是的,以二氧化碳为原料,不依赖植物光合作用,直接人工合成淀粉——看似科幻的一幕,真实地发生在实验室里。我国科学家首次实现了二氧化碳到淀粉的从头合成,相关成果北京时间9月24日由国际知名学术期刊《科学》在线发表。
淀粉是粮食最主要的成分,通常由农作物通过自然光合作用固定二氧化碳生产。自然界的淀粉合成与积累,涉及60余步生化反应以及复杂的生理调控。人工合成淀粉是科技领域一个重大课题。此前,多国科学家积极探索,但一直未取得实质性重要突破。
中国科学院天津工业生物技术研究所研究员马延和带领团队,采用一种类似“搭积木”的方式,从头设计、构建了11步反应的非自然固碳与淀粉合成途径,在实验室中首次实现从二氧化碳到淀粉分子的全合成。核磁共振等检测发现,人工合成淀粉分子与天然淀粉分子的结构组成一致。
实验室初步测试显示,人工合成淀粉的效率约为传统农业生产淀粉的8.5倍。在充足能量供给的条件下,按照目前技术参数,理论上1立方米大小的生物反应器年产淀粉量相当于我国5亩玉米地的年产淀粉量。
国际知名专家给予高度评价
对于此次成果,德国科学院院士曼弗雷德·雷兹、美国工程院院士延斯·尼尔森等国际知名专家均给予高度评价,认为这一重大突破将该领域研究向前推进了一大步。
中科院副院长周琪说,成果目前尚处于实验室阶段,离实际应用还有距离,后续需尽快实现从“0到1”概念突破到“1到10”的转换。
据了解,经科技部批准,天津工业生物所正在牵头建设国家合成生物技术创新中心。科研团队的下一步目标,一方面是继续攻克淀粉合成人工生物系统的设计、调控等底层科学难题,另一方面要推动成果走向产业应用,未来让人工合成淀粉的经济可行性接近农业种植。
以上内容参考 中国科学院-我国科学家突破二氧化碳人工合成淀粉技术
①
②
③
2021年已经步入尾声,过去的一年是 科技 界屡创新高、收获满仓的一年。这一年,恰逢中国共产党百年华诞,我国 科技 界更是取得多项重要突破。量子计算获得重大进展,使我国成为唯一在两个物理体系中实现量子计算优越性的国家;“中国天眼”正式向全世界开放,尽显大国风度;成功实现二氧化碳人工合成淀粉,为人类未来提供了全新的可能……
这一年,是 科技 工作者们步履不停的一年,他们在追寻科学真理的道路上百折不挠,不断刷新着人类所能达到的新高度。 科技 界必将乘着时代的东风再启航,向着更加多姿多彩的未来昂首前进。
找回水稻“祖先”基因
有助培育更优秀的水稻品种
快速从头驯化异源四倍体野生稻,发挥多倍体优势,找回当下栽培稻已经丢失的部分优秀基因,培育出产量更高、环境适应能力更强的新型水稻作物——中国科学院种子创新研究院、遗传与发育生物学研究所李家洋团队与合作者的这项突破性进展,2月4日在国际知名学术期刊《细胞》发表。
多倍化是植物进化的重要机制。今天我们所种植的栽培稻经过了数千年的人工驯化,其农艺性状不断改良,但同时也损失了大量的遗传多样性,造成优势基因资源缺失。而异源四倍体相比二倍体多2个染色体组,异源四倍体野生稻具有生物量大、自带杂种、环境适应能力强等优势。但其具有的非驯化特征,也让它无法直接应用于农业生产。
李家洋团队从综合表现更好的四倍体野生稻出发,利用现代基因组编辑技术,将几千至上万年的水稻驯化史在短时间内“重演”,并且避免了部分基因丢失,首次设计并完成了异源四倍体野生稻快速从头驯化的框架图,有望培育出产量高、环境适应能力强的新型水稻作物。研究团队突破了基因组解析、高效遗传转化、高效基因组编辑等技术瓶颈,在异源四倍体高秆野生稻基因组中注释了系列驯化基因和重要农艺性状基因,成功创制了落粒性降低、芒长变短、株高降低、粒长变长、茎秆变粗、抽穗时间不同程度缩短的多种基因组编辑异源四倍体野生稻材料。
“九章”“祖冲之”上新
在两个物理体系实现量子优越性
研发具有实用价值的量子计算机,一直是量子计算领域最重要的发展目标之一,也是当下各国竞相角逐的焦点。过去一年,我国在量子计算机研发领域取得了多项重大进展。
2月27日,国际权威期刊《科学进展》发表成果,由国防 科技 大学、军事科学院、中山大学等机构研究人员研发出的一款新型可编程硅基光量子计算芯片,实现了多种图论问题的量子算法求解,有望未来在大数据处理等领域获得应用。
5月7日,《科学》杂志发表中国科学技术大学潘建伟团队研究成果,其成功研制出了量子计算原型机“祖冲之号”,操纵的超导量子比特达到62个,并在此基础上实现了可编程的二维量子行走。该成果为在超导量子系统上实现量子优越性,以及后续研究具有重大实用价值的量子计算奠定了技术基础。
10月底,潘建伟团队进一步研制出了66比特的可编程超导量子计算原型机“祖冲之2.0”,在随机线路采样任务上实现了量子计算优越性,所完成任务的难度较2019年谷歌“悬铃木”高出2—3个数量级。
与此同时,潘建伟团队升级版的“九章2.0”也极大提高了其量子优势,对于高斯玻色采样问题,1年前的“九章”一分钟可以完成的任务,世界上最强大的超级计算机需要花费亿年时间;而“九章2.0”一分钟完成的任务,超级计算机花费的时间要再增加百亿倍。并且“九章2.0”还具有了部分可编程的能力。
“九章2.0”和“祖冲之2.0”的出现,使我国成为唯一在两个物理体系中实现量子计算优越性的国家。
“中国天眼”迎全球科学家
3月底开始征集观测申请
本着开放天空的原则,被誉为“中国天眼”的国家重大 科技 基础设施500米口径球面射电望远镜(FAST)于北京时间2021年3月31日0时起向全世界天文学家发出邀约,征集观测申请,所有国外申请项目统一参加评审。观测时间从今年8月开始。
中国天眼坐落于贵州省黔南州平塘县的大窝凼,于2016年落成,是具有自主知识产权、世界最大单口径、最灵敏的射电望远镜。射电望远镜与光学望远镜一样,口径越大接收到的电磁波越多,其灵敏度就越高,探测能力就越强。借此,中国天眼能够监听到宇宙中微弱的射电信号。
通过国家验收启动运行以来,中国天眼设施运行稳定可靠,发现的脉冲星数量已达到500余颗,并在快速射电暴等研究领域取得重大突破。中国天眼的研制和建设,不仅体现了我国的自主创新能力,还推动了我国天线制造技术、微波电子技术、并联机器人、大尺度结构工程、公里范围高精度动态测量等众多高 科技 领域的发展。
中国科学院院士、FAST科学委员会主任武向平表示,FAST面向全球开放使用,彰显了充分合作的理念,以及对人类命运共同体理念的实践。
用液氦造出-271 世界
大型低温制冷装备“中国造”
4月15日,中国科学院理化技术研究所(以下简称中科院理化所)承担的国家重大科研装备研制项目“液氦到超流氦温区大型低温制冷系统研制”通过验收及成果鉴定,项目成果鉴定专家组认为,该项目整体技术达到国际先进水平。这标志着我国具备了研制液氦温度(-269 )千瓦级和超流氦温度(-271 )百瓦级大型低温制冷装备的能力。
液氦是制造超低温的“神器”。随着 社会 经济的高速发展,我国已成为大型低温制冷设备的使用大国。但由于缺乏大型低温制冷系统、关键子设备及集成技术,我国大型低温制冷装备长期被国外垄断,进口依赖度高。
2015年12月,中科院理化所开始启动液氦到超流氦温区大型低温制冷设备的研制工作。在几十年低温技术积累的基础上,经过5年艰苦攻关,坚持走自主创新道路,最终成功研制出技术指标先进的大型氦制冷机。
光存储时间达1小时
向量子U盘迈出重要一步
4月,中国科学技术大学郭光灿团队李传锋、周宗权研究组将光存储时间提升至1小时,大幅刷新2013年德国团队所创造的光存储1分钟的世界纪录,向实现量子U盘迈出重要一步。该成果于4月下旬发表于权威学术期刊《自然·通讯》。
光已成为现代信息传输的基本载体。光速高达每秒30万公里,“降低”光速乃至让光“停留”下来,是国际学术界一直不懈奋斗的目标。光的存储在量子通信领域尤其重要,通过将光子储存在超长寿命的量子存储器即量子U盘中,实现通过直接运输量子U盘的方式来传输量子信息。而考虑到飞机和高铁等交通工具的速度,量子U盘的光存储时间至少需达到小时量级。
李传锋、周宗权研究组2015年便自制光学拉曼外差探测核磁共振谱仪,依托该仪器,其精确刻画了掺铕硅酸钇晶体光学跃迁的完整哈密顿量,并在理论上预测了一阶塞曼效应为零(ZEFOZ)磁场下的能级结构。
未来,依靠更加成熟的量子U盘,人类有望实现基于经典交通运输工具的量子信息传输,从而建立起一种全新的量子信道。
“人造太阳”刷新世界纪录
实现可重复1.2亿 燃烧101秒
5月28日,中国科学院合肥物质科学研究院传来喜讯,有“人造太阳”之称的全超导托卡马克核聚变实验装置(EAST)取得新突破,成功实现可重复的1.2亿摄氏度101秒和1.6亿摄氏度20秒等离子体运行,创造托卡马克实验装置运行新的世界纪录,向核聚变能源应用迈出重要一步。
地球万物生长所依赖的光和热,都源于太阳核聚变反应后释放的能量。而支撑这种聚变反应的燃料氘,在地球上的储量极其丰富,足够人类利用上百亿年。如果能够利用氘制造一个“人造太阳”来发电,人类则有望彻底实现能源自由。
但制造“人造太阳”面临一个突出的现实问题:用什么容器来承载核聚变?人工控制条件下等离子体的离子温度需达到1亿 以上。而目前地球上最耐高温的金属材料钨的熔化温度是3000多 。这意味着,需要造出一个同时承载大电流、强磁场、超高温、超低温、高真空、高绝缘等复杂环境的装置,这对工艺设计和材料提出了极高的要求。
为了达到聚变实验装置所要求的条件,EAST团队的科学工作者自主创新,自主设计、研发了大部分具有自主知识产权的关键技术,创造性地完成了EAST装置主机的总体工程设计。世界上新一代全超导托卡马克核聚变实验装置在中国率先建成并正式投入运行,为未来清洁能源的利用和发展提供实验研究平台。
地球模拟装置启用
看清地球的过去、现在、未来
6月23日,国家重大 科技 基础设施“地球系统数值模拟装置”在北京怀柔科学城落成启用。这是我国研制成功的首个具有自主知识产权的地球系统模拟大科学装置。
地球系统模拟装置,又称地球模拟实验室,是对地球系统进行数值模拟,即以地球系统观测数据为基础,利用描述地球系统的物理、化学和生命过程及其演化的规律在超级计算机上进行大规模科学计算。科学家们由此得以重现地球的过去、模拟地球的现在、预测地球的未来。
“冰光纤”问世
既可灵活弯曲又能高效导光
7月9日,权威学术期刊《科学》杂志发表的成果显示,浙江大学光电科学与工程学院童利民教授团队联合浙江大学交叉力学中心和美国加州大学伯克利分校的科研人员,在-50 环境中,制备出了高质量冰单晶微纳光纤。其既能够灵活弯曲,又可以低损耗传输光,在性能上与玻璃光纤相似。
光纤作为一种将光约束和自由传输的功能结构,是目前光场操控最有效的工具之一。常规玻璃光纤的主要成分氧化硅(石英砂),是地壳中含量最丰富的物质之一。但实际上,在地球及诸多地外星体中,比石英砂更普遍的物质是冰或液态水。因此用冰制备光纤,具有广泛的应用前景。
本次研究中,童利民团队自行搭建了生长装置,在大量实验基础上,改进了已有的电场诱导冰晶制备方法,在低温高压电场中,辅之以一定的湿度条件,通过静电促使水分子朝电场方向运动,改变其无序的运动状态,从而诱发单晶生长。最终在-50 的环境中,成功制备出直径在800纳米到10微米的冰单晶微纳光纤。并且,该团队还利用新发明的低温微纳操控和转移技术,在-150 的环境中,使冰微纳光纤获得了10.9%的弹性应变,接近冰的理论弹性极限。
童利民认为,该项研究结果将拓展人们对冰的认知边界,激发人们开展冰基光纤在光传输、光传感、冰物理学等方面的研究,以及发展适用于特殊环境的微纳尺度冰基技术。
“甩开”光合作用合成淀粉
节约资源同时提升生产效率
9月23日,中国科学院宣布重磅成果。该院天津工业生物技术研究所研究人员提出了一种颠覆性的淀粉制备方法,不依赖植物光合作用,以二氧化碳、电解产生的氢气为原料,成功生产出淀粉,在国际上首次实现了二氧化碳到淀粉的从头合成,使淀粉生产从传统农业种植模式向工业车间生产模式转变成为可能。相关研究成果9月24日在线发表于《科学》杂志。
淀粉主要由绿色植物通过光合作用固定二氧化碳进行合成。在玉米等农作物中,将二氧化碳转变为淀粉涉及60余步的代谢反应和复杂的生理调控,太阳能的理论利用效率不超过2%。而农作物的种植更是需要数月的周期,使用大量的土地、淡水、肥料等资源。
为提高生产效率,中国科学院天津工业生物所研究人员从头设计了11步主反应的非自然二氧化碳固定与人工合成淀粉新途径,在实验室中首次实现了从二氧化碳到淀粉分子的全合成。这一人工途径的淀粉合成速率是玉米淀粉合成速率的8.5倍。并且在充足能量供给的条件下,按照目前的技术参数推算,理论上1立方米大小的生物反应器年产淀粉量相当于我国5亩土地玉米种植的平均年产量。
证明凯勒几何核心猜想
解开数学界60多年“悬案”
11月初,中国科学技术大学几何物理中心创始主任陈秀雄教授与合作者程经睿在偏微分方程和复几何领域取得里程碑式结果,其解出了一个四阶完全非线性椭圆方程,成功证明强制性猜想和测地稳定性猜想这两个国际数学界60多年悬而未决的核心猜想,解决了若干有关凯勒流形上常标量曲率度量和卡拉比极值度量的著名问题。两篇论文发表于国际著名刊物《美国数学会杂志》。
凯勒流形上常标量曲率度量的存在性,是过去60多年来几何中的核心问题之一。关于其存在性,有三个著名猜想——稳定性猜想、强制性猜想和测地稳定性猜想。经过近20年来众多著名数学家的工作,强制性猜想和测地稳定性猜想中的必要性已变得完全清晰,但其充分性的证明在此之前被认为遥不可及。
求出一类四阶完全非线性椭圆方程的解,就能证明常标量曲率度量的存在性。陈秀雄、程经睿的工作恰恰就是在K-能量强制性或测地稳定性的假设下,证明了这类方程解的存在。他们不仅求出了方程的解,而且建立了一套系统研究此类方程的方法,为 探索 未知的数学世界提供了一种新工具。此外,他们还给出了环对称凯勒流形上稳定性猜想的证明,将唐纳森在环对称凯勒曲面上的经典定理推广到了高维,并对一般稳定性猜想的证明提出可能的解决方案,让一般稳定性猜想的完全解决成为可能。
在9月24号,国际学术期刊科学上发表了二氧化碳人工合成淀粉的论文。该论文通过短短的11步就可以完成二氧化碳到淀粉全过程,远远比自然界60多步的淀粉合成路线简便,大大提高了淀粉合成的速度和效率。作为一项全新的技术,笔者认为它对当代会产生以下几点影响。
第一,二氧化碳合成淀粉可以降低粮食压力。根据实验室测定,人工合成淀粉的效率是农业生产淀粉的8.5倍。这一巨大的差距代表着更高的粮食生产速度,而这可以缓解我们当前人口快速增长所需要的粮食压力。因为我们人所需的能量大部分来自于植物中的淀粉,我们通过对淀粉的分解,将其转变为葡萄糖,最后合成ATP,为我们机体提供能量。而植物的生长需要很长的周期,但我们人体每天都需要进食,这就形成了供需的矛盾,而二氧化碳合成淀粉高效可以缓解这个矛盾,是非常棒的技术。
第二,二氧化碳固定合成淀粉能够解决环境危机。由于工业的发展,二氧化碳的排放量逐年升高,过量的二氧化碳造成了温室效应,让全球温度升高,造成了两极冰川融化,海平面升高,威胁沿海城市。面对这些二氧化碳造成的危机,二氧化碳合成淀粉技术能够利用大气中丰富的二氧化碳资源,将这些对环境产生破坏的气体转变成对人体有利用价值的淀粉,可以极大地延缓温室效应的逼近,保护环境。
第三,二氧化碳合成淀粉技术提高了能量的利用效率。由于自然界中合成淀粉需要六十多步,这其中会造成不少能量的浪费。而该技术简化了这些步骤,可以有效避免更多的能量浪费,提高能量利用效率。
以上就是笔者对这个问题的回答,如果大家有其他观点,欢迎在评论下方留言。
如果这种技术能得到普及并量产,那么以后食品原材料价格将大大降低。
有可能实现。
人工合成淀粉,是中国科学家历时6年多科研攻关,继上世纪60年代在世界上首次完成人工合成结晶牛胰岛素之后,又在人工合成淀粉方面取得重大颠覆性、原创性突破——国际上首次在实验室实现二氧化碳到淀粉的从头合成。
中国从二氧化碳人工合成淀粉被国际学术界认为是影响世界的重大颠覆性技术,这一成果2021年9月24日在国际学术期刊《科学》发表。
淀粉是粮食最主要的成分,同时也是重要的工业原料。淀粉主要由玉米等农作物通过自然光合作用固定二氧化碳生产,淀粉合成与积累涉及60余步代谢反应以及复杂的生理调控,理论能量转化效率仅为2%左右。
农作物的种植通常需要较长周期,需要使用大量土地、淡水等资源以及肥料、农药等农业生产资料。粮食危机、气候变化是人类面临的重大挑战,粮食淀粉可持续供给、二氧化碳转化利用是当今世界科技创新的战略方向。
如果未来二氧化碳人工合成淀粉的系统过程成本能够降低到与农业种植相比具有经济可行性,将会节约90%以上的耕地和淡水资源,避免农药、化肥等对环境的负面影响,推动形成可持续的生物基社会,提高人类粮食安全水平。
同时,最新研究成果实现于无细胞系统中用二氧化碳和电解产生的氢气合成淀粉的化学-生物法联合的人工淀粉合成途径(ASAP),为推进“碳达峰”和“碳中和”目标实现的技术路线提供一种新思路。
淀粉技术的合成,对于当下及未来的影响非常的大,特别是合成大米可能会实现,那么对于粮食问题的发展有很大的帮助。
对当下的影响就是这种技术会名声远扬,可能不会有太多人知晓。对未来就是随着技术慢慢改进和发展,会变得更好。
获得的可能性很小。
突破和技术。
一般来说,在生物学论文中,这两个词的意思是,1还有很多其他需要突破的技术,2距离实际应用遥遥无期。
以当前中国乃至世界的生物科学水平来说,寄希望于化工方式合成淀粉的可能性更大一些,类似于生产尿素。
在生物工程方面,在我有生之年,只要能见到碳4转基因作物实现就行了,生工方式合成淀粉,这步子太大了,蛋不够用。
第一,无机物合成有机物不是什么新鲜事,1828年维勒就用无机物合成了尿素,而今天,先用工业方法将无机物转化为甲醛,再用Kiliani氰化增碳法之类的合成葡萄糖的方法也已经相对成熟了。
第二,这个合成方法,快是快,但贵也应该是真贵,短期内应该没办法大规模推广。
总结:
这个技术主要难点是如何廉价生产大量的氢气,以及如何大规模储存氢气,目前主要是光伏发电电解水制氢,用的电是太阳能风能的弃电,是解决风能以及太阳能发电不稳定的问题,是把氢当成储能介质的。
这个东西本质跟甲醇制造淀粉不存在很大的技术相关性。也就是前者对后者工艺进步,不存在什么影响,后来的进步对前者工艺进步同样不存在多大的联系。
如果这种技术能得到普及并量产,那么以后食品原材料价格将大大降低。
在9月24号,国际学术期刊科学上发表了二氧化碳人工合成淀粉的论文。该论文通过短短的11步就可以完成二氧化碳到淀粉全过程,远远比自然界60多步的淀粉合成路线简便,大大提高了淀粉合成的速度和效率。作为一项全新的技术,笔者认为它对当代会产生以下几点影响。
第一,二氧化碳合成淀粉可以降低粮食压力。根据实验室测定,人工合成淀粉的效率是农业生产淀粉的8.5倍。这一巨大的差距代表着更高的粮食生产速度,而这可以缓解我们当前人口快速增长所需要的粮食压力。因为我们人所需的能量大部分来自于植物中的淀粉,我们通过对淀粉的分解,将其转变为葡萄糖,最后合成ATP,为我们机体提供能量。而植物的生长需要很长的周期,但我们人体每天都需要进食,这就形成了供需的矛盾,而二氧化碳合成淀粉高效可以缓解这个矛盾,是非常棒的技术。
第二,二氧化碳固定合成淀粉能够解决环境危机。由于工业的发展,二氧化碳的排放量逐年升高,过量的二氧化碳造成了温室效应,让全球温度升高,造成了两极冰川融化,海平面升高,威胁沿海城市。面对这些二氧化碳造成的危机,二氧化碳合成淀粉技术能够利用大气中丰富的二氧化碳资源,将这些对环境产生破坏的气体转变成对人体有利用价值的淀粉,可以极大地延缓温室效应的逼近,保护环境。
第三,二氧化碳合成淀粉技术提高了能量的利用效率。由于自然界中合成淀粉需要六十多步,这其中会造成不少能量的浪费。而该技术简化了这些步骤,可以有效避免更多的能量浪费,提高能量利用效率。
以上就是笔者对这个问题的回答,如果大家有其他观点,欢迎在评论下方留言。
淀粉技术的合成,对于当下及未来的影响非常的大,特别是合成大米可能会实现,那么对于粮食问题的发展有很大的帮助。
属于。人工合成淀粉,通过耦合化学催化和生物催化模块体系,实现了“光能—电能—化学能”的能量转变方式,成功构建出一条从二氧化碳到淀粉合成只有11步反应的人工途径。是中国科学家历时6年多科研攻关,继上世纪60年代在世界上首次完成人工合成结晶牛胰岛素之后,又在人工合成淀粉方面取得重大颠覆性、原创性突破——国际上首次在实验室实现二氧化碳到淀粉的从头合成。中国从二氧化碳人工合成淀粉被国际学术界认为是影响世界的重大颠覆性技术,这一成果2021年9月24日在国际学术期刊《科学》发表。
对当下的影响就是这种技术会名声远扬,可能不会有太多人知晓。对未来就是随着技术慢慢改进和发展,会变得更好。
在9月24号,国际学术期刊科学上发表了二氧化碳人工合成淀粉的论文。该论文通过短短的11步就可以完成二氧化碳到淀粉全过程,远远比自然界60多步的淀粉合成路线简便,大大提高了淀粉合成的速度和效率。作为一项全新的技术,笔者认为它对当代会产生以下几点影响。
第一,二氧化碳合成淀粉可以降低粮食压力。根据实验室测定,人工合成淀粉的效率是农业生产淀粉的8.5倍。这一巨大的差距代表着更高的粮食生产速度,而这可以缓解我们当前人口快速增长所需要的粮食压力。因为我们人所需的能量大部分来自于植物中的淀粉,我们通过对淀粉的分解,将其转变为葡萄糖,最后合成ATP,为我们机体提供能量。而植物的生长需要很长的周期,但我们人体每天都需要进食,这就形成了供需的矛盾,而二氧化碳合成淀粉高效可以缓解这个矛盾,是非常棒的技术。
第二,二氧化碳固定合成淀粉能够解决环境危机。由于工业的发展,二氧化碳的排放量逐年升高,过量的二氧化碳造成了温室效应,让全球温度升高,造成了两极冰川融化,海平面升高,威胁沿海城市。面对这些二氧化碳造成的危机,二氧化碳合成淀粉技术能够利用大气中丰富的二氧化碳资源,将这些对环境产生破坏的气体转变成对人体有利用价值的淀粉,可以极大地延缓温室效应的逼近,保护环境。
第三,二氧化碳合成淀粉技术提高了能量的利用效率。由于自然界中合成淀粉需要六十多步,这其中会造成不少能量的浪费。而该技术简化了这些步骤,可以有效避免更多的能量浪费,提高能量利用效率。
以上就是笔者对这个问题的回答,如果大家有其他观点,欢迎在评论下方留言。
获得的可能性很小。
突破和技术。
一般来说,在生物学论文中,这两个词的意思是,1还有很多其他需要突破的技术,2距离实际应用遥遥无期。
以当前中国乃至世界的生物科学水平来说,寄希望于化工方式合成淀粉的可能性更大一些,类似于生产尿素。
在生物工程方面,在我有生之年,只要能见到碳4转基因作物实现就行了,生工方式合成淀粉,这步子太大了,蛋不够用。
第一,无机物合成有机物不是什么新鲜事,1828年维勒就用无机物合成了尿素,而今天,先用工业方法将无机物转化为甲醛,再用Kiliani氰化增碳法之类的合成葡萄糖的方法也已经相对成熟了。
第二,这个合成方法,快是快,但贵也应该是真贵,短期内应该没办法大规模推广。
总结:
这个技术主要难点是如何廉价生产大量的氢气,以及如何大规模储存氢气,目前主要是光伏发电电解水制氢,用的电是太阳能风能的弃电,是解决风能以及太阳能发电不稳定的问题,是把氢当成储能介质的。
这个东西本质跟甲醇制造淀粉不存在很大的技术相关性。也就是前者对后者工艺进步,不存在什么影响,后来的进步对前者工艺进步同样不存在多大的联系。
如果这种技术能得到普及并量产,那么以后食品原材料价格将大大降低。
淀粉技术的合成,对于当下及未来的影响非常的大,特别是合成大米可能会实现,那么对于粮食问题的发展有很大的帮助。
是的,以二氧化碳为原料,不依赖植物光合作用,直接人工合成淀粉——看似科幻的一幕,真实地发生在实验室里。我国科学家首次实现了二氧化碳到淀粉的从头合成,相关成果北京时间9月24日由国际知名学术期刊《科学》在线发表。
淀粉是粮食最主要的成分,通常由农作物通过自然光合作用固定二氧化碳生产。自然界的淀粉合成与积累,涉及60余步生化反应以及复杂的生理调控。人工合成淀粉是科技领域一个重大课题。此前,多国科学家积极探索,但一直未取得实质性重要突破。
中国科学院天津工业生物技术研究所研究员马延和带领团队,采用一种类似“搭积木”的方式,从头设计、构建了11步反应的非自然固碳与淀粉合成途径,在实验室中首次实现从二氧化碳到淀粉分子的全合成。核磁共振等检测发现,人工合成淀粉分子与天然淀粉分子的结构组成一致。
实验室初步测试显示,人工合成淀粉的效率约为传统农业生产淀粉的8.5倍。在充足能量供给的条件下,按照目前技术参数,理论上1立方米大小的生物反应器年产淀粉量相当于我国5亩玉米地的年产淀粉量。
国际知名专家给予高度评价
对于此次成果,德国科学院院士曼弗雷德·雷兹、美国工程院院士延斯·尼尔森等国际知名专家均给予高度评价,认为这一重大突破将该领域研究向前推进了一大步。
中科院副院长周琪说,成果目前尚处于实验室阶段,离实际应用还有距离,后续需尽快实现从“0到1”概念突破到“1到10”的转换。
据了解,经科技部批准,天津工业生物所正在牵头建设国家合成生物技术创新中心。科研团队的下一步目标,一方面是继续攻克淀粉合成人工生物系统的设计、调控等底层科学难题,另一方面要推动成果走向产业应用,未来让人工合成淀粉的经济可行性接近农业种植。
以上内容参考 中国科学院-我国科学家突破二氧化碳人工合成淀粉技术