费马的本职工作是律师、议员,数学只是他的业余爱好。费马是业余数学家的王者,他有着“业余数学家”之王的称号。
她的一生非常传奇,她是一名了不起的数学家,在数学方面有很多成就,她也是现在为止唯一一位在数学年刊发表过论文的中国女数学家,确实是非常优秀的一个人。
朱良璧先生是至今为止唯一一个在《数学年刊》 成功发表论文的女数学家。为我们国家培养了优秀的院士,几代的数学家。
1931年的11月份,朱良璧在上海出生。1936年,她毕业于浙江大学的数学系,毕业之后就留校开始做老师,到1977年退休朱先生一直默默耕耘在三尺讲台。
1936年,朱良璧是作为按照学制时间如期毕业的学生之一。1937年我国抗日战争全面爆发之后,朱良璧依然跟随浙江大学西迁,在衣物食物都匮乏的环境当中,她仍然一心扑在数学研究中并最终获得了优秀的成果。这么多年以来,不管外界如何纷扰也不管自己获得了多大的荣誉朱良璧先生一直默默的奋斗在教学的第一线,为学校和国家培养出来了许许多多优秀的数学人才。1943年9月朱良璧朱良碧与陈建功先生结婚。1952年,朱良碧调入了复旦大学做讲师,1958年,陈建功先生被调到杭州做杭州大学的副校长,朱良璧夫唱妇随也到了杭州大学,继续担任她的讲师工作。朱先生主讲的高等数学是当时是对各个系都开放的公共课,所以有一届又一届的莘莘学子和学校的同事都记得朱先生的淡泊名利,温厚低调是朱先生给学生和同事留下最深的印象。
作为一名数学家朱良璧全身心投入去研究,作为一名老师她默默无闻坚持耕耘在讲台上,作为一名妻子她对自己的伴侣忠诚坚守。正是以一颗平常心创造了朱先生不平凡的一生。
朱良璧先生与陈建功先生对我们国家还有数学领域的发展和推进所做出的努力和贡献值得我们年轻一辈去学习和铭记。
新的科学理论本来是衡量它有用或无用,现在却用它来衡量提出人身份的高低卑贱!真是一种科学政策的讽刺。
数学系教授张益唐自称已解决郎道-西格尔零点猜想的消息,引发数学界关注。且数学界说老张确实是数学届少见的“大器晚成”,而且他是一位难得的奇才。对于他的这项成就引起了很多人的高度关注,因为数学是一门非常深奥的学科,能够在数学上有所成就是非常不容易的,而且要知道写论文发表论文,需要的时间更长久。很多人也因为没有耐心半途而废。
其实不管是物理学家也好还是数学家也好,他们对社会所创造的贡献远远比我们想象的还要多。他们非常值得我们大家尊敬和学习他们身上的精神。可是我也看到有很多的人把我们不同类型的科学家之间放在一起进行比对,我觉得这种方法,这种做法是非常错误的。每一个科学家都非常的了不起,大家要知道做科研的人都是非常辛苦的,可以说他们没有自己的生活,把自己所有的时间精力都浪费在了科学钻研上。他们值得我们尊敬;然而我们又对我们社会做出过哪些贡献呢?
我们应该从他们身上去学习到他们对于知识的尊敬。很多人觉得我们现在的知识储备已经够了,不需要进行学习,其实这种想法是非常错误的,要知道现在社会是一个知识的时代,如果我们不能够跟上社会的发展,我们肯定是要被淘汰的,在未来有一天我们可能跟自己的孩子沟通起来也会有代沟。发现很多东西,我们因为自己的不学习限制了我们的认知层面。想一想这是多么可怕的事情。希望大家能够通过这个新闻意识到学习的重要性,同时也希望大家能够尊重我们每一位科学家,要知道他们所做出的每一份贡献都是非常不容易的。
学术论文可以不发表,不过如果不发表的话,意义往往会削弱。这个问题我们要具体分析:首先,如果你的身份是大学生,以大部分同学的论文质量、学术能力和科研经验来说,在毕业前发表论文(尤其是好的期刊)需要比较高的学术要求。其次,论文即使不发表,如果有学术意义那也是论文。同样的,论文即使发表了,如果没有学术价值也是没用的文章。如果是大学生,论文不能发表该怎么办?其实如果你在研究生面试过程中能够对于自己个人陈述或者简历中提到科研经历相关的问题对答如流,或者陈述有价值的个人观点,都是对你有正面加成的。祝你好运,满意请采纳。
在数学界,张益唐被认为是“传奇般的存在”,极端的两面聚集一身:78级北京大学数学系天才、美国新罕布什尔州一家快餐店的会计;留美博士、
数学界觉得张益唐就是传奇一般的人物,是神一般的存在,而且他是一个数学天才,除了研究数学以外,还特别的喜欢文学,特别喜欢听古典音乐。
在1965年5月,陈景润发表了他的论文《大偶数表示一个素数及一个不超过2个素数的乘积之和》。论文的发表,受到世界数学界和著名数学家的高度重视和称赞。英国数学家哈伯斯坦和德国数学家黎希特把陈景润的论文写进数学书中,称为“陈氏定理”,陈景润终于攻克了“哥德巴赫猜想”这一世界数学之谜,这一世界数学 “悬案”终于被陈景润所破译,皇后王冠上的明珠终于被陈景润所摘取。1742年6月7日,德国数学家哥德巴赫提出一个未经证明的数学猜想“任何一个偶数均可表示两个素数之和”简称:“ 1+1”。这一猜想被称为“哥德巴赫猜想”。中国人运用新的方法,打开了“哥德巴赫猜想”的奥秘之门,摘取了此项桂冠,为世人所瞩目。这个人就是世界上攻克“哥德巴赫猜想”的第一个人——陈景润。
应该就是欧拉吧,他发表的文章的确很多
在1965年5月,发表论文《表达偶数表示一个素数及一个不超过2个素数的乘积之和》。论文的发表,受到世界数学界和著名数学家的高度重视和称赞。英国数学家哈伯斯坦和德国数学家黎希特把陈景润的论文写进数学书中,称为“陈氏定理”。
主要著作
《算术级数中的最小素数》《表达偶数为一个素数及一个不超过两个素数的乘积之和》《数学趣味谈》《组合数学》《哥德巴赫猜想》《初等数论》 。
陈景润在福州英华中学读书时,一位来自清华大学的数学老师给同学们讲了一道数学难题。大约200多年前,哥德巴赫提出了“任何一个偶数均可表示两个素数之和”的理论。
但是哥德巴赫数学家一生也没有证明出来这个猜想,哥德巴赫为了证实这一猜想,还曾给俄国的数学家欧拉写信,希望欧拉能够帮助他证明这个猜想。不幸的是,欧拉直到离世,也未能证明出这一猜想。
陈景润听完这一课后,对哥德巴赫猜想萌发了浓厚的兴趣。哥德巴赫猜想如同一块磁石般,紧紧吸引着陈景润日后的专研生涯。
陈景润为了证实哥德巴赫猜想,他自学了英语、德语,乃至俄语。无论酷暑还是寒冬,陈景润都要花上十几个小时研究哥德巴赫猜想。陈景润证实哥德巴赫猜想时,光演算的草稿纸都装了几麻袋。
1957年,陈景润被调往中科院工作,经过陈景润数十年的钻研,他将研究哥德巴赫猜想的成果写入了论文《大偶数表示一个素数及一个不超过2个素数的乘积之和》中。
《大偶数表示一个素数及一个不超过2个素数的乘积之和》一经发表后,立马引起了国际数学界人士的重视。英国数学家哈伯斯坦和德国数学家黎希特高度评价了陈景润哥德巴赫猜想,并将陈景润哥德巴赫猜想研究成果写入书中,给其命名为陈氏定理。
扩展资料:
陈景润的婚姻故事
1977年,陈景润因病住进309医院,见到了从武汉军区刚派来医院进修的由昆。过去陈景润连女人名字的边都不沾,连句话都不说的人,此次年近半百的陈景润见到由昆,眼睛一亮,亲切地和由昆打招呼,话也多了。
后来由昆被派到陈景润的病房当值班医生。这样,接触的机会多了,每次由昆一出现,陈景润都特别高兴。一天,陈景润关切地问由昆,家住在哪?有没有男朋友、有没有成家?由昆毫不设防,她便心直口快地说:“没有,没有,还早着呢。”
以后,由昆也十分关心这位中国数学家,斗转星移,彼此产生了爱情。终于有一天,由昆对身边的数学家提出了疑问:“你是大数学家,有好多人崇拜你,你为什么偏偏选中我呢?”面对心爱的姑娘,陈景润急得满脸通红,他不会年轻人的山盟海誓,
许久,陈景润才说出一句话:“我想过了,如果你不同意,我这一辈子就不结婚了。”正是这一句,使由昆不再犹豫,她坦然接受陈景润的感情,并且相依相扶,共同走过了16个春秋。
他们在组织的帮助下结婚了。从此这位被称为“痴人”和“怪人”的数学家陈景润有了一个温暖的家。
参考资料来源:百度百科_陈景润
保罗·埃尔德什(1913-1996),数学家,犹太人,一生发表学术论文1475篇(部分与他人合写)
社会在不断的进步和发展着,其中,科学便是一大助力。科学是一个很有意义的存在,它会以证据为前提,让人类得知一些神奇的认知。“科学家”这个词,令我们敬佩又膜拜!人类知识的进化,时代经济的发展都离不开科学家们的辛劳科研。接下来民族文化就为大家详细介绍为社会做了巨大贡献的世界十大科学家,一起来看看! 莱昂哈德·欧拉,瑞士数学家、自然科学家。18世纪最优秀的数学家,也是历史上最伟大的数学家之一, 欧拉于1707年4月15日出生于瑞士的巴塞尔,1783年9月18日于俄国圣彼得堡去世。欧拉出生于牧师家庭,自幼受父亲的影响。13岁时入读巴塞尔大学,15岁大学毕业,16岁获得硕士学位。 欧拉是18世纪数学界最杰出的人物之一,他不但为数学界作出贡献,更把整个数学推至物理的领域。他是数学史上最多产的数学家,平均每年写出八百多页的论文,还写了大量的力学、分析学、几何学、变分法等的课本,《无穷小分析引论》、《微分学原理》、《积分学原理》等都成为数学界中的经典著作。 欧拉是历史上最多产的数学家。瑞士自然科学基金会组织编写《欧拉全集》,计划出84卷,每卷都是4开本(一张报纸大小)。如果按每本300页计算,欧拉从18岁开始每天得写1张半纸。然而这些只是遗存的作品,欧拉的手稿在1771年彼得堡大火中还丢失了一部分。欧拉曾说他的遗稿大概够彼得堡科学院用20年。但实际上在他去世后的第80年,彼得堡科学院院报还在发表他的论着。 “天才在于勤奋,欧拉就是这条真理的化身。”曾有专家表示,“很多科学家都很勤奋,而欧拉最为典型。他失明后的十多年都是在完全看不见的情况下作研究。欧拉心算能力很强,可以通过口述让别人记录。有一次欧拉的两个学生算无穷级数求和,算到第17项时两人在小数点后第50位数字上发生争执,欧拉这时进行心算,迅速给出了正确答案。” 欧拉对数学的研究如此之广泛,因此在许多数学的分支中也可经常见到以他的名字命名的重要常数、公式和定理。此外欧拉还涉及建筑学、弹道学、航海学等领域。瑞士教育与研究国务秘书Charles Kleiber曾表示:“没有欧拉的众多科学发现,今天的我们将过着完全不一样的生活。”法国数学家拉普拉斯则认为:读读欧拉,他是所有人的老师。 2007年,为庆祝欧拉诞辰300周年,瑞士政府、中国科学院及中国有关部于2007年4月23日下午在北京的中国科学院文献情报中心共同举办纪念活动,回顾欧拉的生平、工作以及对现代生活的影响。 欧拉是史上发表论文数第二多的数学家,全集共计75卷;他的纪录一直到了20世纪才被保罗·埃尔德什打破。后者发表的论文达1525篇,著作有32部。 据说,欧拉是因为用肉眼直接观察太阳,导致双眼先后失明。但在人生最后7年(1765年至1771年),欧拉的双目完全失明,他还是以惊人的速度产出了生平一半的著作。 欧拉在他的时代,产量之多,无人能及。欧拉实际上支配了18世纪至今的数学;对于当时新数学分支微积分,他推导出了很多结果。很多数学的分枝,也是由欧拉所创或因而有了极大的进展。
欧拉是科学史上著作最多的一位杰出的数学家,称为数学界的莎士比亚。据统计他那不倦 的一生,共写下了886部书籍和论文,其中分析、代数、数论占40%,几何占18%,物理和 力学占28%,天文学占11%,弹道学、航海学、建筑学等占3%。彼得堡科学院为了整理他 的著作,足足忙碌了47年! 以下是他的简介: 欧拉,L.(Euler,Leonhard)1707年4月15日生于瑞士巴塞尔;1783年9月18日卒于俄国圣彼得堡.数学、力学、天文学、物理学. 欧拉的祖先原来居住在瑞士东北部博登湖(康斯坦斯湖)畔的小城——林道.16世纪末,他的曾祖父汉斯·乔治·欧拉(HansGeorg Euler)带领全家顺莱茵河而下,迁居巴塞尔.这个家族几代人多为手艺劳动者.欧拉的父亲保罗·欧拉(Paul Euler)则毕业于巴塞尔大学神学系,是基督教新教的牧师.1706年,保罗与另一位牧师的女儿玛格丽特·勃鲁克(Margarete Brucker)结婚.翌年春,欧拉降生.1708年,保罗举家迁居巴塞尔附近的村庄——里亨(Riehen).欧拉就在这田园静谧的乡村度过他的童年. 欧拉的父亲很喜爱数学.还在大学读书时,他就常去听雅格布·伯努利(Jakob Bernouli)的数学讲座.他亲自对欧拉进行包括数学在内的启蒙教育,并盼望儿子成为教门的后起之秀.贤惠的母亲为了使欧拉及时受到良好的学校教育,把他送到巴塞尔外祖母家生活了几年,入那里的一所文科中学念书.可是,这所学校不教数学.勤勉好学的欧拉独自随业余数学家J.伯克哈特(Bu-rckhart)学习.欧拉聪敏早慧,酷爱数学.他曾下苦功研读C.鲁道夫(Rudolf)的《代数学》(Algebra,1553)达数年之久.1720年秋,年仅13岁的欧拉进了巴塞尔大学文科.当时,约翰·伯努利(Johann Bernoulli)任该校数学教授.他每天讲授基础数学课程,同时还给那些有兴趣的少数高材生开设更高深的数学、物理学讲座.欧拉是约翰·伯努利的最忠实的听众.他勤奋地学习所有的科目,但仍不满足.欧拉后来在自传中写道:“……不久,我找到了一个把自己介绍给著名的约翰·伯努利教授的机会.……他确实忙极了,因此断然拒绝给我个别授课.但是,他给了我许多更加宝贵的忠告,使我开始独立地学习更困难的数学著作,尽我所能努力地去研究它们.如果我遇到什么障碍或困难,他允许我每星期六下午自由地去找他,他总是和蔼地为我解答一切疑难……无疑,这是在数学学科上获得成功的最好的方法.”约翰的两个儿子尼吉拉·伯努利第二(Nikolaus Bernoulli II)、丹尼尔·伯努利(Daniel Bernoulli),也成了欧拉的挚友.1722年夏,欧拉在巴塞尔大学获学士学位.翌年,他又获哲学硕士学位.但授予这一学位是在1724年6月8日的会议上正式通告的.此前,他为了满足父亲的愿望,于1723年秋又入神学系.他在神学、希腊语、希伯莱语方面的学习并不成功.他仍把大部分时间花在数学上.尽管欧拉后来彻底放弃了当牧师的念头,但他却终生虔诚地信奉基督教.欧拉18岁开始其数学研究生涯.1726年,他在《博学者》(Acta eruditorum)上发表了关于在有阻尼的介质中的等时曲线结构问题的文章.翌年,他研究弹道问题和船桅的最佳布置问题.后者是这年巴黎科学院的有奖征文课题.欧拉的论文虽未获得奖金,却得到了荣誉提名.此后,从1738年至1772年,欧拉共获得巴黎科学院12次奖金.在瑞士,当时青年数学家的工作条件非常艰难,而俄国新组建的圣彼得堡科学院正在网罗人才.1725年秋,尼古拉第二和丹尼尔应聘前往俄国,并向当局力荐欧拉.翌年秋,欧拉在巴塞尔收到圣彼得堡科学院的聘书,请他去那里任生理学院士助理.然而,故土难离.欧拉开始用数学和力学方法研究生理学,同时仍期望在巴塞尔大学找到职位.恰好,这时该校有一位物理学教授病故,出现空席.欧拉向学校教授评议会递交了“论声音的物理学原理”(Dissertatio physica de sono,1727)的论文,争取教授资格.在激烈的竞争中,未满20岁的欧拉落选了.1727年4月5日欧拉告别故乡,5月24日抵达圣彼得堡.从那时起,欧拉的一生和他的科学工作都紧密地同圣彼得堡科学院和俄国联系在一起.他再也没有回过瑞士.但是,出于对祖国的深厚感情,欧拉始终保留了他的瑞士国籍.欧拉到达圣彼得堡后,立即开始研究工作.不久,他获得了在真正擅长的领域从事研究工作的机会.1727年,他被任命为科学院数学部助理院士.他撰写的关于圣彼得堡科学院学术会议情况的调查报告,也开始在《圣彼得堡科学院汇刊(1727)》(Comme-ntarii Academiae scientiarum imperialis Petropolitanae)第二卷(St.Petersburg,1729)上发表.尽管那些年俄国政局动荡,圣彼得堡科学院还处在艰难岁月之中,但周围的学术气氛对发展欧拉的才华特别有利.那里聚集着一群杰出的科学家,如数学家C.哥德巴赫(Goldbach)、丹尼尔·伯努利,力学家J.赫尔曼(Hermann),三角学家F.梅尔(Maier),天文学家和地理学家J.N.德莱索(Delisle)等.他们同欧拉的个人情谊与共同的科学兴趣,使得彼此在科研工作中配合默契、相得益彰.1731年,欧拉成为物理学教授.1733年,丹尼尔·伯努利返回巴塞尔后,欧拉接替了他的数学教授职务,担负起领导科学院数学部的重任.这对亲密的朋友,以后通信40多年,促进了科学的竞争和发展.是年冬,欧拉和科学院预科学校的美术教师、瑞士画家G.葛塞尔(Gsell)的女儿柯黛林娜·葛塞尔(Katharina Gsell)结婚.翌年,其长子约翰·阿尔勃兰克(Johann Albrecht)降生.1740年,卡尔(Karl)出世.恬静、美满的家庭生活伴随着欧拉科学生涯的第一个黄金时期.还在圣彼得堡科学院建成之初,俄国政府就责成它除了进行纯科学研究之外,还要培养、训练俄国科学家.为此,科学院建立了一所大学和预科学校,大学办了近50年,预科学校一直办到1805年.俄国政府还委托科学院制定俄国的地图,解决各种具体技术问题.欧拉积极参与并领导了科学院的这些工作.从1733年起,他和德莱索成功地进行了地图研究.从30年代中期开始,欧拉以极大的精力研究航海和船舶建造问题.这些问题对于俄国成为海上强国,是具有重大意义的.欧拉是各种技术委员会的成员,又担任科学院考试委员会委员.他既要为科学院的期刊撰稿、审稿,还要为附属大学、预科学校准备讲义、开设讲座,工作十分忙碌.然而,他的主要成就是在数学研究上.在圣彼得堡的头14年间,欧拉以无可匹敌的工作效率在分析学、数论和力学等领域作出许多辉煌的发现.截止1741年,他完成了近90种著作,公开发表了55种,其中包括1936年完成的两卷本《力学或运动科学的分析解说》(Mechanica sive motus scie-ntia analytice exposita).他的研究硕果累累,声望与日俱增,赢得了各国科学家的尊敬.欧拉从前的导师约翰·伯努利早在1728年的信中就称他为“最善于学习和最有天赋的科学家”,1737年又称他是“最驰名和最博学的数学家”.欧拉后来谦逊地说:“……我和所有其他有幸在俄罗斯帝国科学院工作过一段时间的人都不能不承认,我们应把所获得的一切和所掌握的一切归功于我们在那儿拥有的有利条件.”由于过度的劳累,1738年,欧拉在一场疾病之后右眼失明了.但他仍旧坚韧不拔地工作.他热爱科学,热爱生活.他非常喜欢孩子(他一生有过13个孩子,除了5个以外都夭亡了).写论文时往往膝上抱着婴儿,大一点的孩子则绕膝戏耍.他酷爱音乐.在撰写艰深的数学论文时,他的“那种轻松自如是令人难以置信的”.1740年秋冬,俄国政局再度骤变,形势极不安定.欧拉此时与圣彼得堡科学院粗鲁、专横的顾问J.D.舒马赫尔(Schuma-cher)也产生了磨擦.为了使自己的科学事业不受损害,欧拉希望寻求新的出路.恰好这年夏天继承了普鲁士王位的腓特烈(Frederick)大帝决定重振柏林科学院,他热情邀请欧拉去柏林工作.欧拉接受了邀请.1741年6月19日,欧拉启程离开圣彼得堡,7月25日抵达柏林.柏林科学院是在G.W.莱布尼茨(Leibniz)的大力推动下于1700年创立的,后来它衰落了.欧拉在柏林25年.那时,他精力旺盛,不知疲倦地工作.他鼎力襄助院长P.莫佩蒂(Maupe-rtuis),在恢复和发展柏林科学院的工作中发挥了重大作用.在柏林,欧拉任科学院数学部主任.他是科学院的院务委员、图书馆顾问和学术著作出版委员会委员.他还担负了其他许多行政事务,如管理天文台和植物园,提出人事安排,监督财务,以及历书和地图的出版工作.当院长莫佩蒂外出期间,欧拉代理院长.1759年莫佩蒂去世后,虽然没有正式任命欧拉为院长,但他实际上一直领导着科学院的工作.欧拉和莫佩蒂的友谊,使欧拉能对柏林科学院的一切活动,尤其是在选拔院士方面,施加巨大影响.欧拉还担任过普鲁士政府关于安全保险、退休金和抚恤金等问题的顾问,并为腓特烈大帝了解火炮方面的最新成果(1745年),设计改造费诺运河(1749年),曾主管普鲁士皇家别墅水力系统管系和泵系的设计工作.他和德国许多大学的教授保持广泛联系,对大学教科书的编写和数学教学起了促进作用.在此期间,欧拉一直保留着圣彼得堡科学院院士资格,领取年俸.受该院委托,欧拉为其编纂院刊的数学部分,介绍西欧的科学思想,购买书籍和科学仪器,同时推荐研究人员和课题.他在培养俄国的科学人才方面起了重大的作用.他还经常把自己的学术论文寄往圣彼得堡.他的论文约有一半是用拉丁文在圣彼得堡发表的,另一半用法文在柏林出版.另外,他还先后当选为伦敦皇家学会会员(1749年)、巴塞尔物理数学会会员(1753年)及巴黎科学院院士(1755年).柏林时期是欧拉科学研究的鼎盛时期,其研究范围迅速扩大.他与J.K.达朗贝尔(D’Alembert)和丹尼尔·伯努利展开的学术竞争奠定了数学物理的基础;他与A.克莱罗(Clairaut)和达朗贝尔一起推进了月球和行星运动理论的研究.与此同时,欧拉详尽地阐述了刚体运动理论,创立了流体动力学的数学模型,深入地研究了光学和电磁学,以及消色差折射望远镜等许多技术问题.他写了大约380篇(部)论著,出版了其中的275种.内有分析学、力学、天文学、火炮和弹道学、船舶建造和航海等方面的几部巨著,其中1748年出版的两卷集著作《无穷分析引论》(Introdu-ctio in analysin infinitorum)在数学史上占有十分重要的地位.欧拉参加了18世纪40年代关于莱布尼茨和C.沃尔夫(Wolff)的单子论的激烈辩论.欧拉在自然哲学方面接近R.笛卡儿(Descartes)的机械唯物主义,他和莫佩蒂都是单子论的“劲敌”.1751年,S.柯尼格(K nig)以耸入听闻的新论据,发表了几篇批评莫佩蒂的“最小作用原理”的文章.欧拉翌年撰文反驳,并同莫佩蒂用更浅显的语言来解释最小作用原理.除了这些哲学和科学的争论以外,对于数学的发展来说,欧拉参加了另外三场更重要的争论:与达朗贝尔关于负数对数的争论;与达朗贝尔、丹尼尔·伯努利关于求解弦振动方程的争论;与J.多伦(Dollond)关于光学问题的争论.1759年莫佩蒂去世后,欧拉在普鲁士国王的直接监督之下负责柏林科学院的工作.欧拉同腓特烈大帝之间的关系并不融洽.1763年,当获悉腓特烈想把院长的职务授予达朗贝尔后,欧拉开始考虑离开柏林.圣彼得堡科学院立即遵照卡捷琳娜(Catherine)女皇旨意寄给欧拉聘书,诚挚希望他重返圣彼得堡.但是达朗贝尔拒绝长期移居柏林,使腓特烈一度推迟就院长入选作最后的决定.“七年战争”之后,腓特烈粗暴地干涉欧拉对柏林科学院的事务管理.1765年至1766年,在财政问题上,欧拉与腓特烈之间引发了一场严重的冲突.他恳请普鲁士国王同意他离开柏林.1766年7月28日,欧拉重返圣彼得堡,他的三个儿子和两个女儿也回到俄国,伴于身旁.欧拉的家安置在涅瓦河畔离圣彼得堡科学院不远的舒适之处.他的长子阿尔勃兰克这年成为科学院院士、物理学部教授,三年后又被任命为科学院的终身秘书.1766年,欧拉父子还同时当选为科学院执行委员.欧拉的工作是顺心的,然而,厄运也接二连三地向他袭来.回到圣彼得堡不久,一场疾病使欧拉的左眼几乎完全失明.这时,他已经不能再看书了.只能勉强看清大字体的提纲,用粉笔在石板上写很大的字母.1771年,欧拉双目完全失明.这一年,圣彼得堡的一场特大火灾又使欧拉的住所和财产付之一炬,仅抢救出欧拉及其手稿. 1773年 11月,欧拉夫人柯黛琳娜去世.三年后,她同父异母的妹妹莎洛姆·葛塞尔(SalomeGsell)成为欧拉的第二个妻子.欧拉晚年遭受双目失明、火灾和丧偶的沉重打击,他仍不屈不挠地奋斗,丝毫没有减少科学活动.在他的周围,有一群主动的合作者,包括:他的儿子阿尔勃兰克和克利斯朵夫(Christoph); W.L.克拉夫特(Krafft)院士和A.J.莱克塞尔(Lexell)院士;两位年轻的助手N.富斯(Fuss)和M.E.哥洛文(Golovin).欧拉和他们一起讨论著作出版的总计划,有时简要地口述研究成果.他们则使欧拉的设想变得更加明确,有时还为欧拉的论著编纂例证.据富斯自己统计,七年内他为欧拉整理论文250篇,哥洛文整理了70篇.欧拉非常尊重别人的劳动.1772年出版的《月球运动理论和计算方法》(Theoria motuum lunae, nova methodoPertractata)是在阿尔勃兰克、克拉夫特和莱克塞尔的帮助下完成的,欧拉把他们的名字都印在这本书的扉页上. 重返圣彼得堡后,欧拉的著作出版得更多.他的论著几乎有一半是1765年以后出版的.其中,包括他的三卷本《积分学原理》(Institutiones calculi integralis, 1768—1770)和《关于物理学和哲学问题给德韶公主的信》(Lettresà une princesse d’AllemagneSur divers sujets de physique et de philosophie, 1768—1772).前者的最重要部分是在柏林完成的.后者产生于欧拉给普鲁士国王的侄女的授课内容.这本文笔优雅、通俗易懂的科学著作出版后,很快就在欧洲翻译成多种文字,畅销各国,经久不衰.欧拉是历史上著作最多的数学家.欧拉的多产也得益于他一生非凡的记忆力和心算能力.他70岁时还能准确地回忆起他年轻时读的荷马史诗《伊利亚特》(Iliad)每页的头行和末行.他能够背诵出当时数学领域的主要公式和前100个素数的前六次幂.M.孔多塞(Condorcet)讲述过一个例子,足以说明欧拉的心算本领:欧拉的两个学生把一个颇为复杂的收敛级数的17项相加起来,算到第50位数字时因相差一个单位而产生了争执.为了确定谁正确,欧拉对整个计算过程进行心算,最后把错误找出来了.1783年9月18日,欧拉跟往常一样,度过了这一天的前半天.他给孙女辅导了一节数学课,用粉笔在两块黑板上作了有关气球运动的计算,然后同莱克塞尔和富斯讨论两年前F.W.赫歇尔(Herschel)发现的天王星的轨道计算.大约下午5时,欧拉突然脑出血,他只说了一句“我要死了”,就失去知觉.晚上11时,欧拉停上了呼吸.欧拉逝世不久,富斯和孔多塞分别在圣彼得堡科学院和巴黎科学院的追悼会上致悼词.孔多塞在悼词的结尾耐人寻味地说:“欧拉停止了生命,也停止了计算.”欧拉的菩作在他生前已经有多种输入了中国,其中包括著名的、1748年初版本的《无穷分析引论》.这些著作有一部分曾藏于北京北堂图书馆.它们是18世纪40年代由圣彼得堡科学院赠给北京耶稣会或北京南堂耶稣学院的.这也是中俄数学早期交流的一个明证.19世纪70年代,清代数学家华蘅芳和英国人傅兰雅(John Fryer)合译的《代数术》(1873)和《微积溯源》(1874),都介绍了欧拉学说.在此前后,李善兰和伟烈亚力(Alexander Wylie)合译的《代数学》(1859)、赵元益译的《光学》(1876)、黄钟骏的《畴人传四编》(1898)等著作也记载了欧拉学说或欧拉的事迹(详见文献[32]).中国人民是很早就熟悉欧拉的.欧拉不仅属于瑞士,也属于整个文明世界.著名数学史家A.П.尤什凯维奇(Юшкевич)说,人们可以借B.丰唐内尔(Fontenelle)评价莱布尼茨的话来评价欧拉,“他是乐于看 到自己提供的种子在别人的植物园里开花的人.”在欧拉的全部科学贡献中,其数学成就占据最突出的地位.他在力学、天文学、物理学等方面也闪现着耀眼的光芒.
华罗庚于1910年生于江苏省金坛县一个小商人家庭。1925年,初中毕业后就因家境贫困无法继续升学。1928年,18岁的华罗庚在他的数学老师王维克的推荐下,到金坛中学担任庶务员。然而不幸,他在这年患了伤寒症,卧床达五个月之久,从此左腿瘫痪。但他并不悲观、气馁,而是顽强地发奋自学。有一次,他发现苏家驹教授关于五次代数方程求解的一篇论文中有误:一个十二阶行列式的值算得不对,于是他把自己的计算结果和看法写成题为《苏家驹之代数的五次方程式解法不能成立的理由》的文章,投寄给上海《科学》杂志社。1930年,此文在《科学》杂志上发表,这时华罗庚年仅20岁。就是这篇论文,完全改变了华罗庚以后的生活道路。当时正在清华大学担任数学系主任的熊庆来看到了这篇论文后,大为赞赏。到处打听华罗庚是哪个大学的教授,大家都说不知道。碰巧数学系有位教员名叫唐培经,知道华罗庚这个人。他告诉熊庆来,说华罗庚并不是什么大学教授,而只是一个自学青年。熊庆来爱才心切,并不在乎学历,当即托唐培经邀请华罗庚来清华大学工作。1931年,唐培经拿着华罗庚寄来的照片到北京前门火车站去接由金坛北上的华罗庚。华罗庚,这位未来的大数学家,当时就是这样拖着残腿、柱着拐仗走进了清华园。起初,他在数学系当助理员,经管收发信函兼打字,并保管图书资料。他一边工作,一边自学。熊庆来还让他经常跟学生一道去教室听课。勤奋好学的华罗庚只用了一年时间,就把大学数学系的全部课程学完了,学问大有长进。熊庆来对这位年轻人十分器重,有时碰到了复杂的计算也会大声喊道:“华罗庚,过来一下,帮我算算这道题!”两年后,华罗庚被破格提升为助教,继而升为讲师。后来,熊庆来又选送他去英国剑桥大学深造。1938年,华罗庚回国,任西南联大教授,年仅28岁。华罗庚后来成为世界著名的数学家,在数论、矩阵几何学、典型群、自守函数论、多个复变数函数论、偏微分方程等很多领域都作出了卓越的贡献。他著有论文二百余篇、专著十本,成为美国科学院国外院士,法国南锡大学与香港中文大学荣誉博士。他的名字已进入美国华盛顿斯密司一宋尼博物馆,并被列为芝加哥科学技术博物馆中当今八十八个数学伟人之一。1936年,经熊庆来教授推荐,华罗庚前往英国,留学剑桥。20世纪声名显赫的数学家哈代,早就听说华罗庚很有才气,他说:“你可以在两年之内获得博士学位。”可是华罗庚却说:“我不想获得博士学位,我只要求做一个访问者。”“我来剑桥是求学问的,不是为了学位。”两年中,他集中精力研究堆垒素数论,并就华林问题、他利问题、奇数哥德巴赫问题发表18篇论文,得出了著名的“华氏定理”,向全世界显示了中国数学家出众的智慧与能力。1946年,华罗庚应邀去美国讲学,并被伊利诺大学高薪聘为终身教授,他的家属也随同到美国定居,有洋房和汽车,生活十分优裕。当时,不少人认为华罗庚是不会回来了。新中国的诞生,牵动着热爱祖国的华罗庚的心。1950年,他毅然放弃在美国的优裕生活,回到了祖国,而且还给留美的中国学生写了一封公开信,动员大家回国参加社会主义建设。他在信中坦露出了一颗爱中华的赤子之心:“朋友们!梁园虽好,非久居之乡。归去来兮……为了国家民族,我们应当回去……”虽然数学没有国界,但数学家却有自己的祖国。华罗庚从海外归来,受到党和人民的热烈欢迎,他回到清华园,被委任为数学系主任,不久又被任命为中国科学院数学研究所所长。从此,开始了他数学研究真正的黄金时期。他不但连续做出了令世界瞩目的突出成绩,同时满腔热情地关心、培养了一大批数学人才。为摘取数学王冠上的明珠,为应用数学研究、试验和推广,他倾注了大量心血。据不完全统计,数十年间,华罗庚共发表了152篇重要的数学论文,出版了9部数学著作、11本数学科普著作。他还被选为科学院的国外院士和第三世界科学家的院士。从初中毕业到人民数学家,华罗庚走过了一条曲折而辉煌的人生道路,为祖国争得了极大的荣誉。
因为我很懒不想写论文I wouldn't like to write the essay because I' m lazy.I'm too lazy to write the essay.I'm so lazy that I wouldn't like to write the essay.
I don't want to write the passage because I am very lazy.
翻译:...have published some papers in the journal【详释】在期刊上:in the journal,地点状语放在句尾发表了:have published,谓语动词,根据语境用了现在进行时论文:(some) papers,宾语,英语语言习惯加上some,也可以用a paper表示单一的论文。
欧拉生平 英文的生平及贡献见上面那位仁兄的即可!欧拉(Euler,1707~1783),瑞士数学家及自然科学家。1707年4月15日出生于瑞士的巴塞尔,1783年9月18日于俄国的彼得堡去逝。欧拉出生于一个牧师家庭,自幼受到父亲的教育。13岁时入读巴塞尔大学,15岁大学毕业,16岁获得硕士学位。 欧拉的父亲希望他学习神学,但他最感兴趣的是数学。在上大学时,他已受到约翰第一·伯努利的特别指导,专心研究数学。18岁时,他彻底的放弃了当牧师的想法而专攻数学,并开始发表文章。 1727年,在丹尼尔·伯努利的推荐下,欧拉到俄国的彼得堡科学院从事研究工作,并在1731年接替丹尼尔第一·伯努利,成为物理学教授。 在俄国的14年中,他努力不懈地投入研究工作,在分析学、数论及力学方面均有出色的表现。此外,欧拉还应俄国政府的要求,解决了不少如地图学、造船业等的实际问题。 1735年,他因工作过度以致右眼失明。在1741年,他受到普鲁士腓特烈大帝的邀请到德国科学院担任物理数学所所长一职,长达25年。他在柏林期间的研究内容更加广泛,涉及行星运动、刚体运动、热力学、弹道学、人口学等等,这些工作与他的数学研究互相推动着。与此同时,他在微分方程、曲面微分几何及其他数学领域均有开创性的发现。 1766年,他应俄国沙皇喀德林二世的礼聘重回彼得堡。在1771年,一场重病使他的左眼亦完全失明,但他以其惊人的记忆力和心算技巧继续从事科学创作。他通过与助手们的讨论以及直接口授等方式完成了大量的科学著作,直至生命的最后一刻。 欧拉是18世纪数学界最杰出的人物之一,他不但为数学界做出贡献,更把数学推至几乎整个物理的领域。此外,他是数学史上最多产的数学家,写了大量的力学、分析学、几何学、变分法的课本,《无穷小分析引论》,《微分学原理》,以及《积分学原理》都成为数学中的经典著作。除了教科书外,欧拉平均以每年800页的速度写出创造性论文。他去世后,人们整理出他的研究成果多达74卷。 欧拉最大的功绩是扩展了微积分的领域,为微分几何及分析学的一些重要分支,如无穷级数、微分方程等的产生与发展奠定了基础。 欧拉把无穷级数由一般的运算工具转变为一个重要的研究科目。他计算出了ξ函数在偶数点的值,他证明了a2k是有理数,而且可以伯努利数来表示。此外,他对调和级数亦有所研究,并相当精确的计算出欧拉常数γ的值,其值近似为0.57721566490153286060651209…… 在18世纪中叶,欧拉和其他数学家在解决物理方面的问过程中,创立了微分方程这门学科。其中在常微分方程方面,他完整地解决了n阶常系数线性齐次方程的问题,对于非齐次方程,他提出了一种降低方程阶的解法;在偏微分方程方面,欧拉将二维物体振动的问题,归结出了一、二、三维波动方程的解法。欧拉所写的《方程的积分法研究》更是偏微分方程在纯数学研究中的第一篇论文。 在微分几何方面,欧拉引入了空间曲线的参数方程,给出了空间曲线曲率半径的解析表达方式。在1766年,他出版了《关于曲面上曲线的研究》,这是欧拉对微分几何最重要的贡献,更是微分几何发展史上一个里程碑。他将曲面表为z=f(x,y),并引入一系列标准符号以表示z对x,y的偏导数,这些符号至今仍通用。此外,在该著作中,他亦得到了曲面在任意截面上截线的曲率公式。 欧拉在分析学上的贡献不胜枚举,如他引入了G函数和B函数,这证明了椭圆积分的加法定理,以及最早引入二重积分等等。 在代数学方面,他发现了每个实系数多项式必分解为一次或二次因子之积,即a+bi的形式。欧拉还给出了费马小定理的三个证明,并引入了数论中重要的欧拉函数φ(n),他研究数论的一系列成果使得数论成为数学中的一个独立分支。欧拉又用解析方法讨论数论问题,发现了ξ函数所满足的函数方程,并引入欧拉乘积。而且还解决了著名的哥尼斯堡七桥问题,创立了拓扑学。 欧拉对数学的研究如此广泛,因此在许多数学的分支中都能经常见到以他的名字命名的重要常数、公式和定理。