图表84:2016-2022年中国机器学习领域投融资情况(单位:亿元,起)

图表85:截至2022年11月中国机器学习领域部分投融资情况

图表86:2022年中国人工智能行业投融资事件数量地区分布情况(单位:%)

图表87:中国人工智能产业链结构

图表88:中国人工智能产业链生态图谱

图表89:人工智能芯片分类

图表90:我国人工智能芯片行业所处周期

图表91:2018-2023年中国人工智能芯片行业规模(亿元)

图表92:全球人工智能芯片厂商竞争层次情况

图表93:全球主要AI芯片类型及企业

图表94:2022年中国人工智能芯片企业TOP10

图表95:中国云计算发展阶段

图表96:2016-2022年中国云计算市场规模增长情况(单位:亿元,%)

图表97:中国云计算市场竞争梯队

图表98:2022年中国云计算企业百强名单

图表99:人工智能行业技术层概况

图表100:中国人工智能行业产业链技术层代表性企业

图表101:中国人工智能行业细分市场结构

图表102:中国机器学习市场发展现状

图表103:中国机器学习发展趋势前景

图表104:中国机器视觉市场发展现状

图表105:中国机器视觉发展趋势前景

图表106:中国语音识别市场发展现状

图表107:中国语音识别发展趋势前景

图表108:中国自然语言处理市场发展现状

图表109:中国自然语言处理发展趋势前景

图表110:中国人工智能行业细分市场战略地位分析

图表111:中国人工智能应用场景分布

图表112:中国人工智能应用行业领域分布及应用概况

图表113:中国智慧安防发展现状

图表114:中国智慧安防趋势前景

图表115:中国智慧安防领域人工智能需求特征及产品类型

图表116:中国智慧安防领域人工智能需求现状分析

图表117:中国智慧安防领域人工智能需求趋势前景

图表118:中国智慧金融发展现状

图表119:中国智慧金融趋势前景

图表120:中国智慧金融领域人工智能需求特征及产品类型

略......完整报告请咨询客服

每年发表的AI论文数量

文/陈根

人工智能,已经成为中美两国竞争的着力点 。

作为一种变革性技术,人工智能是现代工业发展的产物,具有推动产业革新、提升经济效益和促进 社会 发展的巨大潜力。正是由于具备主导技术发展和推动 社会 形态转变的基本潜质, 因此,人工智能不仅被视为未来创新范式的“技术基底”,更是被世界各国视为推动新一轮 科技 革命和产业变革的关键力量 。

纵观 历史 ,每一次 科技 革命、产业革命及军事变革的耦合与互动,都深刻影响乃至重塑了全球竞争格局。在人工智能的全球博弈中,中美两国作为领先大国,成为人工智能发展最为瞩目的两个国家。而中美两国对于人工智能高地的抢占,更关系着未来国际格局的重塑和全球人工智能的治理。

美国领先,中国跟进

2019年,美信息技术与创新基金会(ITIF)的数据创新中心曾发布百页研究报告《谁将在人工智能角逐中胜出:中国、欧盟或美国?》。报告对中、美、欧人工智能发展现状进行比较测算—— 美国以44.2分领先,中国以32.3分位居第二,欧盟则以23.5分位居第三 。美国的人工智能领先地位彰显无疑,而中国则以追赶之势跟进。

事实上,美国之所以能够占据人工智能全球领先地位,与人工智能在美国的发展密切相关。 1956年,人工智能正式在美国诞生。卡内基梅隆天学、麻省理工学院、IBM公司成为美国最初的3个核心人工智能研究机构。

60年代至90年代初,美国人工智能相关程序设计语言、专家系统等已取得重大进展,产品化方面取得重要成就。 比如,1983年,世界第一家批量生产统一规格电脑的公司诞生。并且,美国开始尝试应用Al研究成果,比如,利用矿藏勘探专家系统PROSPECTOR在华盛顿发现一处矿藏。

而同期的中国,人工智能才刚进入萌芽阶段 。1978年,中国科学大会在北京召开。科学事业思想解放,为中国人工智能产业发展提供基础。同年,“智能模拟”被纳入国家研究计划,中国人工智能产业在国家层面的推动下正式发展。

从研究成果来看,美国在人工智能方面的研究成果在全球处于领先地位 。根据全球最大的引文数据库Scopus的检索结果,2018年美国共发表了16233篇与人工智能有关的同行评审论文。论文数量的快速增长主要发生在2013年之后,5年内增长了2.7倍。

尽管同期中国和欧盟的人工智能论文数量也有类似的快速增长,并且每年发表论文的数量明显超过美国。 但是,就论文质量而言,美国人工智能论文的质量一直大幅度领先于其他地区。 2018年,美国平均每篇论文被引用的次数为2.23次,而中国为1.36 次。美国每个作者被引用的次数也比全球平均水平高出 40%。

尤其是在深度学习领域,美国的发表论文数量远超过其他国家。2015至2018 年,美国共在预印本文库网站arXiv发表了3078篇相关论文,是中国同期的两倍。 近几年,美国每年取得的人工智能专利数量更是占到全球总量的一半左右,专利引证数量占到全球的 60% 。

在关键技术上,美国的研究成果依旧居于世界领先地位 。比如,在计算机视觉领域,谷歌公司和卡内基梅隆大学开发的 Noisy Student方法对图片进行分类的Top-1准确率达到 88.4%,比6年前提高了35个百分点;在云基础设施上训练大型图像分类系统所需的时间,已经从2017年的3个小时减少到 2019年的88 秒,训练费用也从 1112美元下降到12.6美元。

从产业发展来看,根据中国信息通信研究院数据研究中心的《全球人工智能产业数据报告(2019Q1)》研究报告, 截至2019年3月底,全球活跃人工智能企业注达5386家。仅美国就多达2169家,数量远超过其他国家 。中国大陆达1189家,排名第三的英国则为404家。

而从企业 历史 统计来看,美国人工智能企业的发展也早于中国5年。美国人工智能企业最早从1991年萌芽,1998进入发展期,2005后开始高速成长期,2013后发展趋稳。而中国人工智能企业则诞生于1996年,2003年产业进入发展期,在2015年达到峰值后进入平稳期。

美国公司在专利和主导性人工智能收购方面表现更为强劲 。比如,在15个机器学习子类别中,微软和IBM在8个子类别中申请了比其他任何实体公司都更多的专利,包括监督学习和强化学习类。美国公司在20个领域中的12个领域的专利申请处于领先地位,包括农业(迪尔公司)、安全(IBM公司)以及个人设备、计算机和人机互动(微软公司)。

人才储备是美国在人工智能得以领先的又一关键原因。人工智能产业的竞争,可以说,就是人才和知识储备的竞争。 只有投入更多的科研人员,不断加强基础研究,才会获得更多的智能技术 。

根据 MacroPolo 智库的研究,在报告所圈定的顶级人工智能研究人才中,59% 在美国工作,中国占了 11%,与美国有四五倍的差距。剩下的人工智能人才则分布在欧洲、加拿大和英国,人才差异显而易见。

中美角逐,追赶和超越

尽管美国在研究成果和人才储备上具有先发优势,但中国作为后起之秀,在政策的引导和宽松的环境下,正以追赶之势加快跟进美国人工智能产业的发展。

经过多年的积累,中国已在人工智能领域取得了一系列重要成果,形成了自身独特的发展优势。 不论是顶层的设计还是研发资源的投入,亦或是产业的发展,都呈加快追赶的态势,甚至在部分人工智能核心技术领域已可与美国比肩。尽管欲见成效仍需时日,但中美两国对于人工智能高地的抢占,已经开始。

从顶层设计来看,中美有近乎相仿的重视程度。 美国和中国政府都已经把人工智能的发展上升至国家战略,出台发展战略规划,从国家战略层面进行整体推进 。

早在2016 年 10 月,奥巴马政府就发布了两份与人工智能发展相关的重要文件,即《国家人工智能研发战略规划》和《为未来人工智能做准备》。中国政府也在2017年3月,将“人工智能”首次写入全国政府工作报告,并于同年7月发布《新一代人工智能发展规划》,人工智能全面上升为国家战略。

美国人工智能报告体现了美国政府对新时代维持自身领先优势的战略导向。作为最大的发展中国家,中国也在战略引导和项目实施上做了整体规划和部署。并且,美国和中国都在国家层面建立了相对完整的研发促进机制,整体推进人工智能发展。

从研发资源的投入来看,美国政府对研发的资金投入相对不足。 纵向来看,在过去的几十年中,联邦政府用于研发的支出占国内生产总值(GDP)的百分比从1964年的1.86%下降到2018年的0.7%。

目前,美国联邦政府的年度财政赤字已超过1万亿美元,累积的政府债务相当于 GDP的107%。 这些因素都会限制美国政府对人工智能及其相关基础研究的长期资金投入。

横向上看,美国政府对研发的投入正在被中国和欧盟追赶 。美国在全球研发投入中所占的份额从1960年的69%下降到2016年的28%。2000-2015年,美国只占全球研发投入增长的 19%,而中国占到了31%。

2019年8月 31日,上海宣布设立人工智能产业投资基金,仅首期就投入了100亿元人民币,最终规模将达到千亿元人民币,美国联邦政府的投资则是相形见绌。

从产业发展来看,尽管中国AI产业基础层整体实力较弱,少有全球领先的芯片公司,但各大厂商正加快布局追赶,包括百度、阿里、腾讯及华为等厂商在基础层软硬件的加快布局 。

对于技术层来说,中国企业则发展势头良好。 百度、阿里、腾讯和华为等综合型厂商在计算机视觉、自然语言处理、语音识别等核心技术领域均有布局,同时创业独角兽在垂直领域迅速发展。

应用层上,人工智能应用场景多样,中国人工智能企业已在教育、医疗、新零售等领域实现广泛布局,而金融、医疗、零售、安防、教育、机器人等行业亦有为数较多的人工智能企业参与竞争。

着眼未来,我国在人工智能发展方面仍然具有一定优势, 包括对基础理论研究的重视、丰富的技术应用场景、完善的创新生态链、企业数量的规模优势,以及我国在发展人工智能方面的人才优势。

此外,大数据优势是中国发展人工智能的重要优势,人工智能技术发展需要有大量的数据积累进行训练。中国较为完备的工业体系和庞大的人口基数,也使得中国人工智能发展在数据积累方面优势明显。

人工智能的未来难以预测,但可以看到的是,世界的竞争格局将因人工智能而改变。在巨变的环境里,只有通过创新发展以人工智能为代表的新一轮战略前沿技术,成为新竞赛规则的重要制定者、新竞赛领域的重要主导者、新竞赛范式的重要引领者,才能制胜未来而不是尾随未来。

顶会顶刊,通常是指《CCF 推荐国际学术期刊和会议目录》和 ACM 计算机学分类系统相关子领域的 A 类期刊和会议,此外也有相关专家和团体的推荐。在人工智能领域,除了大家最为熟知的最核心的四大顶会AAAI、IJCAI、ICML和NeurIPS,以及作为计算机视觉和自然语言为代表的CVPR和ACL这两大学术会议,也涌现了许多“后起之秀”,比如仅创立六年却有深度学习顶会“无冕之王”之称的ICLR,还有创办于1996年的大有赶超ACL之势的自然语言处理领域顶会EMNLP,这些“新星会议”的崛起,使得AI领域的会议呈现出亮点纷呈、多面开花的局面。

人工智能这把火已经烧到了国家战略层面,连美国总统和政府机构也卷了进来。上周四,奥巴马主持白宫前沿峰会,展望美国在未来50年的发展。峰会中,白宫发布报告《国家人工智能研究与发展策略规划》。

这两天,自媒体没少炒作这个报告;我自己呢,倒是特别地对这个报告中的两张趋势图感兴趣。报告中说,从2013年到2015年,SCI收录的论文里,提到“深度学习”的文章增长了约六倍,同时强调,“按文章数计算,美国已不再是世界第一了。”

美国不是世界第一?谁是世界第一呢?来看报告中的两张趋势图:

1.

上图是每年SCI收录的文章里,提到“深度学习”或“深度神经网络”的文章数量变化趋势,同时按国家做了区分。数据本身是从Web of Science核心数据库里查询得到的。

2.

第二张图和第一张图其他条件一样,只是增加了一个“文章必须至少被引用一次”的附加条件。也就是说,第二张图统计的文章数,是被引用过的“有效文章数”,相对来说更合理一些。

两张图里,中国都在2014年和2015年超过了美国(以及其他所有第二梯队的国家),居于领跑者的位置。

问题来了,在AI研究领域,中国人真有这么强吗?

从这些年的直觉看,中国人/华人在人工智能领域里的大牛比比皆是,吴恩达、孙剑、杨强、黄广斌、马毅、张大鹏 ……随口可以说出一大串,我自己在Google的研究团队,微软研究院等地亲眼看到的,也到处是中国人、华人的面孔。但这只是直观感受。整体来看,中国人/华人所做的科研贡献到底有多重要,对人工智能的推动作用到底有多大?白宫报告里的统计是不是科学、合理?

其实,对美国国家战略规划里的统计,我自己是有几个疑问的,主要包括:

直接搜索关键字“深度学习”、“深度神经网络”,真的能涵盖这些年人工智能领域的所有科学研究进展?像机器人、智能控制、机器视觉、无人驾驶等领域里,没有提及深度学习的文章眼见还有不少。严格按关键词匹配会漏掉多少相关文章?是否影响统计结果?

“文章至少被引用一次”,比较科学,但好像还远远不够。这种统计,真的不需要考虑SCI的影响因子吗?不考虑的话,会混进多少较差期刊上发表的比较水的论文?这些数据会不会被国内研究机构靠SCI引用数来评职称的风气污染?

在全球化时代,按国家统计,会不会有明显偏差?白宫报告没有提到被统计的文章是如何归入不同国家的。如果按作者发表文章时的所在机构,那大量在国外机构访问的中国学者会不会被算成外国人?中国人和外国人合写的文章该如何统计?如果按期刊所属国家和地区,那不同国家间的期刊水平(影响因子)差异是不是会让统计结果带有偏见?

基于此,我也想自己去做个统计。

统计前,给自己设了几条原则:

从期刊的影响因子出发,只统计影响因子高的顶尖期刊。

从Web of Science主题词出发,涵盖人工智能相关的所有科研领域,而不仅是深度学习方面的文章。

关注对象是华人,而不是用国家分类的办法去比较中国和外国——这个是我自己的选择,因为今天的学术界,国家间的合作和交流已不可忽视。类似吴恩达这样的外籍华人,其实也在为中国的人工智能发展做贡献。与其限定国家,不如从整体上看一看,地球上的华人科学家、研究者群体,到底有多厉害。

关注时间范围是2006到2016年,跨度10年左右——因为许多人说,这一波人工智能大潮是从2006后的几年时间里,才开始真正兴起的。

我的统计结果

来看下2006到2016年间华人作者的平均贡献:

3.

在2006到2016年的时间段里,近两万篇最顶级的人工智能文章中,由华人贡献的文章数和被引用数,分别占全部数字的29.2%和31.8%。近十年,华人用五分之一左右的作者人数,平均贡献了三成的顶级AI研究文章和被引用数。统计角度,这已经是超出平均水平的科研贡献了。

但平均数并不能看出华人科学家、研究者在最近几年的发力程度。来看2006到2015年间,华人贡献的文章数和被引用数的变化趋势:

4.

2006到2015年间,华人作者参与的顶级AI论文,占全部顶级AI论文数量的比例,从23.2%逐年递增到42.8%。而华人作者参与的顶级AI论文被引用次数,占全部顶级AI论文被引用次数的比例从25.5%逐年递增到55.8%(2016 年数据较少,未用于趋势比较)。

也就是说,即便只统计顶级出版物里的顶级文章,中国人/华人在人工智能领域的贡献,在发展趋势上也和白宫报告中揭示的规律如出一辙——无论从哪个角度来说,中国人/华人正在人工智能领域里发挥举足轻重的作用,而且,从2014年,2015年开始,中国人/华人已经处于人工智能研究的领先地位,占据了人工智能科研世界的半壁江山!

个案分析

会有人觉得这个统计很不可思议吗?这个结果会出乎很多人意料吗?我们还可以拿一个更具体的例子,来深入分析一下。

在顶级人工智能期刊和会议录里,我来举个大名鼎鼎的例子吧:IEEE模式分析与机器智能汇刊(IEEE Transactions on Pattern Analysis and Machine Intelligence,简称PAMI),2015年影响因子6.077,高到没朋友,想往这里投稿的同学可能都知道被接受和发表的难度有多恐怖。

我从《IEEE模式分析与机器智能汇刊》里按引用数选出2006到2016年间的前500篇论文,下面是这500篇论文的引用数分布情况:

5.

其实很恐怖的,前500篇文章最高引用数2715,最低引用数41——真顶级期刊!普通期刊难以望其项背呀。

那么,这500篇最顶级的人工智能论文里,华人科学家、研究者的贡献如何呢?先说几个数字:500篇顶级文章的作者一共1220人,其中华人科学家、研究者316人,占25.9%。所有作者单独累加计算的被引用数总和是231361次,其中,华人科学家、研究者被引用数总和是63846 次,占27.6%。如果单看2014年(当年华人的文章数、引用数均较高)的数据,华人科学家、研究者被引用数占51.8%,超过了半数。

6.

如果只看《IEEE模式分析与机器智能汇刊》在2006到2016年间,引用数最多的10位华人作者和10位非华人作者的具体情况,也是一个很有趣的表格:

7.

《IEEE模式分析与机器智能汇刊》的华人前10位大牛,与非华人前10位大牛,在每个人的总引用数上几乎不相上下。的确,最顶尖的人工智能科学家里,中国人/华人的贡献丝毫不亚于其他科学家。

另外,如果对人工智能特别是模式识别的研究领域不熟悉,那么,记住表中这20位顶尖科学家的名字吧。有兴趣的话,大家可以去搜一搜他们的简历,看看他们都在哪里工作,在哪里做研究,他们的学生、同事都是谁,相信会有很多发现。

每年发表的ai论文数量增长

学习人工智能前景不错。人工智能是大趋势中关键环节,未来若干年中不可或缺。特别是我国人工智能弯道超车走在世界前列,技术这个东西是需要长期积累和探索验证的,后续才会有一个爆发过程,美国和日本都是如此。经过近几十年的积累,以后科技中国可能引领全球。

人工智能这把火已经烧到了国家战略层面,连美国总统和政府机构也卷了进来。上周四,奥巴马主持白宫前沿峰会,展望美国在未来50年的发展。峰会中,白宫发布报告《国家人工智能研究与发展策略规划》。

这两天,自媒体没少炒作这个报告;我自己呢,倒是特别地对这个报告中的两张趋势图感兴趣。报告中说,从2013年到2015年,SCI收录的论文里,提到“深度学习”的文章增长了约六倍,同时强调,“按文章数计算,美国已不再是世界第一了。”

美国不是世界第一?谁是世界第一呢?来看报告中的两张趋势图:

1.

上图是每年SCI收录的文章里,提到“深度学习”或“深度神经网络”的文章数量变化趋势,同时按国家做了区分。数据本身是从Web of Science核心数据库里查询得到的。

2.

第二张图和第一张图其他条件一样,只是增加了一个“文章必须至少被引用一次”的附加条件。也就是说,第二张图统计的文章数,是被引用过的“有效文章数”,相对来说更合理一些。

两张图里,中国都在2014年和2015年超过了美国(以及其他所有第二梯队的国家),居于领跑者的位置。

问题来了,在AI研究领域,中国人真有这么强吗?

从这些年的直觉看,中国人/华人在人工智能领域里的大牛比比皆是,吴恩达、孙剑、杨强、黄广斌、马毅、张大鹏 ……随口可以说出一大串,我自己在Google的研究团队,微软研究院等地亲眼看到的,也到处是中国人、华人的面孔。但这只是直观感受。整体来看,中国人/华人所做的科研贡献到底有多重要,对人工智能的推动作用到底有多大?白宫报告里的统计是不是科学、合理?

其实,对美国国家战略规划里的统计,我自己是有几个疑问的,主要包括:

直接搜索关键字“深度学习”、“深度神经网络”,真的能涵盖这些年人工智能领域的所有科学研究进展?像机器人、智能控制、机器视觉、无人驾驶等领域里,没有提及深度学习的文章眼见还有不少。严格按关键词匹配会漏掉多少相关文章?是否影响统计结果?

“文章至少被引用一次”,比较科学,但好像还远远不够。这种统计,真的不需要考虑SCI的影响因子吗?不考虑的话,会混进多少较差期刊上发表的比较水的论文?这些数据会不会被国内研究机构靠SCI引用数来评职称的风气污染?

在全球化时代,按国家统计,会不会有明显偏差?白宫报告没有提到被统计的文章是如何归入不同国家的。如果按作者发表文章时的所在机构,那大量在国外机构访问的中国学者会不会被算成外国人?中国人和外国人合写的文章该如何统计?如果按期刊所属国家和地区,那不同国家间的期刊水平(影响因子)差异是不是会让统计结果带有偏见?

基于此,我也想自己去做个统计。

统计前,给自己设了几条原则:

从期刊的影响因子出发,只统计影响因子高的顶尖期刊。

从Web of Science主题词出发,涵盖人工智能相关的所有科研领域,而不仅是深度学习方面的文章。

关注对象是华人,而不是用国家分类的办法去比较中国和外国——这个是我自己的选择,因为今天的学术界,国家间的合作和交流已不可忽视。类似吴恩达这样的外籍华人,其实也在为中国的人工智能发展做贡献。与其限定国家,不如从整体上看一看,地球上的华人科学家、研究者群体,到底有多厉害。

关注时间范围是2006到2016年,跨度10年左右——因为许多人说,这一波人工智能大潮是从2006后的几年时间里,才开始真正兴起的。

我的统计结果

来看下2006到2016年间华人作者的平均贡献:

3.

在2006到2016年的时间段里,近两万篇最顶级的人工智能文章中,由华人贡献的文章数和被引用数,分别占全部数字的29.2%和31.8%。近十年,华人用五分之一左右的作者人数,平均贡献了三成的顶级AI研究文章和被引用数。统计角度,这已经是超出平均水平的科研贡献了。

但平均数并不能看出华人科学家、研究者在最近几年的发力程度。来看2006到2015年间,华人贡献的文章数和被引用数的变化趋势:

4.

2006到2015年间,华人作者参与的顶级AI论文,占全部顶级AI论文数量的比例,从23.2%逐年递增到42.8%。而华人作者参与的顶级AI论文被引用次数,占全部顶级AI论文被引用次数的比例从25.5%逐年递增到55.8%(2016 年数据较少,未用于趋势比较)。

也就是说,即便只统计顶级出版物里的顶级文章,中国人/华人在人工智能领域的贡献,在发展趋势上也和白宫报告中揭示的规律如出一辙——无论从哪个角度来说,中国人/华人正在人工智能领域里发挥举足轻重的作用,而且,从2014年,2015年开始,中国人/华人已经处于人工智能研究的领先地位,占据了人工智能科研世界的半壁江山!

个案分析

会有人觉得这个统计很不可思议吗?这个结果会出乎很多人意料吗?我们还可以拿一个更具体的例子,来深入分析一下。

在顶级人工智能期刊和会议录里,我来举个大名鼎鼎的例子吧:IEEE模式分析与机器智能汇刊(IEEE Transactions on Pattern Analysis and Machine Intelligence,简称PAMI),2015年影响因子6.077,高到没朋友,想往这里投稿的同学可能都知道被接受和发表的难度有多恐怖。

我从《IEEE模式分析与机器智能汇刊》里按引用数选出2006到2016年间的前500篇论文,下面是这500篇论文的引用数分布情况:

5.

其实很恐怖的,前500篇文章最高引用数2715,最低引用数41——真顶级期刊!普通期刊难以望其项背呀。

那么,这500篇最顶级的人工智能论文里,华人科学家、研究者的贡献如何呢?先说几个数字:500篇顶级文章的作者一共1220人,其中华人科学家、研究者316人,占25.9%。所有作者单独累加计算的被引用数总和是231361次,其中,华人科学家、研究者被引用数总和是63846 次,占27.6%。如果单看2014年(当年华人的文章数、引用数均较高)的数据,华人科学家、研究者被引用数占51.8%,超过了半数。

6.

如果只看《IEEE模式分析与机器智能汇刊》在2006到2016年间,引用数最多的10位华人作者和10位非华人作者的具体情况,也是一个很有趣的表格:

7.

《IEEE模式分析与机器智能汇刊》的华人前10位大牛,与非华人前10位大牛,在每个人的总引用数上几乎不相上下。的确,最顶尖的人工智能科学家里,中国人/华人的贡献丝毫不亚于其他科学家。

另外,如果对人工智能特别是模式识别的研究领域不熟悉,那么,记住表中这20位顶尖科学家的名字吧。有兴趣的话,大家可以去搜一搜他们的简历,看看他们都在哪里工作,在哪里做研究,他们的学生、同事都是谁,相信会有很多发现。

近些年的科技方面在人工智能的的飞速发展,人工智能不仅给我们的日常生活带来了一些新鲜的亮点。神 经 猿 很好的,该学校为全国高职高校提供人工智能、大数据领域实训及学分课程以及高校人工智能实训室、实验室建设。 ..

文/陈根

人工智能,已经成为中美两国竞争的着力点 。

作为一种变革性技术,人工智能是现代工业发展的产物,具有推动产业革新、提升经济效益和促进 社会 发展的巨大潜力。正是由于具备主导技术发展和推动 社会 形态转变的基本潜质, 因此,人工智能不仅被视为未来创新范式的“技术基底”,更是被世界各国视为推动新一轮 科技 革命和产业变革的关键力量 。

纵观 历史 ,每一次 科技 革命、产业革命及军事变革的耦合与互动,都深刻影响乃至重塑了全球竞争格局。在人工智能的全球博弈中,中美两国作为领先大国,成为人工智能发展最为瞩目的两个国家。而中美两国对于人工智能高地的抢占,更关系着未来国际格局的重塑和全球人工智能的治理。

美国领先,中国跟进

2019年,美信息技术与创新基金会(ITIF)的数据创新中心曾发布百页研究报告《谁将在人工智能角逐中胜出:中国、欧盟或美国?》。报告对中、美、欧人工智能发展现状进行比较测算—— 美国以44.2分领先,中国以32.3分位居第二,欧盟则以23.5分位居第三 。美国的人工智能领先地位彰显无疑,而中国则以追赶之势跟进。

事实上,美国之所以能够占据人工智能全球领先地位,与人工智能在美国的发展密切相关。 1956年,人工智能正式在美国诞生。卡内基梅隆天学、麻省理工学院、IBM公司成为美国最初的3个核心人工智能研究机构。

60年代至90年代初,美国人工智能相关程序设计语言、专家系统等已取得重大进展,产品化方面取得重要成就。 比如,1983年,世界第一家批量生产统一规格电脑的公司诞生。并且,美国开始尝试应用Al研究成果,比如,利用矿藏勘探专家系统PROSPECTOR在华盛顿发现一处矿藏。

而同期的中国,人工智能才刚进入萌芽阶段 。1978年,中国科学大会在北京召开。科学事业思想解放,为中国人工智能产业发展提供基础。同年,“智能模拟”被纳入国家研究计划,中国人工智能产业在国家层面的推动下正式发展。

从研究成果来看,美国在人工智能方面的研究成果在全球处于领先地位 。根据全球最大的引文数据库Scopus的检索结果,2018年美国共发表了16233篇与人工智能有关的同行评审论文。论文数量的快速增长主要发生在2013年之后,5年内增长了2.7倍。

尽管同期中国和欧盟的人工智能论文数量也有类似的快速增长,并且每年发表论文的数量明显超过美国。 但是,就论文质量而言,美国人工智能论文的质量一直大幅度领先于其他地区。 2018年,美国平均每篇论文被引用的次数为2.23次,而中国为1.36 次。美国每个作者被引用的次数也比全球平均水平高出 40%。

尤其是在深度学习领域,美国的发表论文数量远超过其他国家。2015至2018 年,美国共在预印本文库网站arXiv发表了3078篇相关论文,是中国同期的两倍。 近几年,美国每年取得的人工智能专利数量更是占到全球总量的一半左右,专利引证数量占到全球的 60% 。

在关键技术上,美国的研究成果依旧居于世界领先地位 。比如,在计算机视觉领域,谷歌公司和卡内基梅隆大学开发的 Noisy Student方法对图片进行分类的Top-1准确率达到 88.4%,比6年前提高了35个百分点;在云基础设施上训练大型图像分类系统所需的时间,已经从2017年的3个小时减少到 2019年的88 秒,训练费用也从 1112美元下降到12.6美元。

从产业发展来看,根据中国信息通信研究院数据研究中心的《全球人工智能产业数据报告(2019Q1)》研究报告, 截至2019年3月底,全球活跃人工智能企业注达5386家。仅美国就多达2169家,数量远超过其他国家 。中国大陆达1189家,排名第三的英国则为404家。

而从企业 历史 统计来看,美国人工智能企业的发展也早于中国5年。美国人工智能企业最早从1991年萌芽,1998进入发展期,2005后开始高速成长期,2013后发展趋稳。而中国人工智能企业则诞生于1996年,2003年产业进入发展期,在2015年达到峰值后进入平稳期。

美国公司在专利和主导性人工智能收购方面表现更为强劲 。比如,在15个机器学习子类别中,微软和IBM在8个子类别中申请了比其他任何实体公司都更多的专利,包括监督学习和强化学习类。美国公司在20个领域中的12个领域的专利申请处于领先地位,包括农业(迪尔公司)、安全(IBM公司)以及个人设备、计算机和人机互动(微软公司)。

人才储备是美国在人工智能得以领先的又一关键原因。人工智能产业的竞争,可以说,就是人才和知识储备的竞争。 只有投入更多的科研人员,不断加强基础研究,才会获得更多的智能技术 。

根据 MacroPolo 智库的研究,在报告所圈定的顶级人工智能研究人才中,59% 在美国工作,中国占了 11%,与美国有四五倍的差距。剩下的人工智能人才则分布在欧洲、加拿大和英国,人才差异显而易见。

中美角逐,追赶和超越

尽管美国在研究成果和人才储备上具有先发优势,但中国作为后起之秀,在政策的引导和宽松的环境下,正以追赶之势加快跟进美国人工智能产业的发展。

经过多年的积累,中国已在人工智能领域取得了一系列重要成果,形成了自身独特的发展优势。 不论是顶层的设计还是研发资源的投入,亦或是产业的发展,都呈加快追赶的态势,甚至在部分人工智能核心技术领域已可与美国比肩。尽管欲见成效仍需时日,但中美两国对于人工智能高地的抢占,已经开始。

从顶层设计来看,中美有近乎相仿的重视程度。 美国和中国政府都已经把人工智能的发展上升至国家战略,出台发展战略规划,从国家战略层面进行整体推进 。

早在2016 年 10 月,奥巴马政府就发布了两份与人工智能发展相关的重要文件,即《国家人工智能研发战略规划》和《为未来人工智能做准备》。中国政府也在2017年3月,将“人工智能”首次写入全国政府工作报告,并于同年7月发布《新一代人工智能发展规划》,人工智能全面上升为国家战略。

美国人工智能报告体现了美国政府对新时代维持自身领先优势的战略导向。作为最大的发展中国家,中国也在战略引导和项目实施上做了整体规划和部署。并且,美国和中国都在国家层面建立了相对完整的研发促进机制,整体推进人工智能发展。

从研发资源的投入来看,美国政府对研发的资金投入相对不足。 纵向来看,在过去的几十年中,联邦政府用于研发的支出占国内生产总值(GDP)的百分比从1964年的1.86%下降到2018年的0.7%。

目前,美国联邦政府的年度财政赤字已超过1万亿美元,累积的政府债务相当于 GDP的107%。 这些因素都会限制美国政府对人工智能及其相关基础研究的长期资金投入。

横向上看,美国政府对研发的投入正在被中国和欧盟追赶 。美国在全球研发投入中所占的份额从1960年的69%下降到2016年的28%。2000-2015年,美国只占全球研发投入增长的 19%,而中国占到了31%。

2019年8月 31日,上海宣布设立人工智能产业投资基金,仅首期就投入了100亿元人民币,最终规模将达到千亿元人民币,美国联邦政府的投资则是相形见绌。

从产业发展来看,尽管中国AI产业基础层整体实力较弱,少有全球领先的芯片公司,但各大厂商正加快布局追赶,包括百度、阿里、腾讯及华为等厂商在基础层软硬件的加快布局 。

对于技术层来说,中国企业则发展势头良好。 百度、阿里、腾讯和华为等综合型厂商在计算机视觉、自然语言处理、语音识别等核心技术领域均有布局,同时创业独角兽在垂直领域迅速发展。

应用层上,人工智能应用场景多样,中国人工智能企业已在教育、医疗、新零售等领域实现广泛布局,而金融、医疗、零售、安防、教育、机器人等行业亦有为数较多的人工智能企业参与竞争。

着眼未来,我国在人工智能发展方面仍然具有一定优势, 包括对基础理论研究的重视、丰富的技术应用场景、完善的创新生态链、企业数量的规模优势,以及我国在发展人工智能方面的人才优势。

此外,大数据优势是中国发展人工智能的重要优势,人工智能技术发展需要有大量的数据积累进行训练。中国较为完备的工业体系和庞大的人口基数,也使得中国人工智能发展在数据积累方面优势明显。

人工智能的未来难以预测,但可以看到的是,世界的竞争格局将因人工智能而改变。在巨变的环境里,只有通过创新发展以人工智能为代表的新一轮战略前沿技术,成为新竞赛规则的重要制定者、新竞赛领域的重要主导者、新竞赛范式的重要引领者,才能制胜未来而不是尾随未来。

发ai论文

《人工智能与机器人研究》是一本关于人工智能的期刊,该期刊杂志上发表的文章包含这些领域:智能机器人、模式识别与智能系统、虚拟现实技术与应用、系统仿真技术与应用、工业过程建模与智能控制、智能计算与机器博弈、人工智能理论、语音识别与合成、机器翻译、图像处理与计算机视觉、计算机感知、计算机神经网络、知识发现与机器学习、建筑智能化技术与应用、人工智能其他学科等等。另外,这本期刊就是一本开源期刊,与传统期刊相比,采用了同行评审的方法审稿,具体开源期刊的特点可以百度了解更多;而且发表了的文章传播范围更广,受众更多,文章的影响力也更大。

ai写论文是不可靠的。人工智能的发展非常迅速,经过测试ai写出的文章非常流畅。

但是用ai写文章是否相当于学生作弊而对于学生自己的水平来说让ai代替写,自己的水平并没有得到很好的展示。论文是每位大学生毕业之前都要写的东西。

AI会成为学生作弊的工具,当然,它们也可以成为强大的助教,或提高我们创造力的工具。重点在于学生使用的是否恰当。如果学生本身什么都没学到却用ai论文蒙混过关,这是不靠谱的。当用ai写论文被发现之后后果也是很严重的,可能会影响到自己是否能正常毕业。

ai发论文

来自清华、北大、上海交大;腾讯、华为、京东、字节跳动,和炙手可热的AI研发机构北京智源人工智能研究院等十多家知名机构的数十名国内AI大牛参与署名的论文,被Google Brain的一名研究员指出严重抄袭。被指控的论文名为《A Roadmap for Big Model》(下称《大模型》)。名叫Nicholas Carlini的研究员近日在其博客中直接罗列了大量该论文与他更早发布的“Deduplicating Training Data Makes Language Models Better”论文一摸一样的段落。而且,他还表示,被抄袭的可能至少还有其他十余篇论文。查阅预印本服务器arXiv可以发现,谷歌大脑研究员的论文上传时间为去年七月份,而《大模型》的上传时间在今年三月。Nicholas Carlini在其博客中表示:“很可能只有少数作者参与了这种抄袭,一小部分作者的不当行为不应该被用来指责大多数行为良好的作者。”

ai写论文是不可靠的。人工智能的发展非常迅速,经过测试ai写出的文章非常流畅。

但是用ai写文章是否相当于学生作弊而对于学生自己的水平来说让ai代替写,自己的水平并没有得到很好的展示。论文是每位大学生毕业之前都要写的东西。

AI会成为学生作弊的工具,当然,它们也可以成为强大的助教,或提高我们创造力的工具。重点在于学生使用的是否恰当。如果学生本身什么都没学到却用ai论文蒙混过关,这是不靠谱的。当用ai写论文被发现之后后果也是很严重的,可能会影响到自己是否能正常毕业。

AI小微智能论文是一种自动化论文生成工具,可以帮助用户自动生成论文。但是,根据目前的技术水平,自动生成的论文往往存在一些问题。首先,自动生成的论文中往往存在语言调整和逻辑不连贯等问题,这会给读者带来困扰,也严重影响论文的质量。其次,自动生成的论文往往与实际情况不太相符,这会导致论文的实际应用价值很低,也不利于读者对相关问题的理解。因此,虽然AI小微智能论文可以节省论文写作的时间和精力,但建议在撰写科研论文时,仍应该独立思考、主动查阅相关资料和模板,认真分析和总结数据,以确保论文的学术可信度。

相关百科

热门百科

首页
发表服务