作者 | 张晴丹
你能想象0.2克的“绳子”可以提起5公斤重的物体吗?
没开玩笑,这是科研人员创造出的一种力学性能惊人的新材料。它不但具有很好的拉伸性能,拉伸长度能达600%,而且还非常坚韧。
近日,美国北卡罗来纳州立大学Dickey实验室博士后王美香以第一作者的身份,在Nature Materials上发表论文,介绍了这款新材料。它属于离子液体凝胶的一种,在抗拉伸性能和韧性上创造了这类材料的最高纪录,也展现出比水凝胶更广阔的应用前景。
评审专家之一、麻省理工学院教授赵选贺认为,“这些透明的离子液体凝胶具有非常坚韧的机械性能,而且最大的亮点是制作简单,易于使用。”
1+1 10,凝胶界的“佼佼者”
“通常凝胶的机械性能很弱,比如豆腐。但在自然界中也有例外,比如人体内的软骨。一些研究人员一直在努力制造坚韧的凝胶,这启发了我们。”论文共同通讯作者、北卡罗来纳州立大学Dickey实验室负责人Michael D. Dickey告诉《中国科学报》。
此次创造出的离子液体凝胶含有超过60%的离子液体,主要包含丙烯酸和丙烯酰胺两种物质,前者是用于婴儿尿不湿吸水的主要材料,后者是用于隐形眼镜的主要材料。最后,混合材料兼具了聚丙烯酰胺和聚丙烯酸离子液体凝胶的优点,实现了1+1 10的效果。
王美香介绍,新材料透明度达90%以上,其内部的聚合物网络微结构使凝胶拥有极高的力学性能,可拉伸而且非常坚韧。拉伸的长度能达600%,模量有约50个兆帕,断裂强度约有13个兆帕。这是目前离子液体凝胶界的最高纪录。
论文中展示的是用0.2克的离子液体凝胶材料,轻松提起1公斤重量的物体。事实上提起5公斤的重量也不在话下,但因实验室没有5公斤的标准件,他们后来用5公斤的水桶做了实验,材料本身不会有任何破损。
离子液体这个溶剂本身不挥发,且具有很高的热稳定性和导电性。因此,创造出的这款离子液体凝胶具有广阔的应用前景。“可用于电池、传感器、3D打印、致动器和柔性电子设备等。”Michael D. Dickey说。
可穿戴柔性电子器件是当下科学研究的热门之一,要同时满足可弯折、扭曲、拉伸等需求,所以对材料的要求极高。以往做展示用的较多的是传统柔性材料——水凝胶,但水凝胶稳定性是个大问题,长期暴露在空气中会导致水分蒸发、性能受损。
“离子液体凝胶完全可以替代水凝胶在可穿戴柔性电子器件上的应用。首先它很稳定不挥发,不需要任何包覆;其次具有高导电性,不需要额外添加导电介质;可穿戴设备往往需要大变形,离子液体凝胶还可以用来开发应变传感器。”王美香说,“还有一点,它具有自愈合和形状记忆的特性。”
一步法轻松做成
长期以来,在凝胶材料领域最火的,非水凝胶莫属。
实际上,水凝胶在生活中已相当常见。比如,隐形眼镜、果冻、龟苓膏等都是水凝胶的“产物”。自62年前水凝胶横空出世,科研人员便绞尽脑汁地挖掘其力学性能,涌现了无数重大成果。
但同为凝胶材料,离子液体凝胶领域的研究则发展较慢。例如力学性能研究还是一块空白,很难把它的力学性能做到与高强度水凝胶相媲美的程度。
在这篇论文发表之前,合成高强度离子液体凝胶的方法并不易。为了提高材料的力学性能,一些研究人员采用多步法或者溶剂交换,整个过程耗时长、成本高,而且浪费资源。
挑战不可能,这是科研工作者骨子里的基因,恰好离子液体这个溶剂的“72般变化”也让王美香着迷。
“顾名思义,水凝胶用的溶剂只有一种,就是水,而离子液体凝胶用的溶剂是离子液体,有成千上万种,这正是它的魅力所在。”王美香对《中国科学报》说。离子液体在室温下是一种液态的熔融盐,里面含有正离子和负离子,只要熔融盐里的正负离子不一样,就可以实现离子液体的千变万化。
研究选材是从聚丙烯酸和聚丙烯酰胺的单体开始。
最初,王美香把两种材料分开来做。当把丙烯酰胺融到离子液体后,产生的凝胶跟她预想的完全不一样,不透明、发白,就像晒干的面条一样特别脆,一碰就断。随后她又试了丙烯酸,做出来的凝胶则超级软,透明度达到百分百。
完全就是两种极端!这让她无比兴奋,如果把三者混在一起,会擦出什么样的火花呢?
“把丙烯酰胺和丙烯酸融到离子液体里,再加入引发剂和交联剂,然后混匀,用高功率紫外灯照射,3分钟就能制作出论文中这种新型混合材料。”王美香说,“就是这么简单。”
一步法就这样诞生了!它为离子液体凝胶研究开启了新世界的大门。
为实验蓄能,把理论变为现实
王美香在西安交通大学读博期间,就一直从事水凝胶研究。但她看到了离子液体凝胶材料的巨大潜力,因此萌生了调整研究方向的想法。
2018年12月,王美香从西安交通大学获得材料科学与工程博士学位后,进入北卡罗来纳州立大学Dickey实验室做博士后,主要致力于高机械性能凝胶材料的设计和制备,以及研究其在可穿戴柔性电子器件、全固态电池以及超级电容器、传感器和驱动器等领域的应用。
在新的平台,王美香也顺利转换到新赛道,开始离子液体凝胶材料研究。
但是,王美香刚进入北卡罗来纳州立大学,新冠疫情就来了,一下打乱了研究计划,学校封闭,无法进入实验室。
她便利用这段时间查阅文献,为实验蓄能。在家“闭关”三个月后,终于等来复工的消息。王美香便一头扎进实验里,每天在实验室待八个小时,把实验过程中看到的现象记录下来,晚上回家查资料来分析这些现象的成因。
幸运的是,这项工作从始至终都比较顺利,这篇论文投给期刊也很快被接收。并且,评审专家都对该成果给了很高的评价。
“接下来,我们将会做应用方面的拓展,想把离子液体凝胶与3D打印技术相结合,用于开发新型柔性机器人。”王美香说。
参与这项研究的一共有9位作者,其中华人学者就有4位。除了王美香,另外3位分别是论文共同通讯作者、西安交通大学教授胡建,西安交通大学硕士生张鹏尧,以及美国内布拉斯加州大学林肯分校研究助理教授钱文。
爱因斯坦认为量子力学是不完备的,因为量子力学将概率引进了物理学,就好比你只能预测一件事情发生的概率,却不能像牛顿力学中给出精确而肯定的预测.另一方面Einstein提出了EPR思想实验,这个实验之后被玻姆改进,直接揭露出量子力学中反应出的一种超距(不符合相对论)作用.而玻尔的观点便是量子力学是完备的,只有一个量可以被我们测量时,这个量才是真实的实在的.而量子力学中所抛弃的只存在于经典力学中的量都是在微观世界中测量不到的,既然如此这些概念就是没有意义的,量子力学已经可以很好的解释微观世界并且做出符合实验结果的定量计算.
Experiments now all verify that quantum mechanics is complete and either Einstein or Bohm is wrong.
在均质光滑的水平面上滴落一个液滴,直觉告诉我们液滴将要么静止,要么随机运动。 那么如果液滴是在垂直振动的液体浴表面上,其运动状态应该是怎样的呢?
早在2005年, 法国科学家 A. Boudaoud 发现小液滴可以在以高加速度垂直振动的液体浴上无限弹跳(Phys. Rev. Lett. 94, 177801 (2005).)。如果继续增加该加速度,可以使弹跳液滴在液体表面以恒定的水平速度“行走”, 值得注意的是,这个宏观系统的动力学和统计特征类似于微观量子系统 ,相关成果于2005年发表在 Nature 上(Nature 2005, 437, 208.)。
液滴运动模型帮助理解自旋系统,一篇Nature
在这项工作的基础上, 麻省理工学院 John W. M. Bush教授 课题组 发现弹跳液滴阵列可以模拟自旋系统(粒子的内在角动量),提出了“行走”液滴的流体动力学自旋晶格(HSL)作为一类具有粒子波耦合的主动自旋系统 。作者的这些发现可以增加对基于自旋的电子和计算的自旋系统的了解,并为未来的研究提供了令人兴奋的方向,从有源自旋波动力学到流体动力学模拟计算和基于液滴的拓扑绝缘体。相关研究成果以题为“Emergent order in hydrodynamic spin lattices”的论文发表于最新一期《Nature》上。
【物理模型】
为了帮助大家更好理解典型无序系统中有序现象的出现,首先介绍两个物理模型:(1)振荡器的动态同步(比如当一只萤火虫看到附近的其他萤火虫闪烁时,它会加快或减慢自己的闪烁速度以与相邻的萤火虫同步);(2)自旋模型(在该模型中,自旋排列在晶格上,这些晶格与热浴处于热平衡状态)。
【HSL系统】
作者构筑了HSL系统,其是由一系列同相弹跳液滴组成,每个液滴由一个浸没的圆形井限制并在垂直振动的液体浴的表面上运行(图1a,1b)。作者通过振动力和晶格几何形状的变化,以及通过施加系统旋转来模拟外加磁场的影响,诱导一系列集体“磁”有序现象, 证明了HSL的可调谐性 。
首先,作者通过改变 驱动加速度(γ) 和 相邻井之间流体浴的深度(H) 来调整 自旋-自旋耦合的幅度 (图 1b)。当成对耦合足够强时,最近邻相互作用可能会导致自旋翻转,这种翻转可以促进整个晶格的相干集体动力学。然后作者通过研究自旋数(N)= 20等距井和L/λ F = 3.7 的一维周期性(圆形)HSL(图1a,d-h),验证了HSL可以支持不同类型的集体有序,具体取决于晶格间距(L)和法拉第波长(λ F )之间的比率。从随机的初始自旋配置开始,作者观察到成对相互作用可以触发多次自旋翻转(图1d),导致瞬时磁化强度和自旋-自旋相关性的波动(图1e))。平均磁化强度消失⟨ M ⟩ 0,表明整体的镜像对称性得以保留(图1e)。然而,负的对相关⟨ χ ⟩ < 0表明偏向于局部反铁磁有序(图1g)。保持L /λ F 固定,在非周期性边界条件、不同N值和不同晶格半径R 的实验中出现类似的反铁磁偏置,确认反铁磁有序是由晶格间距选择的。出现的反铁磁有序的强度非单调地取决于驱动幅度γ(图1h)。对于γ γ c 观察到最强的集体反铁磁响应,表明整体集体有序与单个自旋态的鲁棒性之间存在相关性(图1c)。对于反铁磁HSL,作者发现对同相旋转有很大的偏差(图1f),这意味着相干轨道同步和紧急自旋有序之间存在因果关系。
作者为了证明集体自旋动力学如何取决于晶格几何形状,对减小的晶格间距L /λ F = 2.8进行了一维实验(图2a-d)。实验表明晶格几何形状的变化可用于控制局部磁序,但不会导致整体镜像对称性破坏。为了使几何决定HSL中的集体自旋有序和相位同步的方式合理化, 作者从实验系统的详细流体动力学描述中导出了一个通用的相位振荡器模型 (图2e)。具体而言,有两个铁磁相FM 和两个反铁磁相AFM ,分别以优先同相(+)和异相(-)旋转为特征(图2f)。根据L,力参数α和β可以为正或为负,从而产生对应于耦合电位最小值的四个磁相。模型预测与实验数据非常吻合:反铁磁(图1d-f;L = 17.7 mm)和铁磁(图 2a-c;L = 13.2 mm)HSL 实验分别落在预测的AFM + 和FM + 范围内。
据报道,通过施加恒定磁场,反铁磁材料中的自旋可以重新排列成铁磁状态。作者通过以角速度(Ω)绕垂直轴旋转振动浴确定HSL是否可以经历类似的整体对称性破坏。当旋转方向由逆时针变为顺时针时,有效磁化强度(⟨ M ⟩)由正变负。然而向铁磁有序的转变需要超临界转速|Ω| > Ωc 0.22 rad s 1 (图3e)。旋转也会影响成对相位同步:随着自旋动力学由科里奥利力(Coriolis force)主导,相位差变得不相关(图3c)。表征旋转框架中的单自旋动力学揭示了导致场致极化的机制(图3f,g)。
二维经典量子自旋晶格显示了其一维对应物所不具备的特征,包括几何不稳定性和拓扑排序。 HSL为在宏观尺度上 探索 这种影响提供了一个有前途的平台。 例如,在没有旋转的情况下(Ω= 0;图4b,c)促进反铁磁有序的方形 HSL(图4a),随着科里奥利力的增加而发生极化转变(图4e)。此外,补充数据中对较大晶格的模拟证实了方形晶格中集体磁序的出现。
【总结】
John W. M. Bush课题组展示了液滴在垂直振动的液体浴表面上弹跳的行为。由于水下井的存在,浴的深度不同。在一定条件下, 液滴产生逐渐衰减的表面波,使液滴沿着顺时针或逆时针的圆形轨迹运动并以复杂的方式相互作用。 当这些圆形井排列在具有小(毫米级)晶格间距的一维或二维晶格上时,根据晶格形状和尺寸以及实验条件, 液滴自旋的模式可以类似于铁磁性或反铁磁性中的磁自旋排列。
总的来说,液滴阵列可以同步它们的弹跳垂直运动的能力就像萤火虫同步它们的闪光一样,另一方面,液滴自旋可以通过微妙的流体动力学相互作用表现出图案形成和对称性破坏,类似于在磁自旋物理模型。 因此,该系统似乎结合了前面提到的两个物理模型。
--企业减碳--
--科研绘图--
参考文献
论文DOI:
全文速览
金属/氧化物界面对于多相催化具有重要意义,因为看似“惰性”的氧化物载体可以通过界面调节金属催化剂的形貌、原子和电子结构。尽管界面效应在块状氧化物载体上得到了广泛的研究,但对于团簇级纳米系统,仍然缺乏更深入的了解。作者在此证明了由混合 Pd/Bi 2 O 3 簇集合构建的纳米金属/氧化物界面的本征催化作用。该界面可以通过简单的逐步光化学方法制造。作者结合电子显微镜和微量分析阐明了Pd/Bi 2 O 3 簇的杂化结构。其中,Pd-Pd 配位数较小,更重要的是,由于Bi 2 O 3 簇中Bi 端和 Pd 之间的异质接枝,实现了Pd-Bi 空间相关性。纳米金属/氧化物界面与 Pd 之间的簇内电子转移显著削弱了乙烯吸附,且不会影响氢活化。因此,在温度低至 44 C 的加氢过程中,可以实现 91% 的乙烯选择性和 90% 的乙炔转化率。
背景介绍
金属/氧化物界面对多相催化具有重要的基础/实际意义,因为它提出了关于强金属-载体相互作用的基本问题,并在几个催化过程中发挥关键作用。从结构的角度来看,金属/氧化物界面由在化学成分、键合特性、晶格参数以及电气和机械性能方面不同的组分构成,其中粘附结构和化学性质是一个引人注目的研究课题。而从功能的角度来看,金属/氧化物界面处的化学键合和相关的电荷转移可以调节金属的形态、尺寸和电子结构,以优化反应中间体的键合强度从而获得更好的催化性能。在过去的几十年中,在金属/氧化物界面的结构解析和调控方面取得了相当大的进展,这些界面通常采用本体氧化物载体来促进金属的成核、吸附或沉积。此外,纳米金属/氧化物界面,由金属和氧化物簇之间的异质接枝形成,也有希望加强结构和电子效应,以实现更好的催化性能。然而,由于此类杂化簇的化学合成和结构解析面临巨大挑战,因此对纳米金属/氧化物界面的了解有限。
作为经常使用氧化物负载的金属催化剂的代表性反应,乙炔选择性加氢生成乙烯需要在高催化活性和选择性的两个要求之间进行权衡:氢的易活化与乙烯的弱结合。尽管 Pd 基催化剂取得了重大进展,但这两个参数的同时优化仍然具有挑战性,尤其是在 H 2 和 C 2 H 4 大量过量的前端过程中。为了达到这个目标,需要对 Pd 的几何和电子结构进行复杂的调控,这促使人们设计金属/氧化物界面。大多数 Pd/氧化物催化剂,主要为负载 Pd 纳米颗粒或孤立的 Pd 原子。不幸的是,Pd 纳米粒子在低温下可以有效地激活氢气,但它们与乙烯的强结合有利于乙烯连续氢化成乙烷。孤立的 Pd 位点催化剂,包括 Pd 单原子催化剂和 Pd 基金属化合物与乙烯具有弱 π 键,因此在乙炔加氢反应中具有良好的选择性,但它们伴随的氢活化减弱导致需要相对较高的反应温度(> 100 C)才能实现乙炔的高转化率,这可能会导致反应器床的安全问题。将氧化物载体的尺寸减小到纳米团簇尺度将显著改变它们的配位数 (CN)、表面终端和 d 带特征,因此可以通过与 Pd 的强化学和电子相互作用,实现Pd 的尺寸和电子结构调控。其中,由纳米金属/氧化物界面稳定的无配体 Pd 簇有望弥合 Pd 纳米粒子与单原子之间的尺寸和性能差距,并最大限度地发挥界面效应。
图文解析
图 1. Pd 1.0 /Bi 2 O 3 /TiO 2 的微观结构。a 合成过程示意图。b-d Bi 2 O 3 /TiO 2 (b) 和 Pd 1.0 /Bi 2 O 3 /TiO 2 (c, d) 的STEM 图像。从上到下和从左到右的插图分别是投影结构模型、模拟 ADF-STEM 图像、HRSTEM 图像中圆形区域的 FFT 图案以及模拟 ADF-STEM 图像的 FFT图案。 e Pd 1.0 /Bi 2 O 3 /TiO 2 的元素mapping图像。
图 2. Pd 1.0 /Bi 2 O 3 /TiO 2 的表征。a TiO 2 、Pd/TiO 2 、Bi 2 O 3 /TiO 2 和 Pd 1.0 /Bi 2 O 3 /TiO 2 的 XRD 图; b Pd/TiO 2 、Pd 1.0 /Bi 2 O 3 /TiO 2 和氧化Pd 1.0 /Bi 2 O 3 /TiO 2 (Pd 1.0 /Bi 2 O 3 /TiO 2 -ox) 的Pd K-edge EXAFS傅里叶变换光谱;c Bi L 3 -edge EXAFS的傅里叶变换光谱;d Bi 2 O 3 /TiO 2 、Pd 1.0 /Bi 2 O 3 /TiO 2 和Pd 1.0 /Bi 2 O 3 /TiO 2 -ox 的 Bi L 3 -edge XANES 光谱。Bi 和 Bi 2 O 3 粉末用作参考样品。 e Pd/TiO 2 、Pd 1.0 /Bi 2 O 3 /TiO 2 和 Pd 1.0 /Bi 2 O 3 /TiO 2 -ox 的 Pd K-edge XANES 光谱。钯箔用作参考样品。 f 不同样品的 CO 吸附 FT-IR 光谱。
图 3. Pd 1.0 /Bi 2 O 3 /TiO 2 在乙炔加氢中的催化性能。a Pd 1.0 /Bi 2 O 3 /TiO 2 、Pd 0.2 /Bi 2 O 3 /TiO 2 和PdAg 3 /Al 2 O 3 样品的选择性与乙炔转化率的函数关系。 b 乙炔转化率为 95%时,在不同催化剂上 C 2 H 4 的选择性。 c 乙炔转化率为 90%时,反应温度 (T 90 ) 和C 2 H 4 选择性。 对于 Pd 3.0 /Bi 2 O 3 /TiO 2 ,在室温下很容易发生氢解离。非选择性乙炔加氢的强放热效应,最终导致温度失控,达到 63.5 C。d 在 40 C 下,Pd 1.0 /Bi 2 O 3 /TiO 2 上的 C 2 H 2 转化率, C 2 H 4 选择性随时间变化曲线。e Pd/TiO 2 、Bi 2 O 3 /TiO 2 和Pd 1.0 /Bi 2 O 3 /TiO 2 的 H 2 -TPR 曲线。f在 Pd/TiO 2 和 Pd 1.0 /Bi 2 O 3 /TiO 2 上,C 2 H 4 脉冲吸附的微量热研究。
图 4. DFT 计算揭示的反应机理。a 用于 DFT 计算的 Pd 簇结构(Pd:青色,Bi:紫色,O:红色)。b 在 Pd(111) 上,和在 Bi 2 O 3 (100) 上负载的 Pd 8 簇上乙炔加氢生成乙烷的能量分布。 c投射到 Pd(111) 和 Pd 8 簇结构Pd 原子的 d 电子上的态密度。 选择 Pd(111) 的表面 Pd 原子和 Pd 8 簇结构中最活跃的 Pd 原子(C 2 H 4 吸附最强烈)来绘制 DOS。 d 带中心 (ε d ) 的位置用红色方框突出显示。 d C 2 H 4 的 E ads 与 Pd 簇表面不同 Pd 原子的 ε d 的函数关系。 最稳定的吸附结构用实心正方形表示,而其他不太稳定的吸附结构用空心正方形表示。 Pd(111) 的表面 Pd 原子也显示为红色实心方块以供比较。蓝色拟合线表明更小的 ε d 对应于更大的 C 2 H 4 E ads 。
总结与展望
基于上述结果,作者证明了纳米金属/氧化物界面在乙炔选择性加氢中的重要催化作用。Pd-Bi 2 O 3 杂化簇具有小的 Pd-Pd 配位以及簇内电子转移,可以在不影响 H 2 活化活性的情况下实现弱 C 2 H 4 吸附。Pd-Bi 2 O 3 纳米团簇相对于 Pd 单原子和纳米粒子的优异低温催化性能可能为混合纳米团簇的基础研究开辟新的机会。此外,所展示的逐步光化学策略也为制备混合纳米团簇和纳米金属/氧化物界面提供了一条新途径。
天才曹原发了五篇nature。2018年3月5日,《自然》连刊两文报道石墨烯超导重大发现。值得关注的是,本次两篇Nature论文的第一作者、麻省理工学院博士生曹原来自中国。这名中科大少年班的毕业生、美国麻省理工学院的博士生发现:当两层平行石墨烯堆成约1.1°的微妙角度,就会产生神奇的超导效应。这一发现轰动国际学界,直接开辟了凝聚态物理的一块的新领域。有无数学者试图重复、拓展他的研究。2020年5月6日,曹原再次背靠背连发两篇Nature,在魔角石墨烯取得系列新进展。其中一篇Nature,曹原是第一作者兼共同通讯作者;另一篇Nature,曹原为共同第一作者。2021年2月1日,曹原又发《Nature》,这是他发在这家全球顶尖学术期刊上的第5篇论文。
在《自然》上发表文章是非常光荣的,《自然》上的文章会经常会被引用。这有助于晋升、获得资助和获得其它主流媒体的关注。所以科学家们在《自然》或《科学》上发表文章的竞争非常激烈。与其它专业的科学杂志一样,在《自然》上发表的文章需要经过严格的同行评审。在发表前编辑选择其他在同一领域有威望的、与作者无关的科学家来检查和评判文章的内容是否正确有效。作者要对评审做出的提问与质疑给予处理,如更改文章内容,提供更多的试验结果,否则的话编辑可能拒绝该文章,从而不能发表。
而现代科学的发展,基本发端于西方,几百年来西方科学在全球也一直占据着主导地位。像《科学》、《自然》、《细胞》、《柳叶刀》等,全球有影响力的杂志期刊都在西方,而全球一流的科学家也都在西方,包括评判科学发展的评价体系也是由西方提出并打造出来的。科学是同行评价体系,如果一个顶尖的研究脱离了同行的评价体系,其成果和地位就很难在业界认可。
所以说,如果你能在nature上面发表文章的话,说明你在这一领域有非常深的认识,研究和了解,并且能够在这个领域创造属于自己的价值,推动这一领域的研究和发展。
当孤独嘹亮的号声划破晨曦初放的天空,吸满晨光的厚云低低下垂,远处响起呼唤我名字的尖锐声音要我为荣誉奋斗时,我必须一跃而起,独自启程。 ——三岛由纪夫 :午后曳航 这期间我也从北京的西面搬到了离北大比较近的小南庄,成了一个房客。窗外来往的是滚滚的车流,房东是一个经营着数个房客生意老太太,老人家年轻时代经历过抗战, 对日本人苦大仇深,她的兄弟曾经参加过解放战争,现在的不幸是她的女儿患了白血病,想来生活也不容易。这个没有受过什么教育的老太太,就这样挣扎着活到现在,眼睛虽然看不清了,但是性情依然火爆。她养了两只猫和一只狗解闷,我也常常和它们玩,夏天的时候,豆豆(狗的名字)就跑到我的门缝这里趴下,吹吹空调。 而那两只特立独行的猫却和我不甚友好,估计是因为我在,他们不能常常到我的屋子里来趴在床下了。这个时候我的伙食基本就是楼下某个单位的川味盒饭,价廉物美,味道不赖。有的时候也去北大吃饭。重新感受做一个学生的滋味,多少年来,我一直这样热爱着北大,她的四季风物,百花齐放的文化气氛,热闹多彩的学生生活,永远让人怀念。 因为当时想要学习艺术史,我就去旁听朱青生先生的课程,在他的周围的确实团结了一批有志于学,颇有才华的 青年,他们分布在各个科系。所以上这种课,就像一个工作组在钻研一个课题,也是不分南腔北调,百家争鸣。 就我现在所知的(2003/4)有去西北大学学习艺术史的,有去康奈尔学习电影批评的,还有今年要去斯坦福学习语言学的,另有几位也是我非常看好的高手,加上我这个要去学习宗教学的,可见这个小团体真的是精英辈出。 这个时候我认识了S,因为这也涉及她的隐私,所以我也不能细谈,2001年的我真的很投入去恋爱,可是这次的事情太过于极端,越过了很多难以承受的极端,让我幻灭到了准备彻底觉悟的地步,想起在耶鲁最早的日子,一边是沉重压力的功课,一边是无边的悲伤,致使我的肺部都出现了问题,真正地体会到了“痛彻心扉”的滋味。现在想来,我的所谓的“爱情”经历都是悲剧吧,不过只有彻底的悲剧才能让你认真的思考人生的无可避免的无常,体会到生命的痛苦。那是01年的独自度过的寒冬,我出没于宏伟的Sterling图书馆,在十四层的大书库中徘徊,寒假大家都走的时候 ,雪冷风清,我一个人留连于第12层的佛学书架前,我觉得当时是李元松先生的书救了我,他写的那几本书我都一一借走拜读。 但是我借走的时候从不会想过这不仅让我看到了解放的希望,而且转变了我的求学方向,就此走向了佛学和宗教学的海洋,尽管此后有过了近2年多,我才有攻读佛学博士的机会。我同时借回来的还有张澄基的佛学今诠。 飞到美国的那一天首先是在晨光初现的时候看到加州的海岸,然后是洛杉矶机场的等待和飞向黑暗的纽约的旅程。在疲劳中迎接了东部的夜晚,不断的一个个城市组成的巨大光源在飞机下呈现,直到纽约进入视野。那时候正好下雨,我坐在机窗前,看见机翼高速地穿行在夜色的雨雾中。一群人到达耶鲁的时候是凌晨了,随便找了间屋子就睡着了,接下来是繁忙和新鲜的几天,不过夜晚来临的时候, 非常安静,我会听坂本龙一的Forbidden Cloud, 悲伤而又优美的曲子,在遥远的他乡,在悲愤而无处倾诉的心里激起特殊的感觉,这些音乐加上后来不断下载的和平之月的曲子,我这第一年听的都是慷慨悲凉或者宁静悠远的音乐。 耶鲁的生涯其实充满了波折和艰辛,回想起来应该是目前工作量的两年,改变非常大,基本上树立了我的学术方向,极大地锻炼了我的研究能力和学术眼界,可以说是我迈入学术大门的第一步。第一个学期我不知天高地厚,选修了三位名教授的课,History of Traditional China to 1600 (instructor: Prof. Valerie Hansen韩森) 1600年前的中国古代史,Qing and Republican China ( instructor: Prof. Jonathan Spence史景迁) 清朝和民国,Man and Nature in Chinese poetry (instructor: Prof. Chang Sun Kang-i 孙康宜) 中国诗歌中的人与自然。但是我对耶鲁高标准的学术没有什么了解,现在回想起来当时的很多材料应该保留下来。(所有的课程请参看耶鲁和港大的课程)有些课程如果让我重上,我会有更大的收获。这个学期真的非常艰苦,我盼望着冬天的到来,在我最悲痛的时候,我还要为课程而完成paper, Valerie对学生要求非常严格,高我xx届的北大历史系毕业的小薇就曾经在图书馆中因为学习过于用功而昏倒过两次。她的课程视野也颇为新颖,采用了很多考古材料。我被要求重写论文,本来我是比较各朝代的都城,但是最后我只能改写唐宋元的妓女,不过这是我真正地接触各种古典文献的第一步。史景迁这样的教授现在想起来也觉得受益匪浅,他的课程广泛地谈论了各种历史课题,包括八旗,萨满教, 人口和环境问题,清代的鼠疫,民国时期的共产党,上海的妓女问题,思想史的问题等等。这个学期的困难刚才已经阐述,我急切地盼望着寒假的到来,能够安静地看看书,思考一下。这个风雪弥漫的冬天彻底的改变了我的学习方向,我开始进入了佛学的这个领域(Buddhist studies),才渐渐地发现它的广阔依然出乎了我的想象。 第二个学期来临的时候,我一开始选择了四门课,因为我尚没有下定决心学习佛教,所以并没有选择Silk教授的印度佛教(后来在港大读到Silk 教授编的藏英对照的三部大乘经典,回忆起这个细节),Silk 教授后来前往佛学研究最盛的UCLA, 加上它们原来就有的四个教授,使得洛杉矶分校成为全美佛学研究盛的地区。我选的课程包括了禅宗和欧亚大陆的艺术,分别是日本佛学专家Paul Groner和圣彼得堡博物馆的Boris Marshak主讲,特别是Marshak的讲座极具水准,精彩纷呈,涉及到古代近东,中亚,到中国北方的多种文化和语言。这门课在古雅的耶鲁博物馆内的艺术史系的教室里上,我常常在 那城堡一般的走廊里等待上课,看着一楼的大理石雕塑。可是后来我觉得这么多课程的要求太高 ,加之我需要时间思考和学习对自己的精神更有帮助的课程,我就讲这门课转为选修。这时候的心态也使我对美国的学术表示了怀疑(参看给康正果老师的信2002/01/12)。放弃了生物学博士前途的马蒂厄在“和尚与哲学家——佛教与西方思想”这本书中,面对他的父亲让—弗朗索瓦的询问,也同样提出了他对于人文研究的疑惑: “在我成长的环境中,由于你,我遇到一些哲学家、思想家、戏剧家;由于我的母亲,画家雅娜?勒图默兰,我遇到一些艺术家和诗人……例如安德烈?布勒东(Andre Breton);由于我的舅父雅克—伊夫?勒图默兰,我遇到一些的探险者;由于弗朗索瓦?雅科布,我遇到一些来巴斯德学院举行讲座的大学者。我就这样被引导着与很多方面的有慑服力的人物相交往。但是,在同时,他们在自己的学科中显露出的才华并没有必然引起这样一种东西,我们称这种东西是……人的完善(Perfection humaine)。他们的才能、他们的知识和技艺的能力并不因此就使他们成为好的人类存在者。一个伟大的诗人可能是一个;一个伟大的学者,就他自身而言,可能是个不幸的人;一个艺术家,则骄傲自大。所有的或好或坏的结合,都是可能的。” 这个学期我的重头放在禅宗的学习,它真正地开阔了我的眼界,但是其实这时候我在这一领域的知识是严重不够的,我因为没有意识到这一点而在上交的paper上遇到了打击,Groner教授认为这篇文章has no sense of history, 他说我应该系统地学习佛教,我因之而无法得到他的推荐信,当时我迈出他的办公室,往图书馆走去,虽然是个晴朗的日子,却不知道未来该往哪里去。其实现在(两年之后)看起来,当时的水平确实是不够的,也无怪乎教授不满意。这个学期我认真地思考了从艺术史转向佛学研究的问题,这并不是一个容易的决定,而且耶鲁的局面是这两个领域的教授都退休了,我暂时无人可以从学。可是在学期结束的时候,追求解脱道的精神还是激励了我去选择佛学。 这个迷乱的假期有很大的一段时间是在西藏和四川度过,我希望寻找自己的伴侣,却不知道她在那里。国内喧嚣的气氛让很多人都感到茫然,沉下心来想想会觉得生命建立在那些镜花水月的东西上,如同沙造的城堡。第三个学期为了申请的考虑,我准备多多选修语言课程,我一开始选了日语,法文和梵文,后来发现梵文课的主讲是Stanley Insler——伟大的哈佛耶鲁梵学体系的最后一人,我同时要跟上三门课程是不可能的任务,最终选修了法文和日文。这一年的课程是我最累的一年,每个学期四门课,其中包括了天天都要上的语言课,听说读写,一应俱全,还要作申请。很多的时候,在孤独中我忙到凌晨了居然连作业都没做完,有时候听着日语的录音居然就睡着了。 在寒冷的清晨,我必须早起,穿过数个街道,走到如同城堡一般的教室中去,下雪的时候我望着oldcampus的dormitory, 和童话故事中的建筑没有什么两样。这其中我选修的比较有意思的课程是religion and rebellion in East Asia以及Understanding Buddhist sutra, 随着知识的深入,我对于做研究也有了概念,加上自己的经验对于其中的甘苦也更有了解。对一个领域的知识经过不断的量的积累,会终于在某一个阶段达到豁然贯通的理解。
挺难的,本身这个平台并不是任何人都可以随随便便的,一定要是对整个科学研究有了重大贡献才可以。
非常的难。很多人都觉得他作为一个天才,每天的生活一定是充满着光环的,其实天才也有天才的艰辛的。
因为他从小就很聪明,很爱思考,再加上良好的家庭氛围和家庭条件,以及他自身对学习的兴趣和以及对学习的钻研,自然就厉害了
因为他真的拥有很强的天赋,所以的话他能够发出如此多优秀的论文。
Nature 是科学领域内具有重要影响力的期刊之一,以其高水平、严谨的科学论文而著名。发表 Nature 论文的难度较大,以下几点具体阐述:
在《Nature》上发表一篇论文基本上属于大学教授级别(水平)。
《Nature》和《Science》属于顶尖科学杂志,按SCI影响因子算两杂志都有30多分。
《Nature》是世界上历史悠久的、最有名望的科学杂志之一,首版于1869年11月4日。与当今大多数科学论文杂志专一于一个特殊的领域不同,其是少数依然发表来自很多科学领域的一手研究论文的杂志(其它类似的杂志有《科学》和《美国科学院学报》等)。在许多科学研究领域中,很多最重要、最前沿的研究结果都是以短讯的形式发表在《自然》上。
【详细介绍】
《自然》是科学界普遍关注的、国际性、跨学科的周刊类科学杂志。2014年它的影响因子为41.456。
1869年约瑟夫·诺尔曼·洛克耶爵士建立了《自然》,洛克耶是一位天文学家和氦的发现者之一,他也是《自然》的第一位主编,直到1919年卸任。
《自然》每周刊载科学技术各个领域中具有独创性,重要性,以及跨学科的研究,同时也提供快速、权威、有见地的新闻,还有科学界和大众对于科技发展趋势的见解的专题。
《自然》的主要读者是从事研究工作的科学家,但杂志前部的文章概括使得一般公众也能理解杂志内最重要的文章。杂志开始部分的社论、新闻、专题文章报道科学家一般关心的事物,包括最新消息、研究资助、商业情况、科学道德和研究突破等栏目。杂志也介绍与科学研究有关的书籍和艺术。杂志的其余部分主要是研究论文,这些论文往往非常新颖,有很高的科技价值。
在《自然》上发表文章是非常光荣的,《自然》上的文章会经常被引用。这有助于晋升、获得资助和获得其它主流媒体的注意。因此科学家们在《自然》或《科学》上发表文章的竞争很激烈。与其它专业的科学杂志一样,在《自然》上发表的文章需要经过严格的同行评审。在发表前编辑选择其他在同一领域有威望的、但与作者无关的科学家来检查和评判文章的内容。作者要对评审做出的批评给予反应,比如更改文章内容,提供更多的试验结果,否则的话编辑可能拒绝该文章。
《自然》是一份在英国发表的周刊,其出版商为自然出版集团,这个集团属于麦克米伦出版有限公司,而它则属于格奥尔格·冯·霍茨布林克出版集团。《自然》在伦敦、纽约、旧金山、华盛顿哥伦比亚特区、东京、巴黎、慕尼黑和贝辛斯托克设有办公室。自然出版集团还出版其它专业杂志如《自然神经科学》、《自然生物学技术》、《自然方法》、《自然临床实践》、《自然结构和分子生物学》和《自然评论》系列等。
在近年来流行的各种所谓的“高科技”视频中,疏水材料令人印象深刻。在衣服和鞋子上倒一大瓶可乐、酱油,甚至番茄酱,一滴也碰不到。今年可以说是人类历史上非常不平凡的一年。COVID-19引起了全球恐慌。然而,截至今年年底,《自然》杂志发表了十项重大科学发现。其中一项发现在网民中引起了热烈讨论。也就是说,科学研究表明,过度的压力会导致头发变白。
我也读过关于这一点的相关报道。下一步,我会帮你解决的。如果你能穿这样的衣服,那就不实用,更别说酷了。你应该知道,安装x是人类进步的第一生产力;东汉桓公年间,梁毅将军从蜀国得到了一件棉袄。他急忙举行宴会,把所有熟人都叫来了。然后他故意把食物撒在衣服上,“用火洗衣服”,这让每个人都垂头丧气。如果超疏水材料可以用于日常生活,那么向朋友展示x是不可避免的。
很长一段时间以来,许多人都相信压力会使人的头发变白是谣言。这主要是因为我们的头发变白了。许多人认为这是因为我们营养不良。从中医的角度来看,我们头发变白的原因是因为我们的心脏很强壮。然后它上升到大脑,因为黑色很容易吸收热量,所以头发应该变白,这样可以释放热量。但今年的《自然》杂志最终证明,这一切都是谣言。压力真的会让你的头发变白。
但是,既然网络视频已经流传了这么多年,我们为什么不能买一些具有超疏水功能的东西呢?因为这东西根本无法投入实际使用!因此,我们需要了解疏水性的原理。疏水性听起来很棒。事实上,只是你不太懂。我们知道太空中的水会自动聚集成水滴。一杯水可以装满而不会溢出。这是因为表面张力,而表面张力的本质是水的吸引力。哈佛大学的研究人员表示,造成这种现象的主要原因是,在巨大的压力下,我们意识到黑素细胞和干细胞会迅速失效,导致白细胞占主导地位。在这种情况下,我们的头发会失去原来的黑色,但我们也必须在我们的生活中找到这样现象,即如果头发变白,它从根开始。所以在这里你也可以发现头发美白的过程是一个缓慢的代谢过程。我们的黑素细胞继续消失,而白细胞占上风。
2002年11月21日的《自然》杂志封面讲述了大米的故事。中国科学院的冯琦及其同事发表了一篇关于栽培水稻品种水稻4号染色体测序的论文。有3500万个碱基对,占4号染色体的97.3%;对水稻4号染色体所含基因进行了预测和分析,共鉴定出4658个基因;水稻4号染色体的着丝粒序列已完全确定;对水稻亚种间的比较、重复序列和基因簇进行了研究。
这是中国首次完成大基因组中单个染色体的精确测序。2003年1月23日,《自然》杂志的封面刊登了中国科学院徐星等人对“古氏小猛禽”化石的研究成果,证明它是四翼动物,可能会滑翔,代表着飞行进化向活跃的拍打飞行阶段,为鸟类恐龙起源理论提供了新的证据。
2004年3月18日,中国科学院的刘振峰和他的同事成功地确定了菠菜主要采光复合体的分辨率X射线晶体结构,这张照片成为了《自然》杂志的封面。这一结果将人们对光合作用中光能收集和能量转移过程的认识提升到了原子数据的水平。2006年12月14日,中国科学家关于恐龙进化的研究再次出现在《自然》杂志的封面上。
中国科学院古脊椎动物与古人类学研究所的孟进及其同事报道了来自中国内蒙古的中生代新哺乳动物,它将哺乳动物滑翔的历史向前推进了至少7000万年,并进一步证实了中生代哺乳动物在形态上的分化,分类和生活习惯远远超出了我们之前的理解。由于更准确的同位素“年龄”最终确定,北京周口店出土的北京猿人头骨于2009年3月12日登上了《自然》杂志的封面。
杂交水稻,顾氏小盗龙,x射线晶体图,远古翔兽这种哺乳动物,北京猿人的同位素年龄等等。
Nature 是科学领域内具有重要影响力的期刊之一,以其高水平、严谨的科学论文而著名。发表 Nature 论文的难度较大,以下几点具体阐述: