CVPR的workshop审稿还是很严格的。虽然reviewers和主会不是一套班子,但也都是来自Google/Facebook的顶级学者。难度上,CVPR workshop=B类主会>C类主会。
CVPR录用标准
CVPR有着较为严苛的录用标准,会议整体的录取率通常不超过30%,而口头报告的论文比例更是不高于5%。而会议的组织方是一个循环的志愿群体,通常在某次会议召开的三年之前通过遴选产生。CVPR的审稿一般是双盲的,也就是说会议的审稿与投稿方均不知道对方的信息。
通常某一篇论文需要由三位审稿者进行审读。最后再由会议的领域主席(area chair)决定论文是否可被接收。
第一届CVPR会议于1983年在华盛顿由金出武雄和Dana Ballard举办,此后每年都在美国本土举行。会议一般在六月举行,而举办地通常情况下是在美国的西部,中部和东部地区之间循环。
例如,2013年该会议在波特兰召开。而2014年有超过1900人参加了在哥伦比亚举办的会议。而接下来的2015,2016和2017年,该会议分别于波士顿,拉斯维加斯和夏威夷举办。
CVPR有着较为严苛的录用标准,会议整体的录取率通常不超过30%,而口头报告的论文比例更是不高于5%。
而会议的组织方是一个循环的志愿群体,通常在某次会议召开的三年之前通过遴选产生。CVPR的审稿一般是双盲的,也就是说会议的审稿与投稿方均不知道对方的信息。通常某一篇论文需要由三位审稿者进行审读。最后再由会议的领域主席(area chair)决定论文是否可被接收。
在各种学术会议统计中,CVPR被认为有着很强的影响力和很高的排名。目前在中国计算机学会推荐国际学术会议的排名中,CVPR为人工智能领域的A类会议 。在巴西教育部的排名中排名为A1。基于微软学术搜索(Microsoft Academic Search)2014年的统计,CVPR中的论文总共被引用了169,936次。
intelligentdataanalysis期刊是比较容易录用的,因为它这个本来就是属于一个外企,虽然他的工资是比较高,但是只要自己是有期刊的工作经验,那么就是比较容易录用。
软件学报是三大学报之一,权威性最高,难度大,审稿漫长模式识别与人工智能好投一点
关于期刊录用难易程度的问题,很难有一个一概而论的答案。不同的期刊在录用方面有自己的标准和要求,而且各个领域的期刊对于文章的难度及录用标准也是不同的。就Intelligent Data Analysis这个期刊而言,它是专门发表数据分析领域高质量研究论文的国际性期刊。Intelligent Data Analysis作为一个学术水平较高的期刊,对于文章的质量、原创性和实用性等方面都有较高的要求。因此,能否被该期刊录用取决于申稿文章的质量和是否符合该期刊的审稿标准。如果你想在该期刊发表文章,建议你花时间研究该期刊发表的论文类型、引用规则等,精心制作论文并根据该期刊的官方要求进行修改。同时,你可以通过阅读该期刊发表的其他优秀论文,了解该期刊的审稿标准和要求,提高自己的写作水平和论文质量,从而增加文章被录用的机会。
人工智能类的还有好多期刊,这个期刊影响因子稍微偏低,比较容易投,审稿时间大概三个月
Intelligent Data Analysis是一个涵盖机器学习、数据挖掘、人工智能等领域的国际学术期刊,它旨在为学术界和工业界提供一个交流最新研究成果和技术进展的平台。该期刊的录用难度较大,因为它对提交的论文的质量和研究水平有较高的要求。然而,如果作者的研究成果具有独特性和创新性,并且符合期刊的主题和要求,就有可能被录用。为了在这个学术期刊上发表论文,作者需要具备较高的学术水平和研究能力,了解期刊的主题和要求,精心准备论文,并积极与编辑和审稿人沟通和交流,以提高论文的质量和录用率。同时,作者需要遵守学术规范和道德,不进行抄袭和剽窃等不正当行为,以维护学术诚信和公正性。Intelligent Data Analysis期刊的高要求也反映了学术界对研究质量和水平的追求和要求,鼓励学者在独立思考和创新的基础上,推动学科的发展和进步。
intelligentdataanalysis期刊是比较容易录用的,因为它这个本来就是属于一个外企,虽然他的工资是比较高,但是只要自己是有期刊的工作经验,那么就是比较容易录用。
《人工智能与机器人研究》是一本关于人工智能的期刊,该期刊杂志上发表的文章包含这些领域:智能机器人、模式识别与智能系统、虚拟现实技术与应用、系统仿真技术与应用、工业过程建模与智能控制、智能计算与机器博弈、人工智能理论、语音识别与合成、机器翻译、图像处理与计算机视觉、计算机感知、计算机神经网络、知识发现与机器学习、建筑智能化技术与应用、人工智能其他学科等等。另外,这本期刊就是一本开源期刊,与传统期刊相比,采用了同行评审的方法审稿,具体开源期刊的特点可以百度了解更多;而且发表了的文章传播范围更广,受众更多,文章的影响力也更大。
软件学报是三大学报之一,权威性最高,难度大,审稿漫长模式识别与人工智能好投一点
对于普通学者而言,想要在Intelligent data analysis (IDA)期刊上发表文章是比较具有挑战性的。因为该期刊越来越受到国内外科研人员的关注和认可,已经成为数据挖掘、、机器学习等领域的重要刊物之一,因此被录用是非常困难的。IDA期刊对论文质量和创新性的要求非常高,只有那些切实做出重大贡献并且具有深入思考和独特见解的论文才能被录用。而且,IDA期刊的审稿非常严格,需要通过多轮评审才能决定是否可以发表,所以投稿作者需要耐心等待。总的来说,如果想要在IDA期刊上发表文章,需要具备深刻的学术研究背景、独特的研究观点、对当前研究热点问题有自己的独特见解,并且有良好的写作技巧和高质量的实验结果支撑才有可能被录用。
关于期刊录用难易程度的问题,很难有一个一概而论的答案。不同的期刊在录用方面有自己的标准和要求,而且各个领域的期刊对于文章的难度及录用标准也是不同的。就Intelligent Data Analysis这个期刊而言,它是专门发表数据分析领域高质量研究论文的国际性期刊。Intelligent Data Analysis作为一个学术水平较高的期刊,对于文章的质量、原创性和实用性等方面都有较高的要求。因此,能否被该期刊录用取决于申稿文章的质量和是否符合该期刊的审稿标准。如果你想在该期刊发表文章,建议你花时间研究该期刊发表的论文类型、引用规则等,精心制作论文并根据该期刊的官方要求进行修改。同时,你可以通过阅读该期刊发表的其他优秀论文,了解该期刊的审稿标准和要求,提高自己的写作水平和论文质量,从而增加文章被录用的机会。
软件学报是很难投的,审稿时间长,难度大,是EI核心来源期刊; 可接受8000-10000字左右的长文; 稿量大,处理流程大多缓慢,应早投; 《投稿方式:直接网站在线投稿,中英文均可。初审后通知编号,邮寄审理费。外审通过后再通知其它处理事宜。 审理费:150元 审稿周期:6个月左右;发表周期:录用后的发表周期较长,需要耐心等待,但专刊较快. 版面费标准:180.00元/面,收费比较厚道。该刊组织了很多专刊,投专刊的文章被录用后发表周期相对短,但录用率超低专刊反映信息较快,是一种不错的方式。 《模式识别与人工智能》比前者好中一些,但难度也不小。这个杂志是要求你寄两份打印稿,还有一份你的联系信息,然后大概一个星期左右他给你发email告知你通过初审,要求给审稿费100元,然后就是等待,大概三个多月给结果吧。每期文章大约20几篇,平均来说不是很好中,审稿一般4个月左右,发表周期就长了。
我国人工智能弯道超车走在世界前列,
人工智能产业链分为基础层、技术层和应用层。基础层是人工智能产业链的基础,为人工智能提供算力支撑和数据输入,中国在此领域发展时间较短,基础层发展较为薄弱。目前,中国的人工智能企业主要集中在北京、广东、上海和浙江,北京的人工智能发展已经步入快车道。
人工智能产业链全景梳理:基础层发展薄弱
基础层主要提供算力和数据支持,主要涉及数据的来源与采集,包括AI芯片、传感器、大数据、云计算、开源框架以及数据处理服务等。技术层处理数据的挖掘、学习与智能处理,是连接基础层与具体应用层的桥梁,主要包括机器学习、深度学习、计算机视觉、自然语言处理、语音识别等。应用层针对不同的场景,将人工智能技术进行应用,进行商业化落地,主要应用领域有驾驶、安防、医疗、金融、教育等。
近年来,人工智能在技术与应用方面取得了巨大的进展,在国际上具备了一定的竞争力,但是基础层的薄弱仍然是限制中国人工智能发展的关键因素。中国在在基础层发展时间较短,较落后于国际先进水平。 长期以来,中国的芯片大部份依赖进口,计算力方面的基础薄弱,且开源框架受制于国外AI巨头。
基础层的人工智能算力发挥着越来越重要的作用, AI芯片作为人工智能产业发展的核心,将迎来巨大的发展机遇。目前,中国人工智能芯片优秀企业有寒武纪、华为海思、中星微、西井科技、地平线、富瀚微、四维图新、瑞芯微、深鉴科技等。
人工智能产业链区域热力图:北京AI发展步入快车道
根据公开资料整理人工智能优秀企业区域分布热力地图如下,可见,我国人工智能产业链重点企业集中于北京、广东、上海、浙江等地区。
北京作为中国集聚人工智能企业最多的区域,其人工智能产业的链条已经比较完善,覆盖了整个产业链环节,且在产业链的重点细分领域均出现了行业龙头企业。其中,基础层中传感器的行业龙头京东方科技,AI芯片的行业龙头中星微电子、寒武纪、地平线、四维图新等,云计算的百度云、金山云、世纪互联等,数据服务的百度数据众包、京东众智、数据堂等;技术层的机器学习龙头百度IDL、京东DNN等,计算机视觉的商汤科技、旷视科技等,自然语言处理的百度、搜狗、紫平方等,语音识别的出门问问、智齿科技等;应用层的人工智能重点企业也涉及了各个领域。北京正在逐步形成具有全球影响力的人工智能产业生态体系。
—— 更多数据及分析请参考前瞻产业研究院《中国人工智能行业市场前瞻与投资战略规划分析报告》。
人工智能现在备受大家关注,各个国家的科技团队都开始并致力于钻研人工智能,人工智能产品层出不出,让我们大呼惊奇。在美国,人工智能的发展处于顶尖状态,而我国的人工智能也已经位于第一梯队,不管是从融资规模和新增企业数量上,中国排名仅位于美国之后位居第二。那么我们当前的人工智能的发展状况是什么样的呢?下面我们就给大家介绍一下这个问题。可以说中国的人工智能领域在世界排名第二,这是由于在人工智能领域的国际科技论文发表量和发明专利授权量已居世界第二,依托于庞大的网络和用户,国内拥有先进的语音、视觉、传感等人工智能相关领域的技术优势。中国人工智能的产业十分的发达,并且有极大的优势可以发展人工智能。但是中国的人工智能还是存在着很多的瓶颈问题,这些问题包括人工智能原创性理论基础不强,重大原创成果不足;在基础理论、核心算法以及关键设备、高端芯片、重大产品与系统、基础材料、元器件、软件与接口等方面,与以美国的人工智能发达国家相比还存在较大差距。当然,人工智能产业结构布局还不完善,人工智能人才队伍,特别是尖端人才不能满足发展需求等。可以用一个词来总结中国的人工智能,那就是大而不强。而中国的人工智能开始被很多国家限制,这是因为中国的人工智能发展前景十分好,好的让这些国家眼红,而美国政府正在考虑采取类似的措施,原因也是出于对中国可能获得珍贵的人工智能知识的担忧。中国对机器人和人工智能的兴趣尤其令人担忧,并扬言要对中国投资技术企业进行立法上的限制。 在这里需要给大家说明的是,人工智能中的10%在于算法,20%在于技术,70%在于应用场景和落地。这一推断没错,但是如果在前面30%失去技术优势,后面的70%就没有了什么意义。因此,增强人工智能基础,必须在大数据分析、深度学习、自主协同等方面进行学科理论梳理和研究,开展类脑智能计算、生物仿真等基础技术的研究,以实验室和研究院等形式专注研究成果的产品转化。当然我们需要意识到一个问题,那就是基础理论是根本,基础技术是主干,应用是枝叶。只有根底深厚庞大,主干强劲,人工智能产业才能日益兴荣昌盛。目前人工智能共享技术包括知识计算引擎技术、自然语言处理技术、群体智能关键技术、自主无人系统智能技术、虚拟现实智能建模技术,以及智能计算芯片与系统等。中国人工智能的未来前景还是比较乐观的,但是这些乐观还是多少有一点悲观的,不过相信我们的国家会解决这些问题。
经过多年的持续积累,我国在人工智能领域取得重要进展,国际科技论文发表量和发明专利授权量已居世界第二,部分领域核心关键技术实现重要突破。
语音识别、视觉识别技术世界领先,自适应自主学习、直觉感知、综合推理、混合智能和群体智能等初步具备跨越发展的能力,中文信息处理、智能监控、生物特征识别、工业机器人、服务机器人、无人驾驶逐步进入实际应用,人工智能创新创业日益活跃,一批龙头骨干企业加速成长,在国际上获得广泛关注和认可。
加速积累的技术能力与海量的数据资源、巨大的应用需求、开放的市场环境有机结合,形成了我国人工智能发展的独特优势。
与此同时,我国人工智能整体发展水平与发达国家相比仍存在差距,缺少重大原创成果,在基础理论、核心算法以及关键设备、高端芯片、重大产品与系统、基础材料、元器件、软件与接口等方面差距较大。
科研机构和企业尚未形成具有国际影响力的生态圈和产业链,缺乏系统的超前研发布局;人工智能尖端人才远远不能满足需求;适应人工智能发展的基础设施、政策法规、标准体系亟待完善。
人工智能领域技术能力全面提升为人机协同奠定基础
随着大数据、云计算、互联网、物联网等信息技术的发展,以深度神经网络为代表的人工智能技术飞速发展,人工智能领域科学与应用的鸿沟正在被突破。
图像分类、语音识别、知识问答、人机对弈、无人驾驶等人工智能技术能力快速提升,技术的产业化进程得以开启,人工智能迎来爆发式增长的新高潮。机器在人工智能技术的应用下,在“视觉”“听觉”“触觉”等人体感官的感知能力不断增强。
例如计算机视觉领域中深受关注的Image Net图像识别挑战赛获奖结果表明,2015年,计算机对于图像的识别能力已经超过人类水平,这意味着计算机能够在多种场景下一定程度上替代人类视觉的工作,更高效地完成任务。
同时得益于深度学习算法能力的提升,语音识别、自然语言处理等人工智能算法的不断革新助推计算机视觉产业持续向前。
人工智能技术能力的不断成熟使得机器能够实现越来越人性化的操作。人工智能技术能力的全面提升为人机系统的能力实现奠定了坚实的基础。
发表文章在数值模拟方向的难度取决于所涉及的技术难度和应用程度,如果涉及的技术复杂,应用程度较高,发表文章就会比较容易。另外,在发表文章方面,也要注意学术期刊的要求,比如发表文章的字数、文献清单、图表等,这些都是发表文章的重要因素。
1、来稿要求主题明确、结构严谨、数据可靠、文字简炼。作者自留底稿,本刊审稿周期6个月,请勿一稿多投。2、署名者应为稿件执笔人或稿件内容的主要责任者。署名人数一般不超过3人。文后请附所有作者姓名、出生年、学历、学位、工作单位、职务或职称、主要从事技术工作领域、重要学术成就。通信作者的详细联系地址、电话号码和电子邮箱等信息请务必填写完整,以便编辑部与作者联系。3、正文前应列有300~400字的中文摘要、150~200个单词左右的英文摘要及作者单位英译名,并列有中、英文关键词,中图分类号,文献标识码。英文关键词下列第一作者或通讯作者E-mail。摘要写作应符合本刊标准。4、首页脚注附基金项目及编号、第一作者姓名、学历、职称。5、来稿包括图、表,一般不超过7000字(约3.5页印刷页)。稿中所附图及表格应放在正文中,文稿中所有图题、图注、表题均为中、英文对照。表格用三线表。来稿要求为word文档,且文件大小应控制在1M以内,特殊情况可放宽到3M(例如图比较多的情况下)。新投稿的图片清晰度可稍低,能看清即可,待审稿通过后投修改稿时再提供清晰度比较高的图片以便印刷,这样可以有效节约文件大小。6、正文用五号宋字体,双栏打印,每栏23字每页45行。7、来稿文字、科学名词术语和计量单位符号应符合国家现行方案、规范和标准,国家无规定者应合乎专业习惯。8、参考文献限于作者亲自阅读、本文明确引用、公开发表或有案可查者。文献全部列于文后,按文内出现的先后次序编号,在文内相应引用位置注明序号。9、本刊对刊用稿件有权作文字性修改、删节。对不能按本刊意见进行修改的稿件,本刊有权不予采用。10、来稿采用与否,均通知作者。审稿期间作者可采用“作者查稿系统”查询稿件当前处理状态。在收到编辑部的录用或者退稿通知之前,请勿就审稿意见提出讨论。本刊审稿流程:收稿→分稿→一审→二审→三审→退修→发录用通知→审英文→待刊,其中在审稿的任何阶段未通过都会及时发退稿通知,以免影响作者另投他刊。11、来稿一经刊用,赠第一作者该期学报四份,并按标准一次性支付本文的发表和数据库收录稿酬。12、根据中国科协学会部[1988]科协学发字第039号文,我刊对采用的稿件收取一定的版面费,作为办刊经费来源之一。13、本刊对中国土木工程学会的理事和会员以及本刊理事单位成员所投稿件在审稿通过后给予优先考虑,并计划于2008年开始在学会网站免费为学会理事、会员和学报理事提供全文浏览服务。