首页

职称论文知识库

首页 职称论文知识库 问题

电磁学论文发表文章

发布时间:

电磁学论文发表文章

麦克斯韦(James Clerk Maxwell 1831--1879)麦克斯韦是19世纪伟大的英国物理学家、数学家。1831年11月13日生于苏格兰的爱丁堡,自幼聪颖,父亲是个知识渊博的律师,使麦克斯韦从小受到良好的教育。10岁时进入爱丁堡中学学习14岁就在爱丁堡皇家学会会刊上发表了一篇关于二次曲线作图问题的论文,已显露出出众的才华。1847年进入爱丁堡大学学习数学和物理。1850年转入剑桥大学三一学院数学系学习,1854年以第二名的成绩获史密斯奖学金,毕业留校任职两年。1856年在苏格兰阿伯丁的马里沙耳任自然哲学教授。1860年到伦敦国王学院任自然哲学和天文学教授。1861年选为伦敦皇家学会会员。1865年春辞去教职回到家乡系统地总结他的关于电磁学的研究成果,完成了电磁场理论的经典巨著《论电和磁》,并于1873年出版,1871年受聘为剑桥大学新设立的卡文迪什试验物理学教授,负责筹建著名的卡文迪什实验室,1874年建成后担任这个实验室的第一任主任,直到1879年11月5日在剑桥逝世。麦克斯韦主要从事电磁理论、分子物理学、统计物理学、光学、力学、弹性理论方面的研究。尤其是他建立的电磁场理论,将电学、磁学、光学统一起来,是19世纪物理学发展的最光辉的成果,是科学史上最伟大的综合之一。他预言了电磁波的存在。这种理论遇见后来得到了充分的实验验证。他为物理学树起了一座丰碑。造福于人类的无线电技术,就是以电磁场理论为基础发展起来的。麦克斯韦大约于1855年开始研究电磁学,在潜心研究了法拉第关于电磁学方面的新理论和思想之后,坚信法拉第的新理论包含着真理。于是他抱着给法拉第的理论“提供数学方法基础”的愿望,决心把法拉第的天才思想以清晰准确的数学形式表示出来。他在前人成就的基础上,对整个电磁现象作了系统、全面的研究,凭借他高深的数学造诣和丰富的想象力接连发表了电磁场理论的三篇论文:《论法拉第的力线》(1855年12 月至1856年2月);《论物理的力线》(1861至1862年);《电磁场的动力学理论》(1864年12月8日)。对前人和他自己的工作进行了综合概括,将电磁场理论用简洁、对称、完美数学形式表示出来,经后人整理和改写,成为经典电动力学主要基础的麦克斯韦方程组。据此,1865年他预言了电磁波的存在,电磁波只可能是横波,并计算了电磁波的传播速度等于光速,同时得出结论:光是电磁波的一种形式,揭示了光现象和电磁现象之间的联系。1888年德国物理学家赫兹用实验验证了电磁波的存在。麦克斯韦于1873年出版了科学名著《电磁理论》。系统、全面、完美地阐述了电磁场理论。这一理论成为经典物理学的重要支柱之一。在热力学与统计物理学方面麦克斯韦也作出了重要贡献,他是气体动理论的创始人之一。1859年他首次用统计规律得出麦克斯韦速度分布律,从而找到了由微观两求统计平均值的更确切的途径。1866年他给出了分子按速度的分布函数的新推导方法,这种方法是以分析正向和反向碰撞为基础的。他引入了驰豫时间的概念,发展了一般形式的输运理论,并把它应用于扩散、热传导和气体内摩擦过程。1867年引入了“统计力学”这个术语。麦克斯韦是运用数学工具分析物理问题和精确地表述科学思想的大师,他非常重视实验,由他负责建立起来的卡文迪什实验室,在他和以后几位主任的领导下,发展成为举世闻名的学术中心之一。他善于从实验出发,经过敏锐的观察思考,应用娴熟的数学技巧,从缜密的分析和推理,大胆地提出有实验基础的假设,建立新的理论,再使理论及其预言的结论接受实验检验,逐渐完善,形成系统、完整的理论。特别是汤姆孙W卓有成效地运用类比的方法使麦克斯韦深受启示,使他成为建立各种模型来类比研究不同物理现象的能手。在他的电磁场理论的三篇论文中多次使用了类比研究方法,寻找到了不同现象之间的联系,从而逐步揭示了科学真理。麦克斯韦严谨的科学态度和科学研究方法是人类极其宝贵的精神财富。

到楼上楼下等你回来了吗呢吗,你好像你这样啊啊啊啊啊啊?我可能不会爱你们那是匆墨水笔芯片卡莫得购置税票价有没有空的时候就行吧!吗丁啉。好吧,好吧,好了好了好了!你们那儿童房租房子不是吧!

自己上百度找,不过最好自己写,这里有一参考: 摘 要:介绍了电磁学计算方法的研究进展和状态,对几种富有代表性的算法做了介绍,并比较了各自的优势和不足,包括矩量法、有限元法、时域有限差分方法以及复射线方法等。 关键词:矩量法;有限元法;时域有限差分方法;复射线方法 1 引 言 1864年Maxwell在前人的理论(高斯定律、安培定律、法拉第定律和自由磁极不存在)和实验的基础上建立了统一的电磁场理论,并用数学模型揭示了自然界一切宏观电磁现象所遵循的普遍规律,这就是著名的Maxwell方程。在11种可分离变量坐标系求解Maxwell方程组或者其退化形式,最后得到解析解。这种方法可以得到问题的准确解,而且效率也比较高,但是适用范围太窄,只能求解具有规则边界的简单问题。对于不规则形状或者任意形状边界则需要比较高的数学技巧,甚至无法求得解析解。20世纪60年代以来,随着电子计算机技术的发展,一些电磁场的数值计算方法发展起来,并得到广泛地应用,相对于经典电磁理论而言,数值方法受边界形状的约束大为减少,可以解决各种类型的复杂问题。但各种数值计算方法都有优缺点,一个复杂的问题往往难以依靠一种单一方法解决,常需要将多种方法结合起来,互相取长补短,因此混和方法日益受到人们的重视。 本文综述了国内外计算电磁学的发展状况,对常用的电磁计算方法做了分类。 2 电磁场数值方法的分类 电磁学问题的数值求解方法可分为时域和频域2大类。频域技术主要有矩量法、有限差分方法等,频域技术发展得比较早,也比较成熟。时域法主要有时域差分技术。时域法的引入是基于计算效率的考虑,某些问题在时域中讨论起来计算量要小。例如求解目标对冲激脉冲的早期响应时,频域法必须在很大的带宽内进行多次采样计算,然后做傅里叶反变换才能求得解答,计算精度受到采样点的影响。若有非线性部分随时间变化,采用时域法更加直接。另外还有一些高频方法,如GTD,UTD和射线理论。 从求解方程的形式看,可以分为积分方程法(IE)和微分方程法(DE)。IE和DE相比,有如下特点:IE法的求解区域维数比DE法少一维,误差限于求解区域的边界,故精度高;IE法适合求无限域问题,DE法此时会遇到网格截断问题;IE法产生的矩阵是满的,阶数小,DE法所产生的是稀疏矩阵,但阶数大;IE法难以处理非均匀、非线性和时变媒质问题,DE法可直接用于这类问题〔1〕。 3 几种典型方法的介绍 有限元方法是在20世纪40年代被提出,在50年代用于飞机设计。后来这种方法得到发展并被非常广泛地应用于结构分析问题中。目前,作为广泛应用于工程和数学问题的一种通用方法,有限元法已非常著名。 有限元法是以变分原理为基础的一种数值计算方法。其定解问题为: 应用变分原理,把所要求解的边值问题转化为相应的变分问题,利用对区域D的剖分、插值,离散化变分问题为普通多元函数的极值问题,进而得到一组多元的代数方程组,求解代数方程组就可以得到所求边值问题的数值解。一般要经过如下步骤: ①给出与待求边值问题相应的泛函及其变分问题。 ②剖分场域D,并选出相应的插值函数。 ③将变分问题离散化为一种多元函数的极值问题,得到如下一组代数方程组: 其中:Kij为系数(刚度)矩阵;Xi为离散点的插值。 ④选择合适的代数解法解式(2),即可得到待求边值问题的数值解Xi(i=1,2,…,N) (2)矩量法 很多电磁场问题的分析都归结为这样一个算子方程〔2〕: L(f)=g(3)其中:L是线性算子,f是未知的场或其他响应,g是已知的源或激励。 在通常的情况下,这个方程是矢量方程(二维或三维的)。如果f能有方程解出,则是一个精确的解析解,大多数情况下,不能得到f的解析形式,只能通过数值方法进行预估。令f在L的定义域内被展开为某基函数系f1,f2,f3,…,fn的线性组合: 其中:an是展开系数,fn为展开函数或基函数。 对于精确解式(2)通畅是无限项之和,且形成一个基函数的完备集,对近似解,将式 (2)带入式(1),再应用算子L的线性,便可以得到: m=1,2,3,… 此方程组可写成矩阵形式f,以解出f。矩量法就是这样一种将算子方程转化为矩阵方程的一种离散方法。 在电磁散射问题中,散射体的特征尺度与波长之比是一个很重要的参数。他决定了具体应用矩量法的途径。如果目标特征尺度可以与波长比较,则可以采用一般的矩量法;如果目标很大而特征尺度又包括了一个很大的范围,那么就需要选择一个合适的离散方式和离散基函数。受计算机内存和计算速度影响,有些二维和三维问题用矩量法求解是非常困难的,因为计算的存储量通常与N2或者N3成正比(N为离散点数),而且离散后出现病态矩阵也是一个难以解决的问题。这时需要较高的数学技巧,如采用小波展开,选取合适的小波基函数来降维等〔3〕。 (3)时域有限差分方法 时域有限差分(FDTD)是电磁场的一种时域计算方法。传统上电磁场的计算主要是在频域上进行的,这些年以来,时域计算方法也越来越受到重视。他已在很多方面显示出独特的优越性,尤其是在解决有关非均匀介质、任意形状和复杂结构的散射体以及辐射系统的电磁问题中更加突出。FDTD法直接求解依赖时间变量的麦克斯韦旋度方程,利用二阶精度的中心差分近似把旋度方程中的微分算符直接转换为差分形式,这样达到在一定体积内和一段时间上对连续电磁场的数据取样压缩。电场和磁场分量在空间被交叉放置,这样保证在介质边界处切向场分量的连续条件自然得到满足。在笛卡儿坐标系电场和磁场分量在网格单元中的位置是每一磁场分量由4个电场分量包围着,反之亦然。 这种电磁场的空间放置方法符合法拉第定律和安培定律的自然几何结构。因此FDTD算法是计算机在数据存储空间中对连续的实际电磁波的传播过程在时间进程上进行数字模拟。而在每一个网格点上各场分量的新值均仅依赖于该点在同一时间步的值及在该点周围邻近点其他场前半个时间步的值。这正是电磁场的感应原理。这些关系构成FDTD法的基本算式,通过逐个时间步对模拟区域各网格点的计算,在执行到适当的时间步数后,即可获得所需要的结果。 在上述算法中,时间增量Δt和空间增量Δx,Δy和Δz不是相互独立的,他们的取值必须满足一定的关系,以避免数值不稳定。这种不稳定表现为在解显式 差分方程时随着时间步的继续计算结果也将无限制的67增加。为了保证数值稳定性必须满足数值稳定条件: 其中:(对非均匀区域,应选c的最大值)〔4〕。 用差分方法对麦克斯韦方程的数值计算还会在网格中引起所模拟波模的色散,即在FDTD网格中数字波模的传播速度将随波长、在网格中的传播方向以及离散化的情况而改变。这种色散将导致非物理原因引起的脉冲波形的畸变、人为的各向异性及虚拟的绕射等,因此必须考虑数值色散问题。如果在模拟空间中采用大小不同的网格或包含不同的介质区域,这时网格尺寸与波长之比将是位置的函数,在不同网格或介质的交界面处将出现非物理的绕射和反射现象,对此也应该进行定量的研究,以保证正确估计FDTD算法的精度。在开放问题中电磁场将占据无限大空间,而由于计算机内存总是有限的,只能模拟有限空间,因此差分网格在某处必将截断,这就要求在网格截断处不引起波的明显反射,使对外传播的波就像在无限大空间中传播一样。这就是在截断处设置吸收边界条件,使传播到截断处的波被边界吸收而不产生反射,当然不可能达到完全没有反射,目前已创立的一些吸收边界条件可达到精度上的要求,如Mur所导出的吸收边界条件。 (4)复射线方法 复射线是用于求解波场传播和散射问题的一种高频近似方法。他根据几何光学理论和几何绕射理论的分析方法和计算公式,在解析延拓的复空间中求解复射线轨迹和场的振幅和相位,从而直接得出局部不均匀波(凋落波)的传播和散射规律〔5〕。复射线方法是包括复射线追踪、复射线近轴近似、复射线展开以及复绕射线等处理技术在内的一系列处理方法的统称。其共同特点在于:通过将射线参考点坐标延拓到复空间而建立了一个简单而统一的实空间中波束/射线束(Bundle ofrays)分析模型;通过费马原理及其延拓,由基于复射线追踪或复射线近轴近似的处理技术,构造了射线光学架构下有效的鞍点场描述方法等。例如,复射线追踪法将射线光学中使用的射线追踪方法和场强计算公式直接地解析延拓到复空间,利用延拓后的复费马原理进行复射线搜索,从而求出复射线轨迹和复射线场。这一方法的特点在于可以基于射线光学方法有效地描述空间中波束的传播,因此,提供了一类分析波束传播的简便方法。其不足之处是对每一个给定的观察点必须进行一次二维或四维的复射线轨迹搜索,这是一个十分花费时间的计算机迭代过程。 4 几种方法的比较和进展 将有限元法移植到电磁工程领域还是二十世纪六七十年代的事情,他比较新颖。有限元法的优点是适用于具有复杂边界形状或边界条件、含有复杂媒质的定解问题。这种方法的各个环节可以实现标准化,得到通用的计算程序,而且有较高的计算精度。但是这种方法的计算程序复杂冗长,由于他是区域性解法,分割的元素数和节点数较多,导致需要的初始数据复杂繁多,最终得到的方程组的元数很大,这使得计算时间长,而且对计算机本身的存储也提出了要求。对电磁学中的许多问题,有限元产生的是带状(如果适当地给节点编号的话)、稀疏阵(许多矩阵元素是0)。但是单独采用有限元法只能解决开域问题。用有限元法进行数值分析的第一步是对目标的离散,多年来人们一直在研究这个问题,试图找到一种有效、方便的离散方法,但由于电磁场领域的特殊性,这个问题一直没有得到很好的解决。问题的关键在于一方面对复杂的结构,一般的剖分方法难于适用;另一方面,由于剖分的疏密与最终所形成的系数矩阵的存贮量密切相关,因而人们采用了许多方法来减少存储量,如多重网格法,但这些方法的实现较为困难〔6〕。 网格剖分与加密是有限元方法发展的瓶颈之一,采用自适应网格剖分和加密技术相对来说可以较好地解决这一问题。自适应网格剖分根据对场量分布求解后的结果对网格进行增加剖分密度的调整,在网格密集区采用高阶插值函数,以进一步提高精度,在场域分布变化剧烈区域,进行多次加密。 这些年有限元方法的发展日益加快,与其他理论相结合方面也有了新的进展,并取得了相当应用范围的成果,如自适应网格剖分、三维场建模求解、耦合问题、开域问题、高磁性材料及具有磁滞饱和非线性特性介质的处理等,还包括一些尚处于探索阶段的工作,如拟问题、人工智能和专家系统在电磁装置优化设计中的应用、边基有限元法等,这些都使得有限元方法的发展有了质的飞跃。 矩量法将连续方程离散化为代数方程组,既适用于求解微分方程,又适用于求解积分方程。他的求解过程简单,求解步骤统一,应用起来比较方便。然而 77他需要一定的数学技巧,如离散化的程度、基函数与权函数的选取,矩阵求解过程等。另外必须指出的是,矩量法可以达到所需要的精确度,解析部分简单,可计算量很大,即使用高速大容量计算机,计算任务也很繁重。矩量法在天线分析和电磁场散射问题中有比较广泛地应用,已成功用于天线和天线阵的辐射、散射问题、微带和有耗结构分析、非均匀地球上的传播及人体中电磁吸收等。 FDTD用有限差分式替代时域麦克斯韦旋度方程中的微分式,得到关于场分量的有限差分式,针对不同的研究对象,可在不同的坐标系中建模,因而具有这几个优点,容易对复杂媒体建模,通过一次时域分析计算,借助傅里叶变换可以得到整个同带范围内的频率响应;能够实时在现场的空间分布,精确模拟各种辐射体和散射体的辐射特性和散射特性;计算时间短。但是FDTD分析方法由于受到计算机存储容量的限制,其网格空间不能无限制的增加,造成FDTD方法不能适用于较大尺寸,也不能适用于细薄结构的媒质。因为这种细薄结构的最小尺寸比FDTD网格尺寸小很多,若用网格拟和这类细薄结构只能减小网格尺寸,而这必然导致计算机存储容量的加大。因此需要将FDTD与其他技术相结合,目前这种技术正蓬勃发展,如时域积分方程/FDTD方法,FDTD/MOM等。FDTD的应用范围也很广阔,诸如手持机辐射、天线、不同建筑物结构室内的电磁干扰特性研究、微带线等〔7〕。 复射线技术具有物理模型简单、数学处理方便、计算效率高等特点,在复杂目标散射特性分析等应用领域中有重要的研究价值。典型的处理方式是首先将入射平面波离散化为一组波束指向平行的复源点场,通过特定目标情形下的射线追踪、场强计算和叠加各射线场的贡献,可以得到特定观察位置处散射场的高频渐进解。目前已运用复射线分析方法对飞行器天线和天线罩(雷达舱)、(加吸波涂层)翼身结合部和进气道以及涂层的金属平板、角形反射器等典型目标散射特性进行了成功的分析。尽管复射线技术的计算误差可以通过参数调整得到控制,但其本身是一种高频近似计算方法,由于入射波场的离散和只引入鞍点贡献,带来了不可避免的计算误差。总的来说复射线方法在目标电磁散射领域还是具有独特的优势,尤其是对复 杂目标的处理。 5 结 语 电磁学的数值计算方法远远不止以上所举,还有边界元素法、格林函数法等,在具体问题中,应该采用不同的方法,而不应拘泥于这些方法,还可以把这些方法加以综合应用,以达到最佳效果。 电磁学的数值计算是一门计算的艺术,他横跨了多个学科,是数学理论、电磁理论和计算机的有机结合。原则上讲,从直流到光的宽频带范围都属于他的研究范围。为了跟上世界科技发展的需要,应大力进行电磁场的并行计算方法的研究,不断拓广他的应用领域,如生物电磁学、复杂媒质中的电磁正问题和逆问题、医学应用、微波遥感应用、非线性电磁学中的混沌与分叉、微电子学和纳米电子学等。 参考文献 〔1〕 文舸一.计算电磁学的进展与展望〔J〕.电子学报,1995,23(10):62-69. 〔2〕 刘圣民.电磁场的数值方法〔M〕.武汉:华中理工大学出版社,1991. 〔3〕 张成,郑宏兴.小波矩量法求解电磁场积分方程〔J〕.宁夏大学学报(自然科学版),2000,21(1):76-79. 〔4〕 王长清.时域有限差分(FD-TD)法〔J〕.微波学报,1989,(4):8-18. 〔5〕 阮颖诤.复射线理论及其应用〔M〕.成都:电子工业出版社,1991. 〔6〕 方静,汪文秉.有限元法和矩量法结合分析背腔天线的辐射特性〔J〕.微波学报,2000,16(2):139-143. 〔7〕 杨永侠,王翠玲.电磁场的FDTD分析方法〔J〕.现代电子技术,2001,(11):73-74. 〔8〕 洪伟.计算电磁学研究进展〔J〕.东南大学学RB (自然科学版),2002,32(3):335-339. 〔9〕 王长清,祝西里.电磁场计算中的时域有限差分法〔M〕.北京:北京大学出版社,1994. 〔10〕 楼仁海,符果行,袁敬闳.电磁理论〔M〕.成都:电子科技大学出版社,1996. 现代电子技术

试论三相交直流指示仪表在电磁学计量校验的应用摘要:现代社会对于电能的使用越来越广泛,越来越多的家用电器,工业机械都在依靠电能来进行驱动。作为电磁学计量的重要工具,电能表的校验对于我国电力企业有着重要的意义。三相交直流指示仪表作为电磁学计量校验的重要工具,其在电能表计量校验中的应用对于电磁学计量校验有着重要意义。文中就三相交直流指示仪表在电磁学计量校验中的应用进行了简要的论述。 关键词:三相交直流指示仪表;电磁学;计量校验;应用;电能表 现代社会对于电能的需求不断增加,电能表作为电力计量的重要仪表,其计量校验对于电力企业有着重要的作用。加快电磁学计量仪表的校验,加强电磁学计量仪表校验精度,对于我国电力系统的健康发展以及试用人员都有着重要的意义。 1.常用电磁学计量仪表分析 常用电磁学计量仪表中,常用的计量仪表主要兆欧表、万能表、钳形电流表。针对不同型号的仪表,其测量校验范围也不相同。在使用过程中首先要针对测量条件选用等级相同仪表或档位进行测量。电能表作为电能计量的基础工具,其良好的校验对于电力企业有着重要的意义。三相电能表校验装置是电能表的标准校验仪器设备,它对于我国电能计量有着重要的作用,是电力部门、电能表生产厂家和标准计量部门不可缺少的标准仪器设备之一。目前,这种装置的设计与生产,在原理和技术上都是成熟的,同时其自动化水平和验表的精确度也正在不断提高中。 2.三相交直流指示仪表在电磁计量校验中的应用 本文以电能表校验作为基础,对三相交直流指示仪表在电磁学计量仪表校验的应用进行了简要的论述与分析。 2.1传统校验仪器在电能表校验分析 三相交直流指示仪表在电磁计量校验应用最具代表性的是三相交直流指示仪表在电能表的校验。电能表的校验对于电力部门、电能表生产厂家以及计量部门是一向非常重要的工作,校验准确与否直接关系到这些部门与用电户的切身利益。为了更好的分析其运用,首先对电能表的校验原理与三相交直流指示仪表的工作原理等进行分析。对电能表的校验是在被校表加上一定的电压、电流,根据被测表的读数与实际消耗电能相比从而得出被测表的误差。不同等级的电能表校验装置对标准表有不同的要求,其中国家标准《交流电能表检定装置检定规程JJG597一89》列出了各级电能表校验装置对标准表的要求。程控式三相校表台的流行结构是由原有的半自动化的校表台演变而来的。在这种结构中,系统的整个控制主要由主控单片机来完成。由控制单片机来负责获取各种数据,并对其进行运算,并向各个受控对象发送指令,整个系统的工作的运行由它进行协调。后台计算机主要起数据存取、打印的功能。这种设计方案具有从原有系统升级简单,可以保证原有研究成果的最大利用;同时台体可以在脱离计算机的情况下单独工作。但这种工作方式也有着其较大的缺陷:由于整个系统的协调、运算、控制等工作都在单片机的控制下进行,此方案对单片机的要求较高,会导致系统的故障率提高;同时这个方案又浪费了后台计算机的强大计算能力,使其闲置;另外一方面,这个方案中控制单片机与后台计算机都对系统有一定的控制能力,这样容易产生控制实施时的语义不清,从而使系统发生故障。因此,采用新技术生产的三相交直流指示仪表对电能表进行校验可以有效的避免传统校验仪的弊端,减少校验误差的几率2.2三相交直流指示仪表组成及其各组建功能分析 目前较为先进且成熟的程控式三相交直流指示仪表一般由由后台控制计算机、通讯控制单片机、三相程控数字信号源、标准表、光电头和误差显示模块组成。采用标准表法对三相电能表进行校验。通过对被测表和标准表加相同的电压电流值,然后根据标准表记录的电能数和被测表所记录的电能数进行比对,从而得出被测表的误差数。其各模块的功能分别为:标准表是采用标准表法进行校验,标准表等级要满足装置的等级要求。可以选一个具有三个功率元件的三相电能表,也可选择三个只具有一个功率元件的单相电能表。具有三个功率元件的三相电能表,三个功率元件产生三路模拟输出相加后经I用变换产生标准表功率脉冲和。因此标准表在任一相为负功率而三相总功率为正时均可准确测量。标准表具有四个电压量程:60V、100V、200V、400V和至少一个电流程:SA。在进行校验时它的接线方式与被校表相同。标准表电压回路接线及电压量程的转换由通讯控制单片机控制继电器自动完成转换。三相程控数字信号源的主要功能是在通讯控制单片机的控制之下,根据不同的要求产生精确的三相电压和电流信号。光电头用以监视被测表的运行情况。每当被测表转一圈后,光电头发出一个脉冲送给通讯控制单片机,当被测表转到用户设定的圈数之后,后台控制计算机开始计算被测表误差。通讯单片机主要为后台控制计算机和前台可控器件提供通信通道。即将由串口发来的指令进行相应的解码后发给前台;另一方面,将前台的数据进行相应的编码后发给后台。通讯控制单片机主要根据后台管理计算机发出的指令控制三相程控数字信号源的开始及停止工作。并根据后台管理计算机发出的指令控制三相程控数字信号源的接线方式及电压电流量程的自动转换。将A一D采样后的数据传输到后台控制计算机,并根据后台控制计算机运算后的结果对电压、电流源进行调控。接收光电头及标准表功率脉冲,并将数据传送到后台控制计算机进行计算。将误差数据送到到显示模块。后台控制计算机主要是负责控制整个校表装置的工作和测试结果数据的存储、查询和打印。 3.三相交直流指示仪表对于电能表校验的特点分析 三相交直流多功能校验装置,是集电能表、交直流指示仪表和交直流电测量变送器三大检定校验功能于一体的,集目前先进技术于一身技术,功能齐全的校验装置。一般采用大规模集成电路,其程控信号源采用数字合成技术和以多组高性能单片机为核心的微机控制系统。通过操作键盘,电压、电流、相位、频率数字化粗细调,对单、三相交直流有功无功功率表、电流、电压、频率、相位表、电测量变送器和各式电能表,实现规程、选点、单点校验。其具有数字合成技术和单片机控制系统;数码显示;配套采用国际先进的双磁芯零误差电流互感器的多功能标准表。数字化粗细调,电流、电压、频率、相位一键到位,并且键盘显示。专用程控键盘校表,无需计算机可实现规程、选点、单点校验。进入单点校验状态时可随时改变校验点。宽量程,无须互感器,确保精度;档位齐全,可自动切换量程。可自动或手动校验交流电压、电流、有功功率、无功功率、频率、相位表和直流仪表及交直流电测量变送器;兼校一块电能表。具有自我保护功能,对电压短路、电流开路实现保护并报警。可与计算机连接进行校验、数据处理、存储、查询、打印及管理。 结论 由于三相交直流指示仪表具有的多种特性,使其在电磁学校验中的应用越来越广,已经成为了电磁学校验仪器发展的重要方向,相信在未来几年里更加严格的校验要求将为三相交直流指示仪表提供更加广阔的发展空间。 参考文献 [1]孙明玮.三相交直流指示仪表的开发与设计[J].精密仪器,2007,11. [2]李晓理.电能表校验装置基本原理[J].电气仪表开发,2007,6. [3]李志明.校验仪表数据采集与过程控制[J].计算机工程与应用,2008,1. [4]郭航.电能表智能校验台[J].电测与仪表,2000,3. [5]赵宇飞.电磁学基础校验[J].仪表仪器,2006,7. 这是网上的资料

发表电磁学论文

试论三相交直流指示仪表在电磁学计量校验的应用摘要:现代社会对于电能的使用越来越广泛,越来越多的家用电器,工业机械都在依靠电能来进行驱动。作为电磁学计量的重要工具,电能表的校验对于我国电力企业有着重要的意义。三相交直流指示仪表作为电磁学计量校验的重要工具,其在电能表计量校验中的应用对于电磁学计量校验有着重要意义。文中就三相交直流指示仪表在电磁学计量校验中的应用进行了简要的论述。 关键词:三相交直流指示仪表;电磁学;计量校验;应用;电能表 现代社会对于电能的需求不断增加,电能表作为电力计量的重要仪表,其计量校验对于电力企业有着重要的作用。加快电磁学计量仪表的校验,加强电磁学计量仪表校验精度,对于我国电力系统的健康发展以及试用人员都有着重要的意义。 1.常用电磁学计量仪表分析 常用电磁学计量仪表中,常用的计量仪表主要兆欧表、万能表、钳形电流表。针对不同型号的仪表,其测量校验范围也不相同。在使用过程中首先要针对测量条件选用等级相同仪表或档位进行测量。电能表作为电能计量的基础工具,其良好的校验对于电力企业有着重要的意义。三相电能表校验装置是电能表的标准校验仪器设备,它对于我国电能计量有着重要的作用,是电力部门、电能表生产厂家和标准计量部门不可缺少的标准仪器设备之一。目前,这种装置的设计与生产,在原理和技术上都是成熟的,同时其自动化水平和验表的精确度也正在不断提高中。 2.三相交直流指示仪表在电磁计量校验中的应用 本文以电能表校验作为基础,对三相交直流指示仪表在电磁学计量仪表校验的应用进行了简要的论述与分析。 2.1传统校验仪器在电能表校验分析 三相交直流指示仪表在电磁计量校验应用最具代表性的是三相交直流指示仪表在电能表的校验。电能表的校验对于电力部门、电能表生产厂家以及计量部门是一向非常重要的工作,校验准确与否直接关系到这些部门与用电户的切身利益。为了更好的分析其运用,首先对电能表的校验原理与三相交直流指示仪表的工作原理等进行分析。对电能表的校验是在被校表加上一定的电压、电流,根据被测表的读数与实际消耗电能相比从而得出被测表的误差。不同等级的电能表校验装置对标准表有不同的要求,其中国家标准《交流电能表检定装置检定规程JJG597一89》列出了各级电能表校验装置对标准表的要求。程控式三相校表台的流行结构是由原有的半自动化的校表台演变而来的。在这种结构中,系统的整个控制主要由主控单片机来完成。由控制单片机来负责获取各种数据,并对其进行运算,并向各个受控对象发送指令,整个系统的工作的运行由它进行协调。后台计算机主要起数据存取、打印的功能。这种设计方案具有从原有系统升级简单,可以保证原有研究成果的最大利用;同时台体可以在脱离计算机的情况下单独工作。但这种工作方式也有着其较大的缺陷:由于整个系统的协调、运算、控制等工作都在单片机的控制下进行,此方案对单片机的要求较高,会导致系统的故障率提高;同时这个方案又浪费了后台计算机的强大计算能力,使其闲置;另外一方面,这个方案中控制单片机与后台计算机都对系统有一定的控制能力,这样容易产生控制实施时的语义不清,从而使系统发生故障。因此,采用新技术生产的三相交直流指示仪表对电能表进行校验可以有效的避免传统校验仪的弊端,减少校验误差的几率2.2三相交直流指示仪表组成及其各组建功能分析 目前较为先进且成熟的程控式三相交直流指示仪表一般由由后台控制计算机、通讯控制单片机、三相程控数字信号源、标准表、光电头和误差显示模块组成。采用标准表法对三相电能表进行校验。通过对被测表和标准表加相同的电压电流值,然后根据标准表记录的电能数和被测表所记录的电能数进行比对,从而得出被测表的误差数。其各模块的功能分别为:标准表是采用标准表法进行校验,标准表等级要满足装置的等级要求。可以选一个具有三个功率元件的三相电能表,也可选择三个只具有一个功率元件的单相电能表。具有三个功率元件的三相电能表,三个功率元件产生三路模拟输出相加后经I用变换产生标准表功率脉冲和。因此标准表在任一相为负功率而三相总功率为正时均可准确测量。标准表具有四个电压量程:60V、100V、200V、400V和至少一个电流程:SA。在进行校验时它的接线方式与被校表相同。标准表电压回路接线及电压量程的转换由通讯控制单片机控制继电器自动完成转换。三相程控数字信号源的主要功能是在通讯控制单片机的控制之下,根据不同的要求产生精确的三相电压和电流信号。光电头用以监视被测表的运行情况。每当被测表转一圈后,光电头发出一个脉冲送给通讯控制单片机,当被测表转到用户设定的圈数之后,后台控制计算机开始计算被测表误差。通讯单片机主要为后台控制计算机和前台可控器件提供通信通道。即将由串口发来的指令进行相应的解码后发给前台;另一方面,将前台的数据进行相应的编码后发给后台。通讯控制单片机主要根据后台管理计算机发出的指令控制三相程控数字信号源的开始及停止工作。并根据后台管理计算机发出的指令控制三相程控数字信号源的接线方式及电压电流量程的自动转换。将A一D采样后的数据传输到后台控制计算机,并根据后台控制计算机运算后的结果对电压、电流源进行调控。接收光电头及标准表功率脉冲,并将数据传送到后台控制计算机进行计算。将误差数据送到到显示模块。后台控制计算机主要是负责控制整个校表装置的工作和测试结果数据的存储、查询和打印。 3.三相交直流指示仪表对于电能表校验的特点分析 三相交直流多功能校验装置,是集电能表、交直流指示仪表和交直流电测量变送器三大检定校验功能于一体的,集目前先进技术于一身技术,功能齐全的校验装置。一般采用大规模集成电路,其程控信号源采用数字合成技术和以多组高性能单片机为核心的微机控制系统。通过操作键盘,电压、电流、相位、频率数字化粗细调,对单、三相交直流有功无功功率表、电流、电压、频率、相位表、电测量变送器和各式电能表,实现规程、选点、单点校验。其具有数字合成技术和单片机控制系统;数码显示;配套采用国际先进的双磁芯零误差电流互感器的多功能标准表。数字化粗细调,电流、电压、频率、相位一键到位,并且键盘显示。专用程控键盘校表,无需计算机可实现规程、选点、单点校验。进入单点校验状态时可随时改变校验点。宽量程,无须互感器,确保精度;档位齐全,可自动切换量程。可自动或手动校验交流电压、电流、有功功率、无功功率、频率、相位表和直流仪表及交直流电测量变送器;兼校一块电能表。具有自我保护功能,对电压短路、电流开路实现保护并报警。可与计算机连接进行校验、数据处理、存储、查询、打印及管理。 结论 由于三相交直流指示仪表具有的多种特性,使其在电磁学校验中的应用越来越广,已经成为了电磁学校验仪器发展的重要方向,相信在未来几年里更加严格的校验要求将为三相交直流指示仪表提供更加广阔的发展空间。 参考文献 [1]孙明玮.三相交直流指示仪表的开发与设计[J].精密仪器,2007,11. [2]李晓理.电能表校验装置基本原理[J].电气仪表开发,2007,6. [3]李志明.校验仪表数据采集与过程控制[J].计算机工程与应用,2008,1. [4]郭航.电能表智能校验台[J].电测与仪表,2000,3. [5]赵宇飞.电磁学基础校验[J].仪表仪器,2006,7. 这是网上的资料

1855年,24岁的麦克斯韦发表了学术论文《论法拉第的“力线”》。这是麦克斯韦第一篇关于电磁学理论方面的论文,麦克斯韦向电磁学理论的纵深领域挺进。

卢瑟福出生于新西兰的一个偏僻小村庄,他从小就向往解释宇宙,向往发明,向往创造。 1889他考上了新西兰大学。大学期间,他就自己动手制成一种灵敏的检波器,试验了在新西兰大地上的第一次电报,并发表了电磁学方面的论文。凭着这几篇论文,大学毕业几年后,卢瑟福到了剑桥大学的卡文迪实验室。 在这里,他接受了老师汤姆孙的建议,开始了对原子的探试。探试的第一步就是抓住镭放出的射线,看它到底是些什么东西,然后就可以顺藤摸瓜追踪原子内的秘密。 卢瑟福天生是个实验的好手,他立即设计了一个实验,用一个铅块,钻上小孔,孔内放一点镭。这样射线只能从这个小孔里发出,然后将射线放到一个磁场里。 奇怪的现象出现了,一束射线立即分成三股,一股靠近N极偏转,一股靠近S极偏转,还有一股不偏不倚一直向前,卢瑟福给它们取名为α、β和γ射线。经过测定,β射线就是老师汤姆孙发现的.电子流,γ射线就是伦琴发现的X光,居里夫妇发现的放射性就是α、β和γ射线。好个卢瑟福,真是出手不凡,19世纪最后10年的三大发现他在一个实验里就全部得到解释。 当他兴冲冲地把这些新发现告诉老师汤姆孙时,老师自然很高兴,顺便还告诉卢瑟福一个消息:加拿大麦克吉尔大学物理系派人来剑桥聘请教授,他认为卢瑟福是最好的人选。 1898年卢瑟福横渡大西洋到了加拿大,在这里,他遇到一个比他小七岁的年轻助手索迪,索迪的化学知识很丰富,这正好弥补了卢瑟福化学知识上的不足。 这时,卢瑟福又想起了在剑桥时遇到的一个老问题,α粒子从所具有的电量和质量来看很像元素氦,有索迪做助手,卢瑟福马上开始验证。实验结果出来了,α射线果然就是氦流。那么镭放出α射线后剩下的又是什么呢?经实验,竟然又是一种新元素氡。于是卢瑟福宣布放射性既是原子现象,又是产生新物质的化学变化的伴随物。 1907年,为了表彰卢瑟福的这一重大发现,诺贝尔评审委员会授予他诺贝尔化学奖。你可能会莫名其妙,物理学家怎么获得了化学奖。没错,正如卢瑟福所说:“这真是太妙了!我一生中研究了许多变化,但是最大的变化是这一次,我从一个物理学家变成了一个化学家。”

电磁学论文发表

自己上百度找,不过最好自己写,这里有一参考: 摘 要:介绍了电磁学计算方法的研究进展和状态,对几种富有代表性的算法做了介绍,并比较了各自的优势和不足,包括矩量法、有限元法、时域有限差分方法以及复射线方法等。 关键词:矩量法;有限元法;时域有限差分方法;复射线方法 1 引 言 1864年Maxwell在前人的理论(高斯定律、安培定律、法拉第定律和自由磁极不存在)和实验的基础上建立了统一的电磁场理论,并用数学模型揭示了自然界一切宏观电磁现象所遵循的普遍规律,这就是著名的Maxwell方程。在11种可分离变量坐标系求解Maxwell方程组或者其退化形式,最后得到解析解。这种方法可以得到问题的准确解,而且效率也比较高,但是适用范围太窄,只能求解具有规则边界的简单问题。对于不规则形状或者任意形状边界则需要比较高的数学技巧,甚至无法求得解析解。20世纪60年代以来,随着电子计算机技术的发展,一些电磁场的数值计算方法发展起来,并得到广泛地应用,相对于经典电磁理论而言,数值方法受边界形状的约束大为减少,可以解决各种类型的复杂问题。但各种数值计算方法都有优缺点,一个复杂的问题往往难以依靠一种单一方法解决,常需要将多种方法结合起来,互相取长补短,因此混和方法日益受到人们的重视。 本文综述了国内外计算电磁学的发展状况,对常用的电磁计算方法做了分类。 2 电磁场数值方法的分类 电磁学问题的数值求解方法可分为时域和频域2大类。频域技术主要有矩量法、有限差分方法等,频域技术发展得比较早,也比较成熟。时域法主要有时域差分技术。时域法的引入是基于计算效率的考虑,某些问题在时域中讨论起来计算量要小。例如求解目标对冲激脉冲的早期响应时,频域法必须在很大的带宽内进行多次采样计算,然后做傅里叶反变换才能求得解答,计算精度受到采样点的影响。若有非线性部分随时间变化,采用时域法更加直接。另外还有一些高频方法,如GTD,UTD和射线理论。 从求解方程的形式看,可以分为积分方程法(IE)和微分方程法(DE)。IE和DE相比,有如下特点:IE法的求解区域维数比DE法少一维,误差限于求解区域的边界,故精度高;IE法适合求无限域问题,DE法此时会遇到网格截断问题;IE法产生的矩阵是满的,阶数小,DE法所产生的是稀疏矩阵,但阶数大;IE法难以处理非均匀、非线性和时变媒质问题,DE法可直接用于这类问题〔1〕。 3 几种典型方法的介绍 有限元方法是在20世纪40年代被提出,在50年代用于飞机设计。后来这种方法得到发展并被非常广泛地应用于结构分析问题中。目前,作为广泛应用于工程和数学问题的一种通用方法,有限元法已非常著名。 有限元法是以变分原理为基础的一种数值计算方法。其定解问题为: 应用变分原理,把所要求解的边值问题转化为相应的变分问题,利用对区域D的剖分、插值,离散化变分问题为普通多元函数的极值问题,进而得到一组多元的代数方程组,求解代数方程组就可以得到所求边值问题的数值解。一般要经过如下步骤: ①给出与待求边值问题相应的泛函及其变分问题。 ②剖分场域D,并选出相应的插值函数。 ③将变分问题离散化为一种多元函数的极值问题,得到如下一组代数方程组: 其中:Kij为系数(刚度)矩阵;Xi为离散点的插值。 ④选择合适的代数解法解式(2),即可得到待求边值问题的数值解Xi(i=1,2,…,N) (2)矩量法 很多电磁场问题的分析都归结为这样一个算子方程〔2〕: L(f)=g(3)其中:L是线性算子,f是未知的场或其他响应,g是已知的源或激励。 在通常的情况下,这个方程是矢量方程(二维或三维的)。如果f能有方程解出,则是一个精确的解析解,大多数情况下,不能得到f的解析形式,只能通过数值方法进行预估。令f在L的定义域内被展开为某基函数系f1,f2,f3,…,fn的线性组合: 其中:an是展开系数,fn为展开函数或基函数。 对于精确解式(2)通畅是无限项之和,且形成一个基函数的完备集,对近似解,将式 (2)带入式(1),再应用算子L的线性,便可以得到: m=1,2,3,… 此方程组可写成矩阵形式f,以解出f。矩量法就是这样一种将算子方程转化为矩阵方程的一种离散方法。 在电磁散射问题中,散射体的特征尺度与波长之比是一个很重要的参数。他决定了具体应用矩量法的途径。如果目标特征尺度可以与波长比较,则可以采用一般的矩量法;如果目标很大而特征尺度又包括了一个很大的范围,那么就需要选择一个合适的离散方式和离散基函数。受计算机内存和计算速度影响,有些二维和三维问题用矩量法求解是非常困难的,因为计算的存储量通常与N2或者N3成正比(N为离散点数),而且离散后出现病态矩阵也是一个难以解决的问题。这时需要较高的数学技巧,如采用小波展开,选取合适的小波基函数来降维等〔3〕。 (3)时域有限差分方法 时域有限差分(FDTD)是电磁场的一种时域计算方法。传统上电磁场的计算主要是在频域上进行的,这些年以来,时域计算方法也越来越受到重视。他已在很多方面显示出独特的优越性,尤其是在解决有关非均匀介质、任意形状和复杂结构的散射体以及辐射系统的电磁问题中更加突出。FDTD法直接求解依赖时间变量的麦克斯韦旋度方程,利用二阶精度的中心差分近似把旋度方程中的微分算符直接转换为差分形式,这样达到在一定体积内和一段时间上对连续电磁场的数据取样压缩。电场和磁场分量在空间被交叉放置,这样保证在介质边界处切向场分量的连续条件自然得到满足。在笛卡儿坐标系电场和磁场分量在网格单元中的位置是每一磁场分量由4个电场分量包围着,反之亦然。 这种电磁场的空间放置方法符合法拉第定律和安培定律的自然几何结构。因此FDTD算法是计算机在数据存储空间中对连续的实际电磁波的传播过程在时间进程上进行数字模拟。而在每一个网格点上各场分量的新值均仅依赖于该点在同一时间步的值及在该点周围邻近点其他场前半个时间步的值。这正是电磁场的感应原理。这些关系构成FDTD法的基本算式,通过逐个时间步对模拟区域各网格点的计算,在执行到适当的时间步数后,即可获得所需要的结果。 在上述算法中,时间增量Δt和空间增量Δx,Δy和Δz不是相互独立的,他们的取值必须满足一定的关系,以避免数值不稳定。这种不稳定表现为在解显式 差分方程时随着时间步的继续计算结果也将无限制的67增加。为了保证数值稳定性必须满足数值稳定条件: 其中:(对非均匀区域,应选c的最大值)〔4〕。 用差分方法对麦克斯韦方程的数值计算还会在网格中引起所模拟波模的色散,即在FDTD网格中数字波模的传播速度将随波长、在网格中的传播方向以及离散化的情况而改变。这种色散将导致非物理原因引起的脉冲波形的畸变、人为的各向异性及虚拟的绕射等,因此必须考虑数值色散问题。如果在模拟空间中采用大小不同的网格或包含不同的介质区域,这时网格尺寸与波长之比将是位置的函数,在不同网格或介质的交界面处将出现非物理的绕射和反射现象,对此也应该进行定量的研究,以保证正确估计FDTD算法的精度。在开放问题中电磁场将占据无限大空间,而由于计算机内存总是有限的,只能模拟有限空间,因此差分网格在某处必将截断,这就要求在网格截断处不引起波的明显反射,使对外传播的波就像在无限大空间中传播一样。这就是在截断处设置吸收边界条件,使传播到截断处的波被边界吸收而不产生反射,当然不可能达到完全没有反射,目前已创立的一些吸收边界条件可达到精度上的要求,如Mur所导出的吸收边界条件。 (4)复射线方法 复射线是用于求解波场传播和散射问题的一种高频近似方法。他根据几何光学理论和几何绕射理论的分析方法和计算公式,在解析延拓的复空间中求解复射线轨迹和场的振幅和相位,从而直接得出局部不均匀波(凋落波)的传播和散射规律〔5〕。复射线方法是包括复射线追踪、复射线近轴近似、复射线展开以及复绕射线等处理技术在内的一系列处理方法的统称。其共同特点在于:通过将射线参考点坐标延拓到复空间而建立了一个简单而统一的实空间中波束/射线束(Bundle ofrays)分析模型;通过费马原理及其延拓,由基于复射线追踪或复射线近轴近似的处理技术,构造了射线光学架构下有效的鞍点场描述方法等。例如,复射线追踪法将射线光学中使用的射线追踪方法和场强计算公式直接地解析延拓到复空间,利用延拓后的复费马原理进行复射线搜索,从而求出复射线轨迹和复射线场。这一方法的特点在于可以基于射线光学方法有效地描述空间中波束的传播,因此,提供了一类分析波束传播的简便方法。其不足之处是对每一个给定的观察点必须进行一次二维或四维的复射线轨迹搜索,这是一个十分花费时间的计算机迭代过程。 4 几种方法的比较和进展 将有限元法移植到电磁工程领域还是二十世纪六七十年代的事情,他比较新颖。有限元法的优点是适用于具有复杂边界形状或边界条件、含有复杂媒质的定解问题。这种方法的各个环节可以实现标准化,得到通用的计算程序,而且有较高的计算精度。但是这种方法的计算程序复杂冗长,由于他是区域性解法,分割的元素数和节点数较多,导致需要的初始数据复杂繁多,最终得到的方程组的元数很大,这使得计算时间长,而且对计算机本身的存储也提出了要求。对电磁学中的许多问题,有限元产生的是带状(如果适当地给节点编号的话)、稀疏阵(许多矩阵元素是0)。但是单独采用有限元法只能解决开域问题。用有限元法进行数值分析的第一步是对目标的离散,多年来人们一直在研究这个问题,试图找到一种有效、方便的离散方法,但由于电磁场领域的特殊性,这个问题一直没有得到很好的解决。问题的关键在于一方面对复杂的结构,一般的剖分方法难于适用;另一方面,由于剖分的疏密与最终所形成的系数矩阵的存贮量密切相关,因而人们采用了许多方法来减少存储量,如多重网格法,但这些方法的实现较为困难〔6〕。 网格剖分与加密是有限元方法发展的瓶颈之一,采用自适应网格剖分和加密技术相对来说可以较好地解决这一问题。自适应网格剖分根据对场量分布求解后的结果对网格进行增加剖分密度的调整,在网格密集区采用高阶插值函数,以进一步提高精度,在场域分布变化剧烈区域,进行多次加密。 这些年有限元方法的发展日益加快,与其他理论相结合方面也有了新的进展,并取得了相当应用范围的成果,如自适应网格剖分、三维场建模求解、耦合问题、开域问题、高磁性材料及具有磁滞饱和非线性特性介质的处理等,还包括一些尚处于探索阶段的工作,如拟问题、人工智能和专家系统在电磁装置优化设计中的应用、边基有限元法等,这些都使得有限元方法的发展有了质的飞跃。 矩量法将连续方程离散化为代数方程组,既适用于求解微分方程,又适用于求解积分方程。他的求解过程简单,求解步骤统一,应用起来比较方便。然而 77他需要一定的数学技巧,如离散化的程度、基函数与权函数的选取,矩阵求解过程等。另外必须指出的是,矩量法可以达到所需要的精确度,解析部分简单,可计算量很大,即使用高速大容量计算机,计算任务也很繁重。矩量法在天线分析和电磁场散射问题中有比较广泛地应用,已成功用于天线和天线阵的辐射、散射问题、微带和有耗结构分析、非均匀地球上的传播及人体中电磁吸收等。 FDTD用有限差分式替代时域麦克斯韦旋度方程中的微分式,得到关于场分量的有限差分式,针对不同的研究对象,可在不同的坐标系中建模,因而具有这几个优点,容易对复杂媒体建模,通过一次时域分析计算,借助傅里叶变换可以得到整个同带范围内的频率响应;能够实时在现场的空间分布,精确模拟各种辐射体和散射体的辐射特性和散射特性;计算时间短。但是FDTD分析方法由于受到计算机存储容量的限制,其网格空间不能无限制的增加,造成FDTD方法不能适用于较大尺寸,也不能适用于细薄结构的媒质。因为这种细薄结构的最小尺寸比FDTD网格尺寸小很多,若用网格拟和这类细薄结构只能减小网格尺寸,而这必然导致计算机存储容量的加大。因此需要将FDTD与其他技术相结合,目前这种技术正蓬勃发展,如时域积分方程/FDTD方法,FDTD/MOM等。FDTD的应用范围也很广阔,诸如手持机辐射、天线、不同建筑物结构室内的电磁干扰特性研究、微带线等〔7〕。 复射线技术具有物理模型简单、数学处理方便、计算效率高等特点,在复杂目标散射特性分析等应用领域中有重要的研究价值。典型的处理方式是首先将入射平面波离散化为一组波束指向平行的复源点场,通过特定目标情形下的射线追踪、场强计算和叠加各射线场的贡献,可以得到特定观察位置处散射场的高频渐进解。目前已运用复射线分析方法对飞行器天线和天线罩(雷达舱)、(加吸波涂层)翼身结合部和进气道以及涂层的金属平板、角形反射器等典型目标散射特性进行了成功的分析。尽管复射线技术的计算误差可以通过参数调整得到控制,但其本身是一种高频近似计算方法,由于入射波场的离散和只引入鞍点贡献,带来了不可避免的计算误差。总的来说复射线方法在目标电磁散射领域还是具有独特的优势,尤其是对复 杂目标的处理。 5 结 语 电磁学的数值计算方法远远不止以上所举,还有边界元素法、格林函数法等,在具体问题中,应该采用不同的方法,而不应拘泥于这些方法,还可以把这些方法加以综合应用,以达到最佳效果。 电磁学的数值计算是一门计算的艺术,他横跨了多个学科,是数学理论、电磁理论和计算机的有机结合。原则上讲,从直流到光的宽频带范围都属于他的研究范围。为了跟上世界科技发展的需要,应大力进行电磁场的并行计算方法的研究,不断拓广他的应用领域,如生物电磁学、复杂媒质中的电磁正问题和逆问题、医学应用、微波遥感应用、非线性电磁学中的混沌与分叉、微电子学和纳米电子学等。 参考文献 〔1〕 文舸一.计算电磁学的进展与展望〔J〕.电子学报,1995,23(10):62-69. 〔2〕 刘圣民.电磁场的数值方法〔M〕.武汉:华中理工大学出版社,1991. 〔3〕 张成,郑宏兴.小波矩量法求解电磁场积分方程〔J〕.宁夏大学学报(自然科学版),2000,21(1):76-79. 〔4〕 王长清.时域有限差分(FD-TD)法〔J〕.微波学报,1989,(4):8-18. 〔5〕 阮颖诤.复射线理论及其应用〔M〕.成都:电子工业出版社,1991. 〔6〕 方静,汪文秉.有限元法和矩量法结合分析背腔天线的辐射特性〔J〕.微波学报,2000,16(2):139-143. 〔7〕 杨永侠,王翠玲.电磁场的FDTD分析方法〔J〕.现代电子技术,2001,(11):73-74. 〔8〕 洪伟.计算电磁学研究进展〔J〕.东南大学学RB (自然科学版),2002,32(3):335-339. 〔9〕 王长清,祝西里.电磁场计算中的时域有限差分法〔M〕.北京:北京大学出版社,1994. 〔10〕 楼仁海,符果行,袁敬闳.电磁理论〔M〕.成都:电子科技大学出版社,1996. 现代电子技术

电磁学是物理学的一个分支。电学与磁学领域有著紧密关系,广义的电磁学可以说是包含电学和磁学,但狭义来说是一门探讨电性与磁性交互关系的学科。 主要研究电磁波,电磁场以及有关电荷,带电物体的动力学等等。电磁学或称电动力学或经典电动力学。之所以称为经典,是因为它不包括现代的量子电动力学的内容。电动力学这样一个术语使用并不是非常严格,有时它也用来指电磁学中去除了静电学、静磁学后剩下的部分,是指电磁学与力学结合的部分。这个部分处理电磁场对带电粒子的力学影响。电磁学的基本理论由19世纪的许多物理学家发展起来,麦克斯韦方程组通过一组方程统一了所有的这些工作,并且揭示出了光作为电磁波的本质。电磁学的基本方程式为麦克斯韦方程组,此方程组在经典力学的相对运动转换(伽利略变换)下形式会变,在伽里略变换下,光速在不同惯性座标下会不同。保持麦克斯韦方程组形式不变的变换为洛伦兹变换,在此变换下,不同惯性座标下光速恒定。二十世纪初迈克耳孙-莫雷实验支持光速不变,光速不变亦成为爱因斯坦的狭义相对论的基石。取而代之,洛伦兹变换亦成为较伽利略变换更精密的惯性座标转换方式。静磁现象和静电现象很早就受到人类注意。中国远古黄帝时候就已经发现了磁石吸铁、磁石指南以及摩擦生电等现象。系统地对这些现象进行研究则始於16世纪。1600年英国医生威廉·吉尔伯特(William Gilbert,1544~1603)发表了<论磁、磁饱和地球作为一个巨大的磁体>(Demagnete,magneticisque corporibus et de magnomagnete tellure)。他总结了前人对磁的研究,周密地讨论了地磁的性质,记载了大量实验,使磁学从经验转变为科学。书中他也记载了电学方面的研究。

电磁场与微波技术,是电子信息类学科的一门非常重要的专业理论课,目的是满足学生以后从事微波天线以及射频类的相关工作需求。我整理了电磁场微波技术论文,有兴趣的亲可以来阅读一下!

“电磁场与微波技术”课程的改革与实践

摘要:在对“电磁场与微波技术”课程的改革与实践中,分析了目前该课程的教学中存在的主要问题,结合课程特点和“三本院校”学生的实际情况,整合了电磁场与电磁波、微波技术和天线理论三门课程的主要内容,加强了该课程与工程实际的结合,适应了三本学校的应用型人才的目标,并通过教学方式和考核方式等方面的具体改革措施,提高了该课程的教学质量,尤其是提高了学生对该课程的相关知识和技术的实际应用能力。

关键词:电磁场与微波技术;工程实际;考核制度

作者简介:张具琴(1980-),女,河南信阳人,黄河科技学院电子信息工程学院,讲师;贾洁(1982-),女,河南安阳人,黄河科技学院电子信息工程学院,助教。(河南郑州450063)

中图分类号:G642.0     文献标识码:A     文章编号:1007-0079(2012)17-0054-02

随着信息时代的发展,作为信息主要载体发展方向的高频电磁波—微波,不仅在卫星通信、计算机通信、移动通信、雷达等高科技领域得到了广泛的应用,而且已经深入到了各行各业中,在人们的日常生活也扮演着重要角色。因此对于电子信息专业的学生来说,电磁场、微波技术与天线类课程在目前及今后都是不可缺少的主干专业课程。[1,2]但由于该课程的自身特点及对于该课程教学的一些传统认识,使得学生对该课程的知识和技能的学习和掌握不能满足国内对电磁场与微波技术及其相关专业人才的需求。为提高该课程教学质量和人才培养质量,尤其是针对三本院校的应用型人才培养目标,笔者认真分析了该课程教学中的问题,结合课程特点和“三本院校”学生的实际情况,对该课程进行了一系列的改革和实践探索,并取得了一定的成果。

一、“教”“学”中的主要问题

该课程传统的教学方法是以事实性知识传授为教学目标,即课程内容是介绍“是什么”“为什么”,而缺乏“怎么做”“怎么用”,过分强调理论,而缺乏对知识的实际应用。

目前该类课程所用教材多为一本学校编著,这些教材整体突出课程内容的完整性和理论分析的严密性。对于理论基础一般也较为薄弱、更注重实际应用能力的三本学生来说算是“天书一部”,学习起来也“味同嚼蜡”,教师授课也是事倍功半,教学效果很不理想,很多三本学校对该课程的开设是“形同虚设”。

该类课程的教学模式仍是以理论教学为主的,教学方法和内容很少涉及该课程的实际知识应用和人才就业的方向指导,结果学生学完后除了知道有很多公式推导外,对该课程其他方面相关内容知之甚少,所以缺乏学习动力,教学效果不佳。

对于该课程的考核制度多为“一刀切”模式,即“考试分数定高低”,未能考虑学生的个体差异,忽视学生学习能力、学习过程、学习方式差别,不能很好调动学生的积极性和主动性。

二、改革方法和措施

1.改革传统的事实性知识传授的教学目标,更注重对实际应用能力的培养

在教学内容中,增加具体理论的应用实例分析,[3]使学生对电磁场和微波的实用性有较好的认识;增加微波技术在新科技和社会生产生活中的实际应用的一些例子,使学生有更强的学习兴趣和学习动力;课程中很多知识点的引入,都以思考题和小的科研课题的形式提出,使学生应用所学的理论知识分析解决实际问题的能力与创新、研究能力得到相应的锻炼。

增开相应的微波实验项目,使学生的实际动手能力得到很好提高,考虑到实验室建设的成本的问题,可以通过先引入微波的仿真实验项目或者引入与现有的大学物理实验、通信原理实验等成熟实验项目相结合的实验项目。[4]

2.突破传统的一本院校所编教材的限制,使学生在有限的时间内掌握具有生命力的知识基础和必要技能,以满足高素质应用人才知识结构和素质结构的需求

在实际授课过程中注重将“电磁场与电磁波”、“微波技术”和“天线理论”有机结合,采用电磁场与微波技术结合的自编的简本教材为授课教材,把天线及应用作为扩展补充教材,将三者精要贯穿于教学中。这大大节约了理论教学时间,使学生有更多的时间参与到实践中去,有利于培养学生应具有的实践能力。

具体教学内容方面:加强了该课程中的最基本的电磁场的概念、定理的讲解,力求夯实该门课程的基础;增加了微波在新科技中的应用和微波的发展前景的介绍和大量的网络理论应用实例分析等,有利于学生学习目标、学习兴趣的建立和实际应用能力的提高;针对该门课程涉及知识面广、理论性较强的特点,对于只是涉及而非重点内容大胆删减或者采用增加附录的形式直接给出,这样有利于学生有针对性地学习;对于课程中的概念采用“量纲分析法”,使学生对概念的物理意义有更深地理解,应用起来能够更加娴熟;对于其他新知识的引入采用“概念—方程—新概念”教学模式,顺着学生的理解思路,水到渠成;更加注重了理论与实践的结合,每个具体的理论讲完后,立即有相应的实例分析,既有利于提高学生的实际分析问题的能力又有利于提高其学习兴趣。

3.改革传统的理论教学为主的教学方法,开展“以应用为基本出发点”的理论教学方法研究

(1)以应用为本,确定理论教学的研究方法。在教学大纲和简本教材中,弱化理论讲解,重视实际解决问题能力的提高,主要采用“用什么理论,讲什么理论”和选学、自学内容相结合的模式,即让大多数学生学到了本课程的主要内容,又让学有富余的学生得到更深层次的提高。

(2)注重对学生进行思维能力与应用能力的训练。改变传统的纯理论讲解、缺少实际应用实例的情况,在教学过程中注重理论讲解、实例分析、习题课相结合;以思考题和小的科研课题的形式,对学生进行有效的思维能力与应用能力训练。

(3)具体教学方法中,采用多种方法相结合,尤其是板书和多媒体相结合教学。对于主要理论、公式的推导,以板书教学为主,有利于学生的理解和接受;而对于一些介绍性知识、实例讲解和仿真实验方面,可辅以多媒体教学和动画演示,丰富学生的感性认识和知识量。

(4)注重案例教学。例如,以往年学生的毕业设计为案例,阐明微波是如何用来解决实际问题的;提出目前理论应用于实际的方向和技术瓶颈,鼓励同学们探索和研究,力争做到理论与实践相互联系,相互穿插,相辅相成,使学生真正从这门课程中学到“实惠”,即掌握了具体知识的应用,也为其以后的就业指明了方向。

(5)开设“第二课堂”教学法。针对学生层次的差异,可以采用课堂教学与网络教学相结合的方式、给出小型科研调研题目等方式,[5,6]使每个学生的潜能都能得到最大的发挥。充分利用黄河科技学院(以下简称“我校”)的校企业合作平台,让学生利用半年左右的时间充分参与到微波天线企业一线的科研和生产中,在理解整机工作原理的基础上,研究实际的产品部件;通过在学生与学生之间、学生与老师之间、工程技术人员之间对出现问题的讨论,使学生更全面地思考和理解问题,另一方面也能使学生掌握和了解最新的知识,适应科技高速发展的需要,实现与时俱进。

4.改革传统的考核制度“一刀切”模式,开辟“多样化的柔性”考核制度

结合“因材施教”的指导方针,认真考虑学生的个体差异,增强“第二课堂”的作用,开设“老生研讨课”,加重过程考核,提出开卷考试制度等方案,极大地调动了学生的积极性和主动性,提高了教学效果。传统的终结性考核以理论知识、标准答案、闭卷形式为主。改革后的考核方式更加注重过程考核,加入调研报告成绩,课程小结成绩实,实践环节成绩;考试试卷上增设选做题目、课程设想等,给学生充足的学习空间,有利于激发学生的学习自主性,提高学习的自觉性和自学能力;考试采用开卷形式,重视知识的应用而弱化死记硬背,加强学生的应用能力的考核。

另外,本课程的教学中也广泛利用网上电子教案、习题库等教学资源,为学生的自学和课后复习提供了一定的空间,随着课程网络资源的建设,教学中可利用校园网实现网络教学、在线测试、在线答疑。

三、改革实践的效果

课程教学目标和教学内容的调整,理顺并抓住了根本,节省了时间,避免了枯燥繁冗的数学推导过程,使学生接触更多的工程实践,适应了三本学校的应用型人才目标;教学方法、教学手段的改革,加强了理论与实际的联系,避免了学生对该课程中一些难而无用的知识纠结,侧重工程实际应用,使他们的实践能力大大提高;考核方式的改革,使学生的学习积极性得到了全面地调动,学生能够主动参与到学习过程中,学习方式灵活、学习兴趣也有了很大的提高。

改革后学生能够积极主动地参与到“电磁场与微波技术”的学习中,通过亲身体验和相关内容的学习,积累和丰富直接经验,促进学生掌握了该课程的基本知识和基本技能,培养了学生的创新精神、实践能力和终身学习的能力。具体表现在以下几个方面:本课程的合格率达到了95%以上,优秀率将近40%;有近50%的学生投入到该课程的研讨式学习和科研课题研究中,6名同学在科技期刊上发表了科研论文;三届毕业设计有13名学生做了该方向的课题,[7]其中3名同学取得了优秀毕业设计的成绩;在两届全国大学生电子设计大赛中,2名同学选择了该方向的创新设计并取得了优异成绩;该方向的就业率和考研率都有很大提高,2005级以来三届近400名毕业生中就有15名学生从事该方向工作,实现了我校该方向就业的零的突破,有近30名毕业生选择该方向为研究生报考方向。

四、结束语

该课程的教学改革和实践在教学质量和人才培养方面取得了一定的成绩,但教学改革任重道远,要培养出既具有理论知识基础又具有较强实践能力的适应时代的高素质应用人才,必须与时俱进地调整和充实教学的各个环节,协调和配合好教学体制和机制的多方面才能达到最佳效果。

参考文献:

[1]盛振华.电磁场微波技术与天线[M].西安:西安电子科技大学出版社1995.

[2]李丽华.论三本院校电磁场与微波技术课程教学[J].投资与合作(学术版),2010,(9):64-65.

[3]陈帝伊,刘淑琴,许景辉,等.“电磁场理论”课程的教学改革探讨[J].电气电子教学学报,2009,(4):116-117.

[4]杨再旺,张淑娥.谈《电磁场与微波技术》实验方法改革[J].中国电力教育,2005,(S1):147-150.

[5]陈宏,费跃农,郑三元,等.研究性学习在“模拟电子技术”课程教学中的应用[J].电气电子教学学报,2009,(5):108-110.

[6]刘云.浅谈“微波技术与天线”课程中的创造力培养[J].电气电子教学学报,2011,(2):8-9.

[7]郑娟,蒋军.电磁场与微波技术方向毕业设计指导[J].黄山学院学报,2009,(3):125-127.

呵呵我也是科大的

电磁学论文发表期刊

电磁学计算方法的研究进展和状态摘 要:介绍了电磁学计算方法的研究进展和状态,对几种富有代表性的算法做了介绍,并比较了各自的优势和不足,包括矩量法、有限元法、时域有限差分方法以及复射线方法等。 关键词:矩量法;有限元法;时域有限差分方法;复射线方法 1 引 言 1864年Maxwell在前人的理论(高斯定律、安培定律、法拉第定律和自由磁极不存在)和实验的基础上建立了统一的电磁场理论,并用数学模型揭示了自然界一切宏观电磁现象所遵循的普遍规律,这就是著名的Maxwell方程。在11种可分离变量坐标系求解Maxwell方程组或者其退化形式,最后得到解析解。这种方法可以得到问题的准确解,而且效率也比较高,但是适用范围太窄,只能求解具有规则边界的简单问题。对于不规则形状或者任意形状边界则需要比较高的数学技巧,甚至无法求得解析解。20世纪60年代以来,随着电子计算机技术的发展,一些电磁场的数值计算方法发展起来,并得到广泛地应用,相对于经典电磁理论而言,数值方法受边界形状的约束大为减少,可以解决各种类型的复杂问题。但各种数值计算方法都有优缺点,一个复杂的问题往往难以依靠一种单一方法解决,常需要将多种方法结合起来,互相取长补短,因此混和方法日益受到人们的重视。 本文综述了国内外计算电磁学的发展状况,对常用的电磁计算方法做了分类。2 电磁场数值方法的分类 电磁学问题的数值求解方法可分为时域和频域2大类。频域技术主要有矩量法、有限差分方法等,频域技术发展得比较早,也比较成熟。时域法主要有时域差分技术。时域法的引入是基于计算效率的考虑,某些问题在时域中讨论起来计算量要小。例如求解目标对冲激脉冲的早期响应时,频域法必须在很大的带宽内进行多次采样计算,然后做傅里叶反变换才能求得解答,计算精度受到采样点的影响。若有非线性部分随时间变化,采用时域法更加直接。另外还有一些高频方法,如GTD,UTD和射线理论。 从求解方程的形式看,可以分为积分方程法(IE)和微分方程法(DE)。IE和DE相比,有如下特点:IE法的求解区域维数比DE法少一维,误差限于求解区域的边界,故精度高;IE法适合求无限域问题,DE法此时会遇到网格截断问题;IE法产生的矩阵是满的,阶数小,DE法所产生的是稀疏矩阵,但阶数大;IE法难以处理非均匀、非线性和时变媒质问题,DE法可直接用于这类问题〔1〕。3 几种典型方法的介绍 有限元方法是在20世纪40年代被提出,在50年代用于飞机设计。后来这种方法得到发展并被非常广泛地应用于结构分析问题中。目前,作为广泛应用于工程和数学问题的一种通用方法,有限元法已非常著名。 有限元法是以变分原理为基础的一种数值计算方法。其定解问题为: 应用变分原理,把所要求解的边值问题转化为相应的变分问题,利用对区域D的剖分、插值,离散化变分问题为普通多元函数的极值问题,进而得到一组多元的代数方程组,求解代数方程组就可以得到所求边值问题的数值解。一般要经过如下步骤: ①给出与待求边值问题相应的泛函及其变分问题。 ②剖分场域D,并选出相应的插值函数。 ③将变分问题离散化为一种多元函数的极值问题,得到如下一组代数方程组:其中:Kij为系数(刚度)矩阵;Xi为离散点的插值。 ④选择合适的代数解法解式(2),即可得到待求边值问题的数值解Xi(i=1,2,…,N) (2)矩量法 很多电磁场问题的分析都归结为这样一个算子方程〔2〕: L(f)=g(3)其中:L是线性算子,f是未知的场或其他响应,g是已知的源或激励。 在通常的情况下,这个方程是矢量方程(二维或三维的)。如果f能有方程解出,则是一个精确的解析解,大多数情况下,不能得到f的解析形式,只能通过数值方法进行预估。令f在L的定义域内被展开为某基函数系f1,f2,f3,…,fn的线性组合:其中:an是展开系数,fn为展开函数或基函数。 对于精确解式(2)通畅是无限项之和,且形成一个基函数的完备集,对近似解,将式 (2)带入式(1),再应用算子L的线性,便可以得到: m=1,2,3,…此方程组可写成矩阵形式f,以解出f。矩量法就是这样一种将算子方程转化为矩阵方程的一种离散方法。 在电磁散射问题中,散射体的特征尺度与波长之比是一个很重要的参数。他决定了具体应用矩量法的途径。如果目标特征尺度可以与波长比较,则可以采用一般的矩量法;如果目标很大而特征尺度又包括了一个很大的范围,那么就需要选择一个合适的离散方式和离散基函数。受计算机内存和计算速度影响,有些二维和三维问题用矩量法求解是非常困难的,因为计算的存储量通常与N2或者N3成正比(N为离散点数),而且离散后出现病态矩阵也是一个难以解决的问题。这时需要较高的数学技巧,如采用小波展开,选取合适的小波基函数来降维等〔3〕。 (3)时域有限差分方法 时域有限差分(FDTD)是电磁场的一种时域计算方法。传统上电磁场的计算主要是在频域上进行的,这些年以来,时域计算方法也越来越受到重视。他已在很多方面显示出独特的优越性,尤其是在解决有关非均匀介质、任意形状和复杂结构的散射体以及辐射系统的电磁问题中更加突出。FDTD法直接求解依赖时间变量的麦克斯韦旋度方程,利用二阶精度的中心差分近似把旋度方程中的微分算符直接转换为差分形式,这样达到在一定体积内和一段时间上对连续电磁场的数据取样压缩。电场和磁场分量在空间被交叉放置,这样保证在介质边界处切向场分量的连续条件自然得到满足。在笛卡儿坐标系电场和磁场分量在网格单元中的位置是每一磁场分量由4个电场分量包围着,反之亦然。 这种电磁场的空间放置方法符合法拉第定律和安培定律的自然几何结构。因此FDTD算法是计算机在数据存储空间中对连续的实际电磁波的传播过程在时间进程上进行数字模拟。而在每一个网格点上各场分量的新值均仅依赖于该点在同一时间步的值及在该点周围邻近点其他场前半个时间步的值。这正是电磁场的感应原理。这些关系构成FDTD法的基本算式,通过逐个时间步对模拟区域各网格点的计算,在执行到适当的时间步数后,即可获得所需要的结果。 在上述算法中,时间增量Δt和空间增量Δx,Δy和Δz不是相互独立的,他们的取值必须满足一定的关系,以避免数值不稳定。这种不稳定表现为在解显式 差分方程时随着时间步的继续计算结果也将无限制的67增加。为了保证数值稳定性必须满足数值稳定条件:其中:(对非均匀区域,应选c的最大值)〔4〕。 用差分方法对麦克斯韦方程的数值计算还会在网格中引起所模拟波模的色散,即在FDTD网格中数字波模的传播速度将随波长、在网格中的传播方向以及离散化的情况而改变。这种色散将导致非物理原因引起的脉冲波形的畸变、人为的各向异性及虚拟的绕射等,因此必须考虑数值色散问题。如果在模拟空间中采用大小不同的网格或包含不同的介质区域,这时网格尺寸与波长之比将是位置的函数,在不同网格或介质的交界面处将出现非物理的绕射和反射现象,对此也应该进行定量的研究,以保证正确估计FDTD算法的精度。在开放问题中电磁场将占据无限大空间,而由于计算机内存总是有限的,只能模拟有限空间,因此差分网格在某处必将截断,这就要求在网格截断处不引起波的明显反射,使对外传播的波就像在无限大空间中传播一样。这就是在截断处设置吸收边界条件,使传播到截断处的波被边界吸收而不产生反射,当然不可能达到完全没有反射,目前已创立的一些吸收边界条件可达到精度上的要求,如Mur所导出的吸收边界条件。 (4)复射线方法 复射线是用于求解波场传播和散射问题的一种高频近似方法。他根据几何光学理论和几何绕射理论的分析方法和计算公式,在解析延拓的复空间中求解复射线轨迹和场的振幅和相位,从而直接得出局部不均匀波(凋落波)的传播和散射规律〔5〕。复射线方法是包括复射线追踪、复射线近轴近似、复射线展开以及复绕射线等处理技术在内的一系列处理方法的统称。其共同特点在于:通过将射线参考点坐标延拓到复空间而建立了一个简单而统一的实空间中波束/射线束(Bundle ofrays)分析模型;通过费马原理及其延拓,由基于复射线追踪或复射线近轴近似的处理技术,构造了射线光学架构下有效的鞍点场描述方法等。例如,复射线追踪法将射线光学中使用的射线追踪方法和场强计算公式直接地解析延拓到复空间,利用延拓后的复费马原理进行复射线搜索,从而求出复射线轨迹和复射线场。这一方法的特点在于可以基于射线光学方法有效地描述空间中波束的传播,因此,提供了一类分析波束传播的简便方法。其不足之处是对每一个给定的观察点必须进行一次二维或四维的复射线轨迹搜索,这是一个十分花费时间的计算机迭代过程。4 几种方法的比较和进展 将有限元法移植到电磁工程领域还是二十世纪六七十年代的事情,他比较新颖。有限元法的优点是适用于具有复杂边界形状或边界条件、含有复杂媒质的定解问题。这种方法的各个环节可以实现标准化,得到通用的计算程序,而且有较高的计算精度。但是这种方法的计算程序复杂冗长,由于他是区域性解法,分割的元素数和节点数较多,导致需要的初始数据复杂繁多,最终得到的方程组的元数很大,这使得计算时间长,而且对计算机本身的存储也提出了要求。对电磁学中的许多问题,有限元产生的是带状(如果适当地给节点编号的话)、稀疏阵(许多矩阵元素是0)。但是单独采用有限元法只能解决开域问题。用有限元法进行数值分析的第一步是对目标的离散,多年来人们一直在研究这个问题,试图找到一种有效、方便的离散方法,但由于电磁场领域的特殊性,这个问题一直没有得到很好的解决。问题的关键在于一方面对复杂的结构,一般的剖分方法难于适用;另一方面,由于剖分的疏密与最终所形成的系数矩阵的存贮量密切相关,因而人们采用了许多方法来减少存储量,如多重网格法,但这些方法的实现较为困难〔6〕。 网格剖分与加密是有限元方法发展的瓶颈之一,采用自适应网格剖分和加密技术相对来说可以较好地解决这一问题。自适应网格剖分根据对场量分布求解后的结果对网格进行增加剖分密度的调整,在网格密集区采用高阶插值函数,以进一步提高精度,在场域分布变化剧烈区域,进行多次加密。 这些年有限元方法的发展日益加快,与其他理论相结合方面也有了新的进展,并取得了相当应用范围的成果,如自适应网格剖分、三维场建模求解、耦合问题、开域问题、高磁性材料及具有磁滞饱和非线性特性介质的处理等,还包括一些尚处于探索阶段的工作,如拟问题、人工智能和专家系统在电磁装置优化设计中的应用、边基有限元法等,这些都使得有限元方法的发展有了质的飞跃。 矩量法将连续方程离散化为代数方程组,既适用于求解微分方程,又适用于求解积分方程。他的求解过程简单,求解步骤统一,应用起来比较方便。然而 77他需要一定的数学技巧,如离散化的程度、基函数与权函数的选取,矩阵求解过程等。另外必须指出的是,矩量法可以达到所需要的精确度,解析部分简单,可计算量很大,即使用高速大容量计算机,计算任务也很繁重。矩量法在天线分析和电磁场散射问题中有比较广泛地应用,已成功用于天线和天线阵的辐射、散射问题、微带和有耗结构分析、非均匀地球上的传播及人体中电磁吸收等。 FDTD用有限差分式替代时域麦克斯韦旋度方程中的微分式,得到关于场分量的有限差分式,针对不同的研究对象,可在不同的坐标系中建模,因而具有这几个优点,容易对复杂媒体建模,通过一次时域分析计算,借助傅里叶变换可以得到整个同带范围内的频率响应;能够实时在现场的空间分布,精确模拟各种辐射体和散射体的辐射特性和散射特性;计算时间短。但是FDTD分析方法由于受到计算机存储容量的限制,其网格空间不能无限制的增加,造成FDTD方法不能适用于较大尺寸,也不能适用于细薄结构的媒质。因为这种细薄结构的最小尺寸比FDTD网格尺寸小很多,若用网格拟和这类细薄结构只能减小网格尺寸,而这必然导致计算机存储容量的加大。因此需要将FDTD与其他技术相结合,目前这种技术正蓬勃发展,如时域积分方程/FDTD方法,FDTD/MOM等。FDTD的应用范围也很广阔,诸如手持机辐射、天线、不同建筑物结构室内的电磁干扰特性研究、微带线等〔7〕。 复射线技术具有物理模型简单、数学处理方便、计算效率高等特点,在复杂目标散射特性分析等应用领域中有重要的研究价值。典型的处理方式是首先将入射平面波离散化为一组波束指向平行的复源点场,通过特定目标情形下的射线追踪、场强计算和叠加各射线场的贡献,可以得到特定观察位置处散射场的高频渐进解。目前已运用复射线分析方法对飞行器天线和天线罩(雷达舱)、(加吸波涂层)翼身结合部和进气道以及涂层的金属平板、角形反射器等典型目标散射特性进行了成功的分析。尽管复射线技术的计算误差可以通过参数调整得到控制,但其本身是一种高频近似计算方法,由于入射波场的离散和只引入鞍点贡献,带来了不可避免的计算误差。总的来说复射线方法在目标电磁散射领域还是具有独特的优势,尤其是对复杂目标的处理。5 结 语 电磁学的数值计算方法远远不止以上所举,还有边界元素法、格林函数法等,在具体问题中,应该采用不同的方法,而不应拘泥于这些方法,还可以把这些方法加以综合应用,以达到最佳效果。 电磁学的数值计算是一门计算的艺术,他横跨了多个学科,是数学理论、电磁理论和计算机的有机结合。原则上讲,从直流到光的宽频带范围都属于他的研究范围。为了跟上世界科技发展的需要,应大力进行电磁场的并行计算方法的研究,不断拓广他的应用领域,如生物电磁学、复杂媒质中的电磁正问题和逆问题、医学应用、微波遥感应用、非线性电磁学中的混沌与分叉、微电子学和纳米电子学等。参考文献〔1〕 文舸一.计算电磁学的进展与展望〔J〕.电子学报,1995,23(10):62-69.〔2〕 刘圣民.电磁场的数值方法〔M〕.武汉:华中理工大学出版社,1991.〔3〕 张成,郑宏兴.小波矩量法求解电磁场积分方程〔J〕.宁夏大学学报(自然科学版),2000,21(1):76-79. 〔4〕 王长清.时域有限差分(FD-TD)法〔J〕.微波学报,1989,(4):8-18.〔5〕 阮颖诤.复射线理论及其应用〔M〕.成都:电子工业出版社,1991.〔6〕 方静,汪文秉.有限元法和矩量法结合分析背腔天线的辐射特性〔J〕.微波学报,2000,16(2):139-143.〔7〕 杨永侠,王翠玲.电磁场的FDTD分析方法〔J〕.现代电子技术,2001,(11):73-74.〔8〕 洪伟.计算电磁学研究进展〔J〕.东南大学学RB (自然科学版),2002,32(3):335-339.〔9〕 王长清,祝西里.电磁场计算中的时域有限差分法〔M〕.北京:北京大学出版社,1994.〔10〕 楼仁海,符果行,袁敬闳.电磁理论〔M〕.成都:电子科技大学出版社,1996. 现代电子技术

电磁场与微波技术,是电子信息类学科的一门非常重要的专业理论课,目的是满足学生以后从事微波天线以及射频类的相关工作需求。我整理了电磁场微波技术论文,有兴趣的亲可以来阅读一下!

“电磁场与微波技术”课程的改革与实践

摘要:在对“电磁场与微波技术”课程的改革与实践中,分析了目前该课程的教学中存在的主要问题,结合课程特点和“三本院校”学生的实际情况,整合了电磁场与电磁波、微波技术和天线理论三门课程的主要内容,加强了该课程与工程实际的结合,适应了三本学校的应用型人才的目标,并通过教学方式和考核方式等方面的具体改革措施,提高了该课程的教学质量,尤其是提高了学生对该课程的相关知识和技术的实际应用能力。

关键词:电磁场与微波技术;工程实际;考核制度

作者简介:张具琴(1980-),女,河南信阳人,黄河科技学院电子信息工程学院,讲师;贾洁(1982-),女,河南安阳人,黄河科技学院电子信息工程学院,助教。(河南郑州450063)

中图分类号:G642.0     文献标识码:A     文章编号:1007-0079(2012)17-0054-02

随着信息时代的发展,作为信息主要载体发展方向的高频电磁波—微波,不仅在卫星通信、计算机通信、移动通信、雷达等高科技领域得到了广泛的应用,而且已经深入到了各行各业中,在人们的日常生活也扮演着重要角色。因此对于电子信息专业的学生来说,电磁场、微波技术与天线类课程在目前及今后都是不可缺少的主干专业课程。[1,2]但由于该课程的自身特点及对于该课程教学的一些传统认识,使得学生对该课程的知识和技能的学习和掌握不能满足国内对电磁场与微波技术及其相关专业人才的需求。为提高该课程教学质量和人才培养质量,尤其是针对三本院校的应用型人才培养目标,笔者认真分析了该课程教学中的问题,结合课程特点和“三本院校”学生的实际情况,对该课程进行了一系列的改革和实践探索,并取得了一定的成果。

一、“教”“学”中的主要问题

该课程传统的教学方法是以事实性知识传授为教学目标,即课程内容是介绍“是什么”“为什么”,而缺乏“怎么做”“怎么用”,过分强调理论,而缺乏对知识的实际应用。

目前该类课程所用教材多为一本学校编著,这些教材整体突出课程内容的完整性和理论分析的严密性。对于理论基础一般也较为薄弱、更注重实际应用能力的三本学生来说算是“天书一部”,学习起来也“味同嚼蜡”,教师授课也是事倍功半,教学效果很不理想,很多三本学校对该课程的开设是“形同虚设”。

该类课程的教学模式仍是以理论教学为主的,教学方法和内容很少涉及该课程的实际知识应用和人才就业的方向指导,结果学生学完后除了知道有很多公式推导外,对该课程其他方面相关内容知之甚少,所以缺乏学习动力,教学效果不佳。

对于该课程的考核制度多为“一刀切”模式,即“考试分数定高低”,未能考虑学生的个体差异,忽视学生学习能力、学习过程、学习方式差别,不能很好调动学生的积极性和主动性。

二、改革方法和措施

1.改革传统的事实性知识传授的教学目标,更注重对实际应用能力的培养

在教学内容中,增加具体理论的应用实例分析,[3]使学生对电磁场和微波的实用性有较好的认识;增加微波技术在新科技和社会生产生活中的实际应用的一些例子,使学生有更强的学习兴趣和学习动力;课程中很多知识点的引入,都以思考题和小的科研课题的形式提出,使学生应用所学的理论知识分析解决实际问题的能力与创新、研究能力得到相应的锻炼。

增开相应的微波实验项目,使学生的实际动手能力得到很好提高,考虑到实验室建设的成本的问题,可以通过先引入微波的仿真实验项目或者引入与现有的大学物理实验、通信原理实验等成熟实验项目相结合的实验项目。[4]

2.突破传统的一本院校所编教材的限制,使学生在有限的时间内掌握具有生命力的知识基础和必要技能,以满足高素质应用人才知识结构和素质结构的需求

在实际授课过程中注重将“电磁场与电磁波”、“微波技术”和“天线理论”有机结合,采用电磁场与微波技术结合的自编的简本教材为授课教材,把天线及应用作为扩展补充教材,将三者精要贯穿于教学中。这大大节约了理论教学时间,使学生有更多的时间参与到实践中去,有利于培养学生应具有的实践能力。

具体教学内容方面:加强了该课程中的最基本的电磁场的概念、定理的讲解,力求夯实该门课程的基础;增加了微波在新科技中的应用和微波的发展前景的介绍和大量的网络理论应用实例分析等,有利于学生学习目标、学习兴趣的建立和实际应用能力的提高;针对该门课程涉及知识面广、理论性较强的特点,对于只是涉及而非重点内容大胆删减或者采用增加附录的形式直接给出,这样有利于学生有针对性地学习;对于课程中的概念采用“量纲分析法”,使学生对概念的物理意义有更深地理解,应用起来能够更加娴熟;对于其他新知识的引入采用“概念—方程—新概念”教学模式,顺着学生的理解思路,水到渠成;更加注重了理论与实践的结合,每个具体的理论讲完后,立即有相应的实例分析,既有利于提高学生的实际分析问题的能力又有利于提高其学习兴趣。

3.改革传统的理论教学为主的教学方法,开展“以应用为基本出发点”的理论教学方法研究

(1)以应用为本,确定理论教学的研究方法。在教学大纲和简本教材中,弱化理论讲解,重视实际解决问题能力的提高,主要采用“用什么理论,讲什么理论”和选学、自学内容相结合的模式,即让大多数学生学到了本课程的主要内容,又让学有富余的学生得到更深层次的提高。

(2)注重对学生进行思维能力与应用能力的训练。改变传统的纯理论讲解、缺少实际应用实例的情况,在教学过程中注重理论讲解、实例分析、习题课相结合;以思考题和小的科研课题的形式,对学生进行有效的思维能力与应用能力训练。

(3)具体教学方法中,采用多种方法相结合,尤其是板书和多媒体相结合教学。对于主要理论、公式的推导,以板书教学为主,有利于学生的理解和接受;而对于一些介绍性知识、实例讲解和仿真实验方面,可辅以多媒体教学和动画演示,丰富学生的感性认识和知识量。

(4)注重案例教学。例如,以往年学生的毕业设计为案例,阐明微波是如何用来解决实际问题的;提出目前理论应用于实际的方向和技术瓶颈,鼓励同学们探索和研究,力争做到理论与实践相互联系,相互穿插,相辅相成,使学生真正从这门课程中学到“实惠”,即掌握了具体知识的应用,也为其以后的就业指明了方向。

(5)开设“第二课堂”教学法。针对学生层次的差异,可以采用课堂教学与网络教学相结合的方式、给出小型科研调研题目等方式,[5,6]使每个学生的潜能都能得到最大的发挥。充分利用黄河科技学院(以下简称“我校”)的校企业合作平台,让学生利用半年左右的时间充分参与到微波天线企业一线的科研和生产中,在理解整机工作原理的基础上,研究实际的产品部件;通过在学生与学生之间、学生与老师之间、工程技术人员之间对出现问题的讨论,使学生更全面地思考和理解问题,另一方面也能使学生掌握和了解最新的知识,适应科技高速发展的需要,实现与时俱进。

4.改革传统的考核制度“一刀切”模式,开辟“多样化的柔性”考核制度

结合“因材施教”的指导方针,认真考虑学生的个体差异,增强“第二课堂”的作用,开设“老生研讨课”,加重过程考核,提出开卷考试制度等方案,极大地调动了学生的积极性和主动性,提高了教学效果。传统的终结性考核以理论知识、标准答案、闭卷形式为主。改革后的考核方式更加注重过程考核,加入调研报告成绩,课程小结成绩实,实践环节成绩;考试试卷上增设选做题目、课程设想等,给学生充足的学习空间,有利于激发学生的学习自主性,提高学习的自觉性和自学能力;考试采用开卷形式,重视知识的应用而弱化死记硬背,加强学生的应用能力的考核。

另外,本课程的教学中也广泛利用网上电子教案、习题库等教学资源,为学生的自学和课后复习提供了一定的空间,随着课程网络资源的建设,教学中可利用校园网实现网络教学、在线测试、在线答疑。

三、改革实践的效果

课程教学目标和教学内容的调整,理顺并抓住了根本,节省了时间,避免了枯燥繁冗的数学推导过程,使学生接触更多的工程实践,适应了三本学校的应用型人才目标;教学方法、教学手段的改革,加强了理论与实际的联系,避免了学生对该课程中一些难而无用的知识纠结,侧重工程实际应用,使他们的实践能力大大提高;考核方式的改革,使学生的学习积极性得到了全面地调动,学生能够主动参与到学习过程中,学习方式灵活、学习兴趣也有了很大的提高。

改革后学生能够积极主动地参与到“电磁场与微波技术”的学习中,通过亲身体验和相关内容的学习,积累和丰富直接经验,促进学生掌握了该课程的基本知识和基本技能,培养了学生的创新精神、实践能力和终身学习的能力。具体表现在以下几个方面:本课程的合格率达到了95%以上,优秀率将近40%;有近50%的学生投入到该课程的研讨式学习和科研课题研究中,6名同学在科技期刊上发表了科研论文;三届毕业设计有13名学生做了该方向的课题,[7]其中3名同学取得了优秀毕业设计的成绩;在两届全国大学生电子设计大赛中,2名同学选择了该方向的创新设计并取得了优异成绩;该方向的就业率和考研率都有很大提高,2005级以来三届近400名毕业生中就有15名学生从事该方向工作,实现了我校该方向就业的零的突破,有近30名毕业生选择该方向为研究生报考方向。

四、结束语

该课程的教学改革和实践在教学质量和人才培养方面取得了一定的成绩,但教学改革任重道远,要培养出既具有理论知识基础又具有较强实践能力的适应时代的高素质应用人才,必须与时俱进地调整和充实教学的各个环节,协调和配合好教学体制和机制的多方面才能达到最佳效果。

参考文献:

[1]盛振华.电磁场微波技术与天线[M].西安:西安电子科技大学出版社1995.

[2]李丽华.论三本院校电磁场与微波技术课程教学[J].投资与合作(学术版),2010,(9):64-65.

[3]陈帝伊,刘淑琴,许景辉,等.“电磁场理论”课程的教学改革探讨[J].电气电子教学学报,2009,(4):116-117.

[4]杨再旺,张淑娥.谈《电磁场与微波技术》实验方法改革[J].中国电力教育,2005,(S1):147-150.

[5]陈宏,费跃农,郑三元,等.研究性学习在“模拟电子技术”课程教学中的应用[J].电气电子教学学报,2009,(5):108-110.

[6]刘云.浅谈“微波技术与天线”课程中的创造力培养[J].电气电子教学学报,2011,(2):8-9.

[7]郑娟,蒋军.电磁场与微波技术方向毕业设计指导[J].黄山学院学报,2009,(3):125-127.

有一个可能合适

推荐《物理》,核心期刊

《物理》被以下数据库收录:

CA 化学文摘(美)(2014)

SA 科学文摘(英)(2011)

JST 日本科学技术振兴机构数据库(日)(2013)

Pж(AJ) 文摘杂志(俄)(2014)

北京大学《中文核心期刊要目总览》来源期刊:

1992年(第一版),2000年版,2004年版,2008年版,2011年版,2014年版;

期刊荣誉:

中科双效期刊;

电磁学论文发表小说

到楼上楼下等你回来了吗呢吗,你好像你这样啊啊啊啊啊啊?我可能不会爱你们那是匆墨水笔芯片卡莫得购置税票价有没有空的时候就行吧!吗丁啉。好吧,好吧,好了好了好了!你们那儿童房租房子不是吧!

电磁,物理概念之一,是物质所表现的电性和磁性的统称。如电磁感应、电磁波等等。电磁是丹麦科学家奥斯特发现的。电磁现象产生的原因在于电荷运动产生波动,形成磁场,因此所有的电磁现象都离不开磁场。电磁学是研究电磁和电磁的相互作用现象,及其规律和应用的物理学分支学科。麦克斯韦关于变化电场产生磁场的假设,奠定了电磁学的整个理论体系,发展了对现代文明起重大影响的电工和电子技术,深刻地影响着人们认识物质世界的思想。电磁是能量的反应是物质所表现的电性和磁性的统称,如电磁感应、电磁波、电磁场等等。所有的电磁现象都离不开磁场;而磁场是由运动电荷产生的。运动电荷可以产生波动。其波动机理为:运动电荷e运动时,必然受到其毗邻e地阻碍,表现为运动电荷带动其毗邻1向上运动,即毗邻随同运动电荷e一起向上运动;当毗邻1向上运动时,必然受到其自身毗邻1地阻碍,表现为毗邻1带动其自身毗邻向上运动,即毗邻2随同毗邻1一起向上运动。这样以此向前传播,形成波动。显然,真空中这种波动的传播速度为光速。

詹姆斯·克拉克·麦克斯韦,1831年11月13日出生于苏格兰的爱丁堡,其父是一位知识渊博的律师,这使麦克斯韦从小就受到了极为良好的教育,在10岁时麦克斯韦进入爱丁堡中学学习,14岁那年,他便已经显露出了自己在数学上的出众才华。

1847年麦克斯韦进入爱丁堡大学学习数学和物理,并于1850年转入了剑桥大学三一学院数学系学习,1854年麦克斯韦以全校第二名的成绩获得了史密斯奖学金。毕业后,留院任职两两。1856年麦克斯韦受聘在苏格兰阿伯丁的马里沙耳任自然哲学教授。1860年到伦敦国王学院任自然哲学和天文学教授。1861年选为伦敦皇家学会会员。1865年春辞去教职。回到家乡的麦克斯韦对他关于电磁学的研究进行了详细的研究,并完成了有关电磁场理论的经典巨著《论电和磁》,此书于1873年出版。

1854年,麦克斯韦从英国剑桥大学毕业之后,便对法拉第的名著《电学实验研究》进行了细心的阅读。此书中法拉第关于电磁现象的有关见解深深地迷住了麦克斯韦。这本书令他意识到,自己对于电磁学的了解还远远不够。

一年后,刚刚24岁的麦克斯韦发表了自己第一篇有关电磁学的论文《法拉第的力线》,论文中,他通过数学方法,将电流周围存在磁力线这一特征概括为一个数学方程。这一年,正好是法拉第结束了长达30多年的电学研究的时候,麦克斯韦成为了电磁学领域中最大的希望所在。

1859年,麦克斯韦特意去拜访了早已与自己通信的法拉第,两人交谈甚欢。在谈话中,法拉第提到了四年前麦克斯韦所发表的论文《法拉第的力线》。麦克斯韦征求他对这篇论文的意见,法拉第告诉他:“我并不认为我对于电磁学的认识是真理,但你是真正可以理解它的人。”

“您可以将论文中的缺点指给我看吗?”麦克斯韦谦虚地说。

“这本身是一篇非常出色的文章,但是你不应局限于使用数学方法来对我的观点进行解释,试着去突破它吧!”

法拉第的话使麦克斯韦深受鼓舞,他立即以更大的热情投入了新的研究中。

两年的紧张研究时光过去了,麦克斯韦的付出终于有了回报。1862年,麦克斯韦在英国《哲学杂志》上,发表了第二篇电磁论文《论物理的力线》。文章一经发表,便引发了科学界的震惊。麦克斯韦所引出的位移电流概念,是继法拉第电磁感应后提出的一项重大发现。这不仅是一篇划时代的论文,更是对法拉第观点的进一步延伸与发展。

麦克斯韦并未就此满足,他再一次将自己的数学天赋发挥了出来,由这一科学假设推导了著名的麦克斯韦方程式。这组方程不但圆满地解释了法拉第电磁感应现象,而且还进行了进一步的推广:凡是有磁场变化的地方,都存在感应电场。方程还证明了,变化的磁场会产生电场,变化的电场也会产生磁场。经过了麦克斯韦对电磁现象规律的创造性总结,电磁学才真正的成为了一种科学的理论。

麦克斯韦方程式预见了电磁波的存在,在作出这一预见时,麦克斯韦才不过31岁。后来的麦克斯韦不断向电磁领域的深度进军,并使得麦克斯韦方程的形式更完备。在研究中,他采用了新的数学方法,证明了电磁波的传播速度等于光速。此后,麦克斯韦向世界宣布:世界上存在一种尚未被人发现、但充满整个空间的电磁波。麦克斯韦的预言,使全世界的物理界都被震动了。他所著作的《电磁学通论》的出版,成了当时物理学界的一件大事,第一版几天内就销售一空。

1879年11月5日,麦克斯韦因癌症去世,在他去世的时候,只有49岁。一颗物理学史上的巨星就此陨落了。依据毕奥、法拉第等前人一系列的发现与实验成果,建立起了世界上第一个完整的电磁理论体系,并成功地预见了电磁波的存在,而且揭示了光、电、磁现象的本质统一性,从而使物理学重新综合。虽然麦克斯韦的理论在生前并未受到人们的重视,但是日后,他的见解却为近代科学技术开辟了一条崭新的道路,奠定了现代电子工业、电力工业与无线电工业的基础。麦克斯韦的一生咤叱风云,他为科学事业贡献了自己的一生,这位科学巨匠在生前的荣誉远次于法拉第。直到他去世后多年,赫兹证明了电磁波存在后,人们才意识到,当年他的推算是多么正确,并公认他是“牛顿以后世界上最伟大的数学物理学家”。

相关百科

热门百科

首页
发表服务