1905年爱因斯坦发表了5篇文章,包含了三个重要的物理学方向。PAPER 1:一种测定分子尺寸的新方法A New Determination of Molecular DimensionsPAPER 2:热的分子运动论所要求的静液体中悬浮粒子的运动On the Motion of Small Particles Suspended in Liquids at Rest Required by the Molecular-Kinetic Theory of HeatPAPER 3:论动体的电动力学On the Electrodynamics of Moving BodiesPAPER 4:物体的惯性和它所含的能量有关吗?Does the Inertia of a Body Depend on Its Energy Content?PAPER 5:关于光的产生和转化的一个试探性观点On a Heuristic Point of View Concerning the Production and Transformation of Light
在100年前的1905年,26岁的爱因斯坦写出了5篇改变世界的物理论文,他的《分子体积的新测定》证明了分子的存在,《热的分子运动论所要求的静止液体中悬浮小粒子的运动》论证了微粒的运动规则,《论动体的电动力学》创立了狭义相对论,《物体的惯性同它所含的能量有关吗?》推导出了“E=mc2”公式,《关于光的产生和转化的一个试探性观点》发现了光电效应规律。2005年既是爱因斯坦发表5篇论文100周年,也是他逝世50周年。1月19日,德国总理施罗德在柏林宣布,2005年为德国的“爱因斯坦年”。纪念相对论诞生100周年,纪念爱因斯坦逝世50周年。
爱因斯坦在1905年发表了6篇划时代的论文,分别为:1.《关于光的产生和转化的一个试探性观点》2.《分子大小的新测定方法》3.《热的分子运动论所要求的静液体中悬浮粒子的运动》4.《论动体的电动力学》5.《物体的惯性同它所含的能量有关吗?》6.《布朗运动的一些检视》
图灵对自然科学的兴趣使他在1930年和1931年两次获得他的一位同学莫科姆的父母设立的自然科学奖,受到政府派来的督学的赞赏,对自然科学的兴趣为他后来的一些研究奠定了基础,他的数学能力使他在念中学时获得过国王爱德华六世数学金盾奖章。
1931年,图灵考入剑桥大学国王学院 ,由于成绩优异而获得数学奖学金。在剑桥,他的数学能力得到充分的发展。
1935年,他的第一篇数学论文“左右殆周期性的等价”发表于《伦敦数学会杂志》上。同一年,他还写出“论高斯误差函数”一文。这一论文使他由一名大学生直接当选为国王学院的研究员,并于次年荣获英国著名的史密斯 (Smith) 数学奖,成为国王学院声名显赫的毕业生之一。
1936年5月,图灵向伦敦权威的数学杂志投了一篇论文,题为《论数字计算在决断难题中的应用》。该文于1937年在《伦敦数学会文集》第42期上发表后,立即引起广泛的注意。在论文的附录里他描述了一种可以辅助数学研究的机器,后来被人称为“图灵机”,这个设想最有变革意义的地方在于,它第一次在纯数学的符号逻辑,和实体世界之间建立了联系,后来我们所熟知的电脑,以及还没有实现的“人工智能”,都基于这个设想。这是他人生第一篇重要论文,也是他的成名之作。
1937年,图灵发表的另一篇文章“可计算性与λ可定义性”则拓广了丘奇(Church)提出的“丘奇论点”,形成“丘奇-图灵论点”,对计算理论的严格化,对计算机科学的形成和发展都具有奠基性的意义。
1936年9月,图灵应邀到美国普林斯顿高级研究院学习,并与丘奇一同工作。
在美国期间,他对群论作了一些研究,并撰写了博士论文。1938年在普林斯顿获博士学位,其论文题目为“以序数为基础的逻辑系统”,1939年正式发表,在数理逻辑研究中产生了深远的影响。
1938年夏,图灵回到英国,仍在剑桥大学国王学院任研究员,继续研究数理逻辑和计算理论,同时开始了计算机的研制工作。
第二次世界大战打断了图灵的正常研究工作,1939年秋,他应召到英国外交部通信处从事军事工作,主要是破译敌方密码的工作。由于破译工作的需要,他参与了世界上最早的电子计算机的研制工作。他的工作取得了极好的成就,因而于1945年获政府的最高奖——大英帝国荣誉勋章 (O.B.E.勋章) 。
1945年,图灵结束了在外交部的工作,他试图恢复战前在理论计算机科学方面的研究,并结合战时的工作,具体研制出新的计算机来。这一想法得到当局的支持。同年,图灵被录用为泰丁顿 (Teddington) 国家物理研究所的研究人员,开始从事“自动计算机” (ACE) 的逻辑设计和具体研制工作。这一年,图灵写出一份长达50页的关于ACE的设计说明书。这一说明书在保密了27年之后,于1972年正式发表。在图灵的设计思想指导下,1950年制出了ACE样机,1958年制成大型ACE机。人们认为,通用计算机的概念就是图灵提出来的。
1945年到1948年,他在英国国家物理实验室工作,负责自动计算引擎的研究。
1948年,图灵接受了曼彻斯特大学的高级讲师职务,并被指定为曼彻斯特自动数字计算机(Madam)项目的负责人助理,具体领导该项目数学方面的工作,作为这一工作的总结。
1949年成为曼彻斯特大学计算机实验室的副主任,负责最早的真正意义上的计算机——“曼彻斯特一号”的软件理论开发,因此成为世界上第一位把计算机实际用于数学研究的科学家。
1950年,图灵编写并出版了《曼彻斯特电子计算机程序员手册》 (The programmers’handbook for the Manchester electronic computer) 。这期间,他继续进行数理逻辑方面的理论研究。并提出了著名的“图灵测试”。同年,他提出关于机器思维的问题,他的论文“计算机和智能 (Computingmachiery and intelligence) ,引起了广泛的注意和深远的影响。1950年10月,图灵发表论文《机器能思考吗》。这一划时代的作品,使图灵赢得了“人工智能之父”的桂冠。
1951年,由于在可计算数方面所取得的成就,成为英国皇家学会会员,时年39岁。
1952年,他辞去剑桥大学国王学院研究员的职务,专心在曼彻斯特大学工作.除了日常工作和研究工作之外,他还指导一些博士研究生,还担任了制造曼彻斯特自动数字计算机的一家公司——弗兰蒂公司的顾问。
1952年,图灵写了一个国际象棋程序。可是,当时没有一台计算机有足够的运算能力去执行这个程序,他就模仿计算机,每走一步要用半小时。他与一位同事下了一盘,结果程序输了。后来美国新墨西哥州洛斯阿拉莫斯国家实验室的研究群根据图灵的理论,在MANIAC上设计出世界上第一个电脑程序的象棋。
阿兰·麦席森·图灵 阿兰·麦席森·图灵(Alan Mathison Turing,1912.6.1936年,图灵向伦敦权威的数学杂志投了一篇论文,题为“论数字计算在决断难题
著作很少,主要是科学方面主要成就图灵机1936年,图灵向伦敦权威的数学杂志投了一篇论文,题为"论数字计算在决断难题中的应用”,这是他对理论计算机的研究成果。剑桥大学国王学院的计算机房现在以图灵为名在这篇开创性的论文中,图灵给“可计算性”下了一个严格的数学定义,并提出著名的“图灵机”的设想。“图灵机”与“冯·诺伊曼机”齐名,被永远载入计算机的发展史中。。“图灵机”不是一种具体的机器,而是一种思想模型,可制造一种十分简单但运算能力极强的计算装置,用来计算所有能想象得到的可计算函数。基本思想是用机器来模拟人们用纸笔进行数学运算的过程。图灵机被公认为现代计算机的原型,这台机器可以读入一系列的零和一,这些数字代表了解决某一问题所需要的步骤,按这个步骤走下去,就可以解决某一特定的问题。这种观念在当时是具有革命性意义的,因为即使在50年代的时候,大部分的计算机还只能解决某一特定问题,不是通用的,而图灵机从理论上却是图灵机模型的理论通用机。在图灵看来,这台机器只用保留一些最简单的指令,一个复杂的工作只用把它分解为这几个最简单的操作就可以实现了,在当时他能够具有这样的思想确实是很了不起的。他相信有一个算法可以解决大部分问题,而困难的部分则是如何确定最简单的指令集,怎么样的指令集才是最少的,而且又能顶用,还有一个难点是如何将复杂问题分解为这些指令的问题。“图灵机”想象使用一条无限长度的纸带子,带子上划分成许多格子。如果格里画条线,就代表“1”;空白的格子,则代表“0”。想象这个“计算机”还具有读写功能:既可以从带子上读出信息,也可以往带子上写信息。计算机仅有的运算功能是:每把纸带子向前移动一格,就把“1”变成“0”,或者把“0”变成“1”。“0”和“1”代表着在解决某个特定数学问题中的运算步骤。“图灵机”能够识别运算过程中每一步,并且能够按部就班地执行一系列的运算,直到获得最终答案。图灵机”是一个虚拟的“计算机”,完全忽略硬件状态,考虑的焦点是逻辑结构。图灵在他那篇著名的文章里,还进一步设计出被人们称为“万能图灵机”的模型,它可以模拟其他任何一台解决某个特定数学问题的“图灵机”的工作状态。他甚至还想象在带子上存储数据和程序。“万能图灵机”实际上就是现代通用计算机的最原始的模型。美国的阿坦纳索夫在1939年果然研究制造了世界上的第一台电子计算机ABC,其中采用了二进位制,电路的开与合分别代表数字0与1,运用电子管和电路执行逻辑运算等。ABC是“图灵机”的第一个硬件实现,看得见,摸得着。而冯·诺依曼不仅在上个世纪40年代研制成功了功能更好、用途更为广泛的电子计算机,并且为计算机设计了编码程序,还实现了运用纸带存储与输入。图灵是第一个提出利用某种机器实现逻辑代码的执行,以模拟人类的各种计算和逻辑思维过程的科学家。而这一点,成为了后人设计实用计算机的思路来源,成为了当今各种计算机设备的理论基石。今天世界计算机科学领域的最高荣誉就被称为“图灵奖”,相当于计算机科学界的诺贝尔奖;人工智能1950年,图灵被录用为泰丁顿(Teddington)国家物理研究所的研究人员,开始从事“自动计算机”(ACE)的逻辑设计和具体研制工作。他提出关于机器思维的问题,他的论文“计算机和智能(Computing machinery and intelligence),引起了广泛的注意和深远的影响。1952年的论文今天被视为生物数学的奠基之作,这至多可以算的上他短暂科学生涯中第三大的贡献之一。图灵的三大贡献是:对理论计算机的研究、破译二战德军U-潜艇密码和对人工智能的研究。图灵在数学,逻辑学,神经网络和人工智能等领域也作出了很多贡献。在新旧世纪交替的2000年,美国《时代》杂志评选的二十世纪对人类发展最有影响的一百名人物中,图灵、沃森和克里克都在仅有二十名的“科学家,思想家”栏中榜上有名。破译德军密码图灵领导了英国政府破译二战德军U-潜艇密码的工作,为扭转二战盟军阿兰·麦席森·图灵雕像的大西洋战场战局立下汗马功劳。二战爆发后不久,英国对德国宣战,图灵随即入伍,在英国战时情报中心“政府编码与密码学院”服役。当时,德国人研制出了“谜”式密码机,能将平常的语言文字(明文)自动转换为代码(密文),再通过无线电或电话线路传送出去。即使被截获,对方也难破译。图灵带领200多位密码专家,研制出效率更高、功能更强大的密码破译机,将英国战时情报中心每月破译的情报数量从39000条提升到84000条。这些情报发挥了重要作用。历史学家认为,图灵让二战提早了2年结束,至少拯救了2000万人的生命。图灵因此在1946年获得“不列颠帝国勋章”。图灵试验1950年10月,图灵又发表了另一篇题为“机器能思考吗”的论文,其中提出了一图灵试验种用于判定机器是否具有智能的试验方法,即图灵试验。每年都有试验的比赛。1950写文章提出了著名的“图灵测试”,测试是让人类考官通过键盘向一个人和一个机器发问,这个考官不知道他问的是人还是机器。如果在经过一定时间的提问以后,这位人类考官不能确定谁是人谁是机器,那这个机器就有智力了。图灵在对人工智能的研究中,提出了一个叫做图灵试验的实验,尝试定出一个决定机器是否有感觉的标准。图灵试验由计算机、被测试的人和主持试验人组成。计算机和被测试的人分别在两个不同的房间里。测试过程由主持人提问,由计算机和被测试的人分别做出回答。观测者能通过电传打字机与机器和人联系(避免要求机器模拟人外貌和声音)。被测人在回答问题时尽可能表明他是一个“真正的”人,而计算机也将尽可能逼真的模仿人的思维方式和思维过程。如果试验主持人听取他们各自的答案后,分辨不清哪个是人回答的,哪个是机器回答的,则可以认为该计算机具有了智能。这个试验可能会得到大部分人的认可,但是却不能使所有的哲学家感到满意。图灵试验虽然形象描绘了计算机智能和人类智能的模拟关系,但是图灵试验还是片面性的试验。通过试验的机器当然可以认为具有智能,但是没有通过试验的机器因为对人类了解的不充分而不能模拟人类仍然可以认为具有智能。图灵试验还有几个值得推敲的地方,比如试验主持人提出问题的标准,在试验中没有明确给出;被测人本身所具有的智力水平,图灵试验也疏忽了;而且图灵试验仅强调试验结果,而没有反映智能所具有的思维过程。所以,图灵试验还是不能完全解决机器智能的问题。其实,要求电脑这样接近地模仿人类,以使得不能和一个人区分开实在是太过分了。一些专家认为,我们不该以电脑能否思维为目标,而是以能多大程度地模仿人类思维为目标;然后,让设计者再朝着这个目标努力。
图灵测试是测试人在与被测试者(一个人和一台机器)隔开的情况下,通过一些装置(如键盘)向被测试者随意提问。问过一些问题后,如果被测试者超过30%的答复不能使测试人确认出哪个是人、哪个是机器的回答,那么这台机器就通过了测试,并被认为具有人类智能。图灵测试 2014 的举办方英国雷丁大学发布新闻稿,宣称俄罗斯人弗拉基米尔·维西罗夫(Vladimir Veselov)创立的人工智能软件尤金·古斯特曼(Eugene Goostman)通过了图灵测试。如果这一结论获得确认,那么这将是人工智能乃至于计算机史上的一个里程碑事件。
阿兰·图灵英国数学家、逻辑学家,被视为计算机科学之父。 1931年图灵进入剑桥大学国王学院,毕业后到美国普林斯顿大学攻读博士学位,二战爆发后回到剑桥,后曾协助军方破解德国的著名密码系统Enigma,帮助盟军取得了二战的胜利。
1936年,图灵向伦敦权威的数学杂志投了一篇论文,题为“论数字计算在决断难题中的应用”。在这篇开创性的论文中,图灵给“可计算性”下了一个严格的数学定义,并提出著名的“图灵机”(Turing Machine)的设想。“图灵机”不是一种具体的机器,而是一种思想模型,可制造一种十分简单但运算能力极强的计算装置,用来计算所有能想象得到的可计算函数。“图灵机”与“冯·诺伊曼机”齐名,被永远载入计算机的发展史中。
1950年10月,图灵又发表了另一篇题为“机器能思考吗”的论文,成为划时代之作。也正是这篇文章,为图灵赢得了“人工智能之父”的桂冠。
在数学史上,高斯与黎曼是两个如雷贯耳的名字。这两位伟大的数学家有很多相似之处:都是德国人;都在哥廷根大学教过书;同为几何学史上划时代的人物;都既是数学家又是物理学家;以他们姓氏命名的数学概念都有几十个等等。 学数学的人大多都知道他们是师徒,高斯是黎曼的博士论文导师。话说青出于蓝而胜于蓝,长江后浪推前浪,对这师徒二人谁更厉害没有一个标准的说法,下面大家可以评一评这俩师徒谁更牛。 说到高斯,大家马上想起来的很可能是在他童年时巧算1+2+3+···+100的事迹,童年时的高斯就如此了得,一般来说长大之后那还得了。他成年之后的神迹给了我们一个肯定的回答,他确实是不同凡响,1796年高斯19岁,发现了正十七边形的尺规作图方法, 解决了自欧几里德以来近2000年悬而未决的一个难题。 同年,高斯发表并证明了二次互反律,这是他的得意之作,一生曾用八种方法证明,称之为“黄金律”。1799年,高斯完成了博士论文,获黑尔姆施泰特大学的博士学位,年仅22岁,这一时代伟大的数学序幕才刚刚拉开。 在这里应该谈谈非欧几何学,非欧几何是19世纪数学的一个伟大发现,它是由鲍耶、罗巴切夫斯基所独立发现,但从后来高斯的数学日记来看,伟大的高斯早在他两位几十年之前就已经独自发现了非欧几何,当时的他年仅19岁,够吓人吧!现在很多人19岁才刚进大学吧!高斯当时就明白了这种几何是正确的,但考虑到数学界很可能不能接受而未将他的研究发表,仅仅是记入了他的数学日记中。多进行研究少发表论文从此成为高斯的一大习惯,他的很多研究成果都未发表而仅仅只是记录在他的数学日记中。在以后多年的研究生涯中,高斯的研究几乎遍及纯粹数学与应用数学的各个领域,包括数论、复分析、微分几何、代数学等等,当然还有他所钟爱的物理学。在这里不一一叙述,高斯因此获得了“数学王子”的美誉,也与阿基米德、牛顿、欧拉并列为数学史上四大数学家。 相比之下,黎曼就没有他老师那么多的故事与神迹,他1826年出生于一个普通牧师家庭,上中小学时并没有展露出多少数学才能,但有一次不得不提及,上中学时,黎曼向一位老师借了一本数学著作,那是法国著名数学家勒让德800多页的名著《数论》,仅仅一个星期后黎曼便将此书归还,并向那位借他书的老师说:“这是一部伟大的著作,我已经掌握了它”,那位老师不大相信的问了他书中所讲的几个困难之处,黎曼竟都能够对答如流,那老师默然。应该说这是有关黎曼青少年时期很少的神迹记载之一,他这一时期的其他事迹很少见于记载。 1845年19岁的黎曼进入哥廷根大学学习哲学和神学。在此期间他也去听了一些数学讲座,包括高斯关于最小二乘法的讲座等。在得到父亲的允许后,他改学数学。在大学期间有两年去柏林大学就读 ,受到雅克比和狄利克雷的影响。1851年,黎曼在高斯指导下获得博士学位,时年25岁,博士论文有关复变函数的基础问题,得到了对学术极为苛刻的高斯的少有的热情称赞,因此论文黎曼成为了复变函数论的奠基人之一。 学数学的人未必对黎曼很了解,但大多都知道有一门伟大的学问叫做黎曼几何,这开始于黎曼1854年在哥廷根大学发表的题为《论作为几何学基础的假设》的演说,由此创立了黎曼几何学。黎曼将曲面本身看成一个独立的几何实体,而不是把它仅仅看作欧几里得空间中的一个几何实体。1915年,爱因斯坦运用黎曼几何和张量分析工具创立了新的引力理论——广义相对论。应该说对于广义相对论的创立,黎曼功不可没。数学界公认,黎曼几何是黎曼对数学的最大贡献,由此黎曼成为了近现代最伟大的几何学家,没有之一。 1859年,黎曼发表了著名论文《不超过已知数的素数个数》,在此文中黎曼首先提出了用复变函数论,特别是用ζ函数研究数论的新思想和新方法,从而开创了解析数论的新时期,并在这篇论文中提出了让很多大数学家望而却步的黎曼猜想。除了复变函数、黎曼几何、解析数论的研究外,黎曼对实分析、偏微分方程、数学物理等领域亦有重大贡献,他不仅是一位伟大的数学家,还是一位物理学家,他对引力与电和磁的关系的研究在物理学中有一定推动作用。 说了这么多,大家可能早已感到对这两位数学巨匠很难分出高下,好吧!让我们来看看同为德国人的数学大师克莱因对他们的评价。 关于高斯:他时常不发表他最美的结果,会有什么原因使他在达到目标前的一瞬间出现了这种奇异的停顿?可能的原因要在一种沮丧中去寻找,他在自己最成功的工作中常陷入某种沮丧而不能自拔......。对过于紧张的多产,他的首创精神和意志力量终于不胜其才,对于像他这样早熟而又热情的具有创造性的人,才思汹涌激荡终于使他心力交瘁。 关于黎曼:黎曼的直觉确实是光辉耀目,他那无所不包的天才超越了他的所有同时代人。不论在哪个地方,只要他的兴趣被激发起来,他都会从头开始,从不让自己被传统引入歧途。黎曼的羞怯甚至是笨拙的举止常遭到同事们的嘲笑,他时常神情忧郁,哀伤地回应这些攻击。他与周围的世界完全隔绝,过着一种无比丰富的内心生活。我们从黎曼身上看到了一个典型的亲切的天才:从外表看,他是平静的,而且有点古怪;但从内心看,则是充满了活力和力量。 读完此文的你对这两位数学巨匠又会有怎样的评价呢?
1854年6月10日,为了取得哥廷根大学的讲师职位,德国数学家黎曼(1826~1866)以“关于构成几何基础的假设”论文作了就职演讲,受到了与会数学家们的认可和好评。
黎曼的这篇论文被人们认为是19世纪数学史上的杰作之一。事实上,当初为了确定论文的选题,黎曼向高斯提交了3个题目,让高斯从中选定一个。其中第3个题目是涉及几何基础的,这个题目高斯已经考虑了6年之久,黎曼当时并没有太多准备,因此他从心底里不希望高斯选中它,但高斯却偏偏指定了第3个题目。
在演讲中,黎曼提到他的思想受到两方面的影响:一是高斯关于曲面的研究,一是赫尔巴特的哲学思想。全文分三个部分,第一部分是维流形的观念,第二部分是维流形的测度关系,第三部分是对空间的应用。黎曼的这篇演讲稿发展了高斯关于曲面的微分几何研究,建立起黎曼几何学的基础,他的工作很快由继承人进一步发展,成为后来广义相对论的数学基础。
黎曼一生著述不多,但几平他的每一篇论文都是数学某一领域的开创性工作。有数学家评论说:“黎曼是一个富有想像的天才,他的想法即使没有证明,也鼓舞了一个世纪的数学家。”黎曼是对现代数学影响最大的数学家之一。遗憾的是,这位伟大的数学家正值创造高峰时却英年早逝,去世时还不到40岁。
你是想问论文盲审专业代码写错了怎么办吗。一般情况下专业代码写错是不会有太大的问题,后续可以进行修改,但是如果盲审老师看出来了,会影响第一印象。盲审,指一种组织专家组评审的制度,就是匿名送审,意味着评阅导师不知道论文作者是谁。这样打出来的分数作假率低,高校阅卷一般使用这个方法。盲审制度,就是将不署作者名的学位论文送给作者不可能知道的专家审核,这样打出来的分数,应是最为客观。
没有。在2022年本科毕业论文校内论文代码的规定是文章错误率控制在一定范围内就行,一般是百分之三以内就是完全没有影响的。
提纲是有的,一切都会有的,我给你,嗯哼
发表论文的期刊如果丢了的话,这个影响也不大,因为现在我们的正规期刊在网上都有它的网络版的,你可以打印下来或者是让论文认证的时候在网上搜索就可以了。
电波科学学报很好的,属于ei收录,要中的话得看文章质量了,之前也是同事给的莫‘文网,很专业,两月就ok了
软件学报上的论文发表是不包含源码的,需要的话可以给作者发邮件索取,尽管不一定得到回复。