首页

职称论文知识库

首页 职称论文知识库 问题

图像分割论文发表心得

发布时间:

图像分割论文发表心得

图像分割是图像处理与计算机视觉的基本问题之一,是图像处理图像分析的关键步骤。我整理了图像分割技术论文,欢迎阅读!

图像分割技术研究

摘要:图像分割是图像处理与计算机视觉的基本问题之一,是图像处理图像分析的关键步骤。本文介绍了基于阈值的分割方法和图像分割的图像分割性能的评价、应用现状;最后总结出图像分割的发展趋势。

关键词:图像分割、阈值、边缘检测、区域分割

中图分类号: TN957.52 文献标识码: A

1引言

随着图像分割技术研究的深入,其应用日趋广泛。凡属需要对图像目标进行提取、测量的工作都离不开图像分割。图像分割是图像处理、模式识别和人工智能等多个领域中一个十分重要且又十分困难的问题,是计算机视觉技术中首要的、重要的关键步骤。图像分割结果的好坏直接影响对计算机视觉中的图像理解。现有的方法多是为特定应用设计的,有很大的针对性和局限性,到目前为止还不存在一个通用的方法,也不存在一个判断分割是否成功的客观标准。因此,对图像分割的研究目前还缺乏一个统一的理论体系,使得图像分割的研究仍然是一个极富有挑战性的课题。

2图像分割方法

图像分割(Image Segmentation),简单地说就是将一幅数字图像分割成不同的区域,在同一区域内具有在一定的准则下可认为是相同的性质,如灰度、颜色、纹理等。而任何相邻区域之间其性质具有明显的区别。

2.1基于灰度特征的阈值分割方法

阈值分割技术是经典的、流行的图象分割方法之一,它是用一个或几个阈值将图像的灰度级分为几个部分,认为属于同一个部分的像素是同一个物体。

这类方法主要包括以下几种:

(1)单阈值法,用一个全局阈值区分背景和目标。当一幅图像的直方图具有明显的双峰时,选择两峰之间的谷底作为阈值。

(2)双阈值法,用两个阈值区分背景和目标。通过设置两个阈值,以防单阈值设置阈值过高或过低,把目标像素误归为背景像素,或把背景像素误归为目标像素。

(3)多阈值法,当存在照明不均,突发噪声等因素或背景灰度变化较大时,整幅图像不存在合适的单一阈值,单一阈值不能兼顾图像不同区域的具体情况,这时可将图像分块处理,对每一块设一个阈值。

2.2 边缘检测分割法

基于边缘检测技术可以按照处理的顺序分为并行边缘检测和串行边缘检测两大类。常见的边缘检测方法有:差分法、模板匹配法及统计方法等。由于边缘灰度变化规律一般体现为阶梯状或者脉冲状。边缘与差分值的关系可以归纳为两种情况,其一是边缘发生在差分最大值或者最小值处;其二是边缘发生在过零处。

2.3基于区域的分割方法

基于区域的分割方法利用的是图像的空间性质。该方法认为分割出来的某一区域具有相似的性质。常用的方法有区域生长法和区域分裂合并法。该类方法对含有复杂场景或自然景物等先验知识不足的图像进行分割,效果较好。

区域生长方法是把一幅图像分成许多小区域开始的,这些初始的小区域可能是小的邻域甚至是单个像素,在每个区域中,通过计算能反映一个物体内像素一致性的特征,作为区域合并的判断标准。区域合并的第一步是赋给每个区域一组参数,即特征。接下来对相邻区域的所有边界进行考查,如果给定边界两侧的特征值差异明显,那么这个边界很强,反之则弱。强边界允许继续存在,而弱边界被消除,相邻区域被合并。没有可以消除的弱边界时,区域合并过程结束,图像分割也就完成。

2.4结合特定工具的图像分割技术

20世纪80年代末以来,随着一些特殊理论的出现及其成熟,如数学形态学、分形理论、模糊数学、小波分析、模式识别、遗传算法等,大量学者致力于将新的概念、新的方法用于图像分割,有效地改善了分割效果。产生了不少新的分割算法。下面对这些算法做一些简单的概括。

2.4.1基于数学形态学的分割算法

分水岭算法是一种经典的借鉴了数学形态理论的分割方法。该方法中,将一幅图像比为一个具有不同高度值的地形,高灰度值处被认为是山脊,底灰度值处被认为是山谷,将一滴水从任一点流下,它会朝地势底的地方流动,最终聚于某一局部最底点,最后所有的水滴会分聚在不同的吸引盆地,由此,相应的图像就被分割成若干部分。分水岭算法具有运算简单、性能优良,能够较好提取运动对象轮廓、准确得到运动物体边缘的优点。但分割时需要梯度信息,对噪声较敏感。

2.4.2基于模糊数学的分割算法

目前,模糊技术在图像分割中应用的一个显著特点就是它能和现有的许多图像分割方法相结合,形成一系列的集成模糊分割技术,例如模糊聚类、模糊阈值、模糊边缘检测技术等。

这类方法主要有广义模糊算子与模糊阈值法两种分割算法。

(1)广义模糊算子在广义模糊集合的范围内对图像处理,使真正的边缘处于较低灰度级,但还有一些不是边缘的像素点的灰度也在较低灰度级中,虽然算法的计算简明,且边缘细腻,但得到的边缘图会出现断线问题。

(2)模糊阈值法引入灰度图像的模糊数学描述,通过计算图像的模糊熵来选取图像的分割阈值,后用阈值法处理图像得到边界。

2.4.3基于遗传算法的分割方法

此算法是受生物进化论思想提出的一种优化问题的解决方法,它使用参数编码集而不是参数本身,通过模拟进化,以适者生存的策略搜索函数的解空间,它是在点群中而不是在单点进行寻优。遗传算法在求解过程中使用随机转换规则而不是确定性规则来工作,它唯一需要的信息是适应值,通过对群体进行简单的复制、杂交、变异作用完成搜索过程。由于此法能进行能量函数全局最小优化搜索,且可以降低搜索空间维数,降低算法对模板初始位置的敏感,计算时间也大为减少。其缺点是容易收敛于局部最优。

2.4.4基于神经网络分割算法

人工神经网络具有自组织、自学习、自适应的性能和非常强的非线性映射能力,适合解决背景知识不清楚、推理规则不明确和比较复杂的分类问题,因而也适合解决比较复杂的图像分割问题。原则上讲,大部分分割方法都可用 ANN(attificial neural network)实现。ANN 用于分割的研究起步较晚,只有多层前馈NN,多层误差反传(BP)NN,自组织NN,Hopfield NN以及满足约束的NN(CSNN-Const raint Satisfaction Neurat Network)等得到了应用。使用一个多层前向神经网络用于图象分割,输入层神经元的数目取决于输入特征数,而输出层神经元的数目等同于分类的数目。

2.5图像分割中的其他方法

前面介绍了4大类图像分割较常用的方法,有关图像分割方法和文献很多,新方法不断产生,这些方法有的只对特定的情形有效,有的综合了几种方法,放在一起统称为第5类。

(1)标号法(labeling)是一种基于统计学的方法,这种方法将图像欲分割成的几个区域各以一个不同的标号来表示,用一定的方式对图像中的每一个像素赋以标号,标号相同的像素就合并成该标号所代表的区域。

(2)基于Snak模型的分割方法,基于Snake模型的分割是通过对能量函数的动态优化来逼近图像目标的真实轮廓的

(3)纹理分割,由于新的数学工具的引入,纹理分割技术取得了一些进展,张蓬等人将小波分析应用于纹理基元提取。

(4)基于知识的图像分割方法,直接建立在先验知识的基础上,使分割更符合实际图像的特点。该方法的难度在于知识的正确合理的表示与利用。

3图像分割性能的评价

图像分割评价主要有两个方面的内容:一是研究各分割算法在不同情况下的表现,掌握如何选择和控制其参数设置,以适应不同需要。二是分析多个分割算法在分割同一图像时的性能,比较优劣,以便在实际应用中选取合适的算法。分割评价方法分为分析法和实验法两大类。分析法是直接分析分割算法本身的原理及性能,而实验法是通过对测试图像的分割结果来评价算法的。两种方法各有优劣,由于缺乏可靠理论依据,并非所有分割算法都能够通过分析法分析其性能。每种评价方法都是出于某种考虑而提出来的,不同的评价方法只能反映分割算法性能的某一性能。另一方面,每一种分割算法的性能是由多种因素决定的,因此,有可能需要多种准则来综合评价。

4图像分割技术的发展趋势

随着神经网络、遗传算法、统计学理论、小波理论以及分形理论等在图像分割中的广泛应用,图像分割技术呈现出以下的发展趋势:(1)多种特征的融合。(2)多种分割方法的结合。(3)新理论与新方法。

参考文献

[1] [美]RC冈萨雷斯.数字图像处理(第二版)[M].阮秋琦,等译.北京:电子工业出版社,2003

[2] 章毓晋.图像分割[M].北京:科学出版社,2001.

[3] 李弼程,彭天强,彭波等.智能图像处理技术[M].北京:电子工业出版社,2004.

[4] 杨晖,曲秀杰.图像分割方法综述[J].电脑开发与应用。2005,18(3):21-23.

点击下页还有更多>>>图像分割技术论文

在数字图像处理的大部分领域中,图像分割有着广泛的应用,如工业自动化、生产过程控制、在线产品检验、图像编码、文档图像处理、遥感和生物医学图像分析、保安监视,以及军事、体育等方面。在医学图像的处理与分析中,图像分割对于人们身体中发生病变的器官的三维显示或者对病变位置的确定与分析都起着有效地辅导作用;在对路面交通情况的分析应用中,可用图像分割技术从监控或航拍等模糊复杂背景中分出要提取的目标车辆;遥感图像分割在军事领域的应用也非常广泛,如战略战术的侦查、军事海洋领域的测绘等,高分辨率的遥感图像分割数据可以为自然灾况的监测与评估、地图的绘制与更新、森林资源及环境的监测与管理、农产品的长势的检测与产量估计、城乡的建设与规划、海岸区域的环境的监测、考古和旅游资源的开发等提供详细的地面信息,目标房屋、道路的分割在城市建设、土地规划中都扮演着不可或缺的角色,在实现数据转化为信息过程中,遥感图像的分割都起着非常重要的作用。

图像处理的很多任务都离不开图像分割。因为图像分割在cv中实在太重要(有用)了,就先把图像分割的常用算法做个总结。         接触机器学习和深度学习时间已经不短了。期间看过各种相关知识但从未总结过。本文过后我会尽可能详细的从工程角度来总结,从传统机器学习算法,传统计算机视觉库算法到深度学习目前常用算法和论文,以及模型在各平台的转化,量化,服务化部署等相关知识总结。         图像分割常用算法大致分为下面几类。由于图像的能量范函,边缘追踪等方法的效果往往只能解决特定问题,效果并不理想,这里不再阐述。当然二值化本身也可以分割一些简单图像的。但是二值化算法较多,我会专门做一个文章来总结。这里不再赘述。         1.基于边缘的图像分割算法:             有利用图像梯度的传统算法算子的sobel,roberts,prewitt,拉普拉斯以及canny等。             这些算法的基本思想都是采用合适的卷积算子,对图像做卷积。从而求出图像对应的梯度图像。(至于为什么通过如图1这样的算子卷积,即可得到图像的梯度图像,请读者复习下卷积和倒数的概念自行推导)由于图像的边缘处往往是图像像素差异较大,梯度较大地方。因此我们通过合适的卷积核得到图像的梯度图像,即得到了图像的边缘图像。至于二阶算子的推导,与一阶类似。优点:传统算子梯度检测,只需要用合适的卷积核做卷积,即可快速得出对应的边缘图像。缺点:图像边缘不一定准确,复杂图像的梯度不仅仅出现在图像边缘,可以能出现在图像内部的色彩和纹理上。              也有基于深度学习方法hed,rcf等。由于这类网络都有同一个比较严重的缺陷,这里只举例hed网络。hed是基于FCN和VGG改进,同时引出6个loss进行优化训练,通过多个层输出不同scale的粒度的边缘,然后通过一个训练权重融合各个层的边缘结果。hed网络结构如下: 可以得到一个比较完整的梯度图像,可参考github的hed实现。优点:图像的梯度细节和边缘完整性,相比传统的边缘算子要好很多。但是hed对于边缘的图像内部的边缘并不能很好的区分。当然我们可以自行更改loss来尝试只拟合外部的图像边缘。但最致命的问题在于,基于vgg的hed的网络表达能力有限,对于图像和背景接近,或者图像和背景部分相融的图片,hed似乎就有点无能为力了。         2.基于区域分割的算法:             区域分割比较常用的如传统的算法结合遗传算法,区域生长算法,区域分裂合并,分水岭算法等。这里传统算法的思路是比较简单易懂的,如果有无法理解的地方,欢迎大家一起讨论学习。这里不再做过多的分析。             基于区域和语意的深度学习分割算法,是目前图像分割成果较多和研究的主要方向。例如FCN系列的全卷积网络,以及经典的医学图像分割常用的unet系列,以及rcnn系列发展下的maskrcnn,以及18年底的PAnet。基于语意的图像分割技术,无疑会成为图像分割技术的主流。             其中,基于深度学习语意的其他相关算法也可以间接或直接的应用到图像分割。如经典的图像matting问题。18年又出现了许多非常优秀的算法和论文。如Deep-Image-Matting,以及效果非常优秀的MIT的 semantic soft segmentation(sss).             基于语意的图像分割效果明显要好于其他的传统算法。我在解决图像分割的问题时,首先尝试用了hed网络。最后的效果并不理想。虽然也参考github,做了hed的一些fine-tune,但是还是上面提到的原因,在我多次尝试后,最终放弃。转而适用FCN系列的网络。但是fcn也无法解决图像和背景相融的问题。图片相融的分割,感觉即需要大的感受野,又需要未相融部分原图像细节,所以单原FCN的网络,很难做出准确的分割。中间还测试过很多其他相关的网络,但都效果不佳。考虑到感受野和原图像细节,尝试了resnet和densenet作为图像特征提取的底层。最终我测试了unet系列的网络:                 unet的原始模型如图所示。在自己拍照爬虫等手段采集了将近1000张图片。去掉了图片质量太差的,图片内容太过类似的。爬虫最终收集160多张,自己拍照收集200张图片后,又用ps手动p了边缘图像,采用图像增强变换,大约有300*24张图片。原生unet网络的表现比较一般。在将unet普通的卷积层改为resnet后,网络的表达能力明显提升。在将resnet改为resnet101,此时,即使对于部分相融的图像,也能较好的分割了。但是unet的模型体积已经不能接受。                 在最后阶段,看到maskrcnn的实例分割。maskrcnn一路由rcnn,fasterrcnn发展过来。于是用maskrcnn来加入自己的训练数据和label图像进行训练。maskrcnn的结果表现并不令人满意,对于边缘的定位,相比于其他算法,略显粗糙。在产品应用中,明显还不合适。                         3.基于图的分割算法             基于深度学习的deepgrab,效果表现并不是十分理想。deepgrab的git作者backbone采用了deeplabv2的网络结构。并没有完全安装原论文来做。 论文原地址参考: 整体结构类似于encode和decoder。并没有太仔细的研究,因为基于resent101的结构,在模型体积,速度以及deeplab的分割精度上,都不能满足当前的需求。之前大致总结过计算机视觉的相关知识点,既然目前在讨论移动端模型,那后面就分模块总结下移动端模型的应用落地吧。 由于时间实在有限。这里并没有针对每个算法进行详细的讲解。后续我会从基础的机器学习算法开始总结。

图像分割快速发表论文

知乎meta发布图像分割论文segment anything,将给 cv 研究带来的影响如下:

Segment Anything是Meta AI发布的一种新的AI模型,它可以用一次点击就把任何图像中的任何物体“剪切”出来。Segment Anything Model (SAM)是一种可提示的分割系统,它可以零样本泛化到不熟悉的物体和图像,而不需要额外的训练。

这种模型会给计算机视觉领域的研究带来很大的影响,因为它可以解决很多实际的问题,比如科学图像分析、图片编辑、三维重建等。

它也可以和其他的AI系统灵活地结合,比如利用用户的眼动或者物体检测器来选择要分割的物体。它还可以生成多个有效的掩码,以应对模糊的提示。

利用了模型当做迭代训练中的“数据引擎”,通过使用Segment Anything Model (SAM)和它的数据来交互地标注图片和更新模型。

这个迭代重复了很多次,以提高模型和数据集的质量。在约1100万张有许可和保护隐私的图片上收集了超过10亿个掩码,这是目前最大的分割数据集(远远超过之前的数据集)。

图像分割是图像处理与计算机视觉的基本问题之一,是图像处理图像分析的关键步骤。我整理了图像分割技术论文,欢迎阅读!

图像分割技术研究

摘要:图像分割是图像处理与计算机视觉的基本问题之一,是图像处理图像分析的关键步骤。本文介绍了基于阈值的分割方法和图像分割的图像分割性能的评价、应用现状;最后总结出图像分割的发展趋势。

关键词:图像分割、阈值、边缘检测、区域分割

中图分类号: TN957.52 文献标识码: A

1引言

随着图像分割技术研究的深入,其应用日趋广泛。凡属需要对图像目标进行提取、测量的工作都离不开图像分割。图像分割是图像处理、模式识别和人工智能等多个领域中一个十分重要且又十分困难的问题,是计算机视觉技术中首要的、重要的关键步骤。图像分割结果的好坏直接影响对计算机视觉中的图像理解。现有的方法多是为特定应用设计的,有很大的针对性和局限性,到目前为止还不存在一个通用的方法,也不存在一个判断分割是否成功的客观标准。因此,对图像分割的研究目前还缺乏一个统一的理论体系,使得图像分割的研究仍然是一个极富有挑战性的课题。

2图像分割方法

图像分割(Image Segmentation),简单地说就是将一幅数字图像分割成不同的区域,在同一区域内具有在一定的准则下可认为是相同的性质,如灰度、颜色、纹理等。而任何相邻区域之间其性质具有明显的区别。

2.1基于灰度特征的阈值分割方法

阈值分割技术是经典的、流行的图象分割方法之一,它是用一个或几个阈值将图像的灰度级分为几个部分,认为属于同一个部分的像素是同一个物体。

这类方法主要包括以下几种:

(1)单阈值法,用一个全局阈值区分背景和目标。当一幅图像的直方图具有明显的双峰时,选择两峰之间的谷底作为阈值。

(2)双阈值法,用两个阈值区分背景和目标。通过设置两个阈值,以防单阈值设置阈值过高或过低,把目标像素误归为背景像素,或把背景像素误归为目标像素。

(3)多阈值法,当存在照明不均,突发噪声等因素或背景灰度变化较大时,整幅图像不存在合适的单一阈值,单一阈值不能兼顾图像不同区域的具体情况,这时可将图像分块处理,对每一块设一个阈值。

2.2 边缘检测分割法

基于边缘检测技术可以按照处理的顺序分为并行边缘检测和串行边缘检测两大类。常见的边缘检测方法有:差分法、模板匹配法及统计方法等。由于边缘灰度变化规律一般体现为阶梯状或者脉冲状。边缘与差分值的关系可以归纳为两种情况,其一是边缘发生在差分最大值或者最小值处;其二是边缘发生在过零处。

2.3基于区域的分割方法

基于区域的分割方法利用的是图像的空间性质。该方法认为分割出来的某一区域具有相似的性质。常用的方法有区域生长法和区域分裂合并法。该类方法对含有复杂场景或自然景物等先验知识不足的图像进行分割,效果较好。

区域生长方法是把一幅图像分成许多小区域开始的,这些初始的小区域可能是小的邻域甚至是单个像素,在每个区域中,通过计算能反映一个物体内像素一致性的特征,作为区域合并的判断标准。区域合并的第一步是赋给每个区域一组参数,即特征。接下来对相邻区域的所有边界进行考查,如果给定边界两侧的特征值差异明显,那么这个边界很强,反之则弱。强边界允许继续存在,而弱边界被消除,相邻区域被合并。没有可以消除的弱边界时,区域合并过程结束,图像分割也就完成。

2.4结合特定工具的图像分割技术

20世纪80年代末以来,随着一些特殊理论的出现及其成熟,如数学形态学、分形理论、模糊数学、小波分析、模式识别、遗传算法等,大量学者致力于将新的概念、新的方法用于图像分割,有效地改善了分割效果。产生了不少新的分割算法。下面对这些算法做一些简单的概括。

2.4.1基于数学形态学的分割算法

分水岭算法是一种经典的借鉴了数学形态理论的分割方法。该方法中,将一幅图像比为一个具有不同高度值的地形,高灰度值处被认为是山脊,底灰度值处被认为是山谷,将一滴水从任一点流下,它会朝地势底的地方流动,最终聚于某一局部最底点,最后所有的水滴会分聚在不同的吸引盆地,由此,相应的图像就被分割成若干部分。分水岭算法具有运算简单、性能优良,能够较好提取运动对象轮廓、准确得到运动物体边缘的优点。但分割时需要梯度信息,对噪声较敏感。

2.4.2基于模糊数学的分割算法

目前,模糊技术在图像分割中应用的一个显著特点就是它能和现有的许多图像分割方法相结合,形成一系列的集成模糊分割技术,例如模糊聚类、模糊阈值、模糊边缘检测技术等。

这类方法主要有广义模糊算子与模糊阈值法两种分割算法。

(1)广义模糊算子在广义模糊集合的范围内对图像处理,使真正的边缘处于较低灰度级,但还有一些不是边缘的像素点的灰度也在较低灰度级中,虽然算法的计算简明,且边缘细腻,但得到的边缘图会出现断线问题。

(2)模糊阈值法引入灰度图像的模糊数学描述,通过计算图像的模糊熵来选取图像的分割阈值,后用阈值法处理图像得到边界。

2.4.3基于遗传算法的分割方法

此算法是受生物进化论思想提出的一种优化问题的解决方法,它使用参数编码集而不是参数本身,通过模拟进化,以适者生存的策略搜索函数的解空间,它是在点群中而不是在单点进行寻优。遗传算法在求解过程中使用随机转换规则而不是确定性规则来工作,它唯一需要的信息是适应值,通过对群体进行简单的复制、杂交、变异作用完成搜索过程。由于此法能进行能量函数全局最小优化搜索,且可以降低搜索空间维数,降低算法对模板初始位置的敏感,计算时间也大为减少。其缺点是容易收敛于局部最优。

2.4.4基于神经网络分割算法

人工神经网络具有自组织、自学习、自适应的性能和非常强的非线性映射能力,适合解决背景知识不清楚、推理规则不明确和比较复杂的分类问题,因而也适合解决比较复杂的图像分割问题。原则上讲,大部分分割方法都可用 ANN(attificial neural network)实现。ANN 用于分割的研究起步较晚,只有多层前馈NN,多层误差反传(BP)NN,自组织NN,Hopfield NN以及满足约束的NN(CSNN-Const raint Satisfaction Neurat Network)等得到了应用。使用一个多层前向神经网络用于图象分割,输入层神经元的数目取决于输入特征数,而输出层神经元的数目等同于分类的数目。

2.5图像分割中的其他方法

前面介绍了4大类图像分割较常用的方法,有关图像分割方法和文献很多,新方法不断产生,这些方法有的只对特定的情形有效,有的综合了几种方法,放在一起统称为第5类。

(1)标号法(labeling)是一种基于统计学的方法,这种方法将图像欲分割成的几个区域各以一个不同的标号来表示,用一定的方式对图像中的每一个像素赋以标号,标号相同的像素就合并成该标号所代表的区域。

(2)基于Snak模型的分割方法,基于Snake模型的分割是通过对能量函数的动态优化来逼近图像目标的真实轮廓的

(3)纹理分割,由于新的数学工具的引入,纹理分割技术取得了一些进展,张蓬等人将小波分析应用于纹理基元提取。

(4)基于知识的图像分割方法,直接建立在先验知识的基础上,使分割更符合实际图像的特点。该方法的难度在于知识的正确合理的表示与利用。

3图像分割性能的评价

图像分割评价主要有两个方面的内容:一是研究各分割算法在不同情况下的表现,掌握如何选择和控制其参数设置,以适应不同需要。二是分析多个分割算法在分割同一图像时的性能,比较优劣,以便在实际应用中选取合适的算法。分割评价方法分为分析法和实验法两大类。分析法是直接分析分割算法本身的原理及性能,而实验法是通过对测试图像的分割结果来评价算法的。两种方法各有优劣,由于缺乏可靠理论依据,并非所有分割算法都能够通过分析法分析其性能。每种评价方法都是出于某种考虑而提出来的,不同的评价方法只能反映分割算法性能的某一性能。另一方面,每一种分割算法的性能是由多种因素决定的,因此,有可能需要多种准则来综合评价。

4图像分割技术的发展趋势

随着神经网络、遗传算法、统计学理论、小波理论以及分形理论等在图像分割中的广泛应用,图像分割技术呈现出以下的发展趋势:(1)多种特征的融合。(2)多种分割方法的结合。(3)新理论与新方法。

参考文献

[1] [美]RC冈萨雷斯.数字图像处理(第二版)[M].阮秋琦,等译.北京:电子工业出版社,2003

[2] 章毓晋.图像分割[M].北京:科学出版社,2001.

[3] 李弼程,彭天强,彭波等.智能图像处理技术[M].北京:电子工业出版社,2004.

[4] 杨晖,曲秀杰.图像分割方法综述[J].电脑开发与应用。2005,18(3):21-23.

点击下页还有更多>>>图像分割技术论文

如何快速发表期刊论文?在工作中需要升级评定职称的时候,职称论文就派上用场了,这个是可以给你加分的,是一项评定的重要标准,然而很多人忙于工作与研究,对撰写论文和投稿方面十分经验不足,给大家总结一下如何快速发表职称论文,希望对大家有帮助。1、搜集曾经撰写的相关论文、报告或方案。 评职称的论文一般发表在国家级期刊即可,当然,若能够发表在核心期刊上会更好。在前期,要整理自己曾经撰写的系列论文、报告或方案,选择其中价值和水平比较好的,做好发表论文的准备。2、选择正规期刊。 根据自己撰写的论文质量,可相应的选择相应的期刊。期刊名称目录可以从中国知网、新闻出版总署和百度中进行搜索,尽量选择论文题材和期刊性质对应的进行发表。3、确定好期刊后咨询发表的要求等信息。 发表论文要按照选择的期刊规定进行,比如怎么投稿、字数多少范围多少钱(一般按照书的页数计算)、多长时间能够录用、什么时候发刊、是否能够在中国知网、龙源期刊网、万方期刊等上面查到自己的论文信息等。已做好有针对性的准备,防止多次折腾,耽误时间。4、开始投稿。 一般论文的投稿主要分为网上投稿和快递投稿,网上投稿可通过其期刊社官网制定方式进行投稿,或者是按照其制定的邮箱进行投稿。快递投稿即将所写论文打印出来直接邮递至期刊社。只要按照其规定的要求完成投稿即可。

图像分割好发表论文吗

很抱歉,我是小学毕业的老糟头子。视频、图像处理,涉及领域非常广阔,任何一个应用,都可以写出无数篇有价值的论文。比如CT图像的电脑判读,比如润滑油的色度检测,比如违章人脸识别,比如人脸图像的历史年轮,视频特效,图像特效等等。至于自然语言,不知道你想说啥。计算机领域没有自然语言,只有程序语言。程序语言不外乎是C、Delphi,外加VB。如果你更专,那就必须会汇编语言。不管什么语言,必须能控制硬件、数据库、媒体文件、HTML5等等。但无论如何不要碰python,那是庞氏。搞程序,随便完成一个课题,都可以用代码来实现课题中的程序控制部分,写论文也很容易。其实不管选图像、视频处理,还是程序语言,关键是你得选择一个适合自己的课题,用你的计算机技术来完成这个课题,那就是论文了。

可以学术研究的人都知道一个著名的短语Publish or perish。就是说,研究人员发表文章是硬道理,只有快速而持续在某些专业领域发表自己的研究成果才能在学术界占领高地,并且让自己走得更远。而无论大家如何评价学术论文发表对科学和社会的贡献,学术圈实质上的游戏规则一直没有太大改变:对研究人员来说发表论文是硬通货,是他们获得职位、争取资源、赢得荣誉的重要途经和手段。目前杂志数量爆发式增长,研究人员在发表论文的时候自然有了更多的选择,但同时也给学术的评估带来了不小的麻烦,于是乎评估人员只好依赖于期刊的质量指标来评定研究质量。比如汤普森的影响因子就是为了将这个复杂而微妙的判定简化为一个数字,当然这也是目前业内使用广泛的指标。理论上影响因子似乎是期刊所发表研究的质量,但这一假设目前却越来越受到质疑。学术圈的人都深切体会到一篇文章能否在某个期刊终发表出来,除了科学质量方面的因素外还有其他一些很重要的因素。比如我们一直在告诫学生,一篇稿件在写作风格上、突出重点上和表达上些微的差别就可能影响杂志的接收情况。那么,这究竟只是老道的论文作者的感觉,还是不同期刊上文章的表达真的存在着这样那样的差别呢?如果这些差别真的存在,那么是否就表明影响因子真的与科学质量以外的东西有关呢,而作者是否可以通过改善一些相对简单的写作技巧,以此来提高他们在高影响因子期刊上发表论文的机会呢?在竞争激烈的学术圈中,年轻的研究人员和学生们必须尽可能地发表更多的论文,也希望大限度地争取在好的刊物上发表文章的机会,那么我们应该怎么做呢?美国南伊利诺斯大学的Brady Neiles及其同事在近一期的Bulletin of the Ecological Society of America上撰文分析了不同影响因子期刊中发表的论文,他指出:在竞争激烈的环境下,作者如果要让他们的稿件脱颖而出,改善写作的风格可能是一个有效的手段。而有力的科学写作手段也可看作是某种程度的推销和讲故事,作者必须找到如何创造性地讲故事并清晰地表达这些发现的重要性。

2022年计算机视觉图像分割好发文章图像分割的返回格式称为掩码:与原始图像大小相同的图像,但是对于每个像素,它只有一个布尔值来指示对象是否存在。

医学影像分割论文可以在nature上发表。nature上目前也有很多影像相关的文章,医学影响分割的论文可以在上面发表。

深度学习图像分割发表论文

深度学习论文投稿需要提供实验数据。论文是需要实验数据作为基础的,论文的一切实验数据都必须是真实的,否则没有意义。

一般来说,在提交深度学习相关的论文时,需要提供实验数据来支持你的研究成果。这些实验数据可以是你在进行实验时所使用的数据集,也可以是你手动构建的数据集。这些数据通常被用来验证你的算法是否有效,并且可以被其他研究人员复现你的实验结果。因此,在提交深度学习相关论文时,需要准备足够的实验数据来支持你的研究成果。

把自己的研究方向改为计算机视觉,并在该方向取得了一定的成绩。在研究计算机视觉方面,我取得了一定的成绩,主要是参与了一些科研项目,并发表了一些论文,例如《基于深度学习的图像分类》、《基于深度学习的目标检测》等。此外,我还参加了一些国际会议,如CVPR、ECCV等,并发表了相关的论文。此外,我还参与了一些开源项目,如TensorFlow、PyTorch等,并发表了一些相关的论文。最后,我还参与了一些科研项目,如基于深度学习的图像分割、基于深度学习的图像识别等,取得了一定的成绩。

可以学术研究的人都知道一个著名的短语Publish or perish。就是说,研究人员发表文章是硬道理,只有快速而持续在某些专业领域发表自己的研究成果才能在学术界占领高地,并且让自己走得更远。而无论大家如何评价学术论文发表对科学和社会的贡献,学术圈实质上的游戏规则一直没有太大改变:对研究人员来说发表论文是硬通货,是他们获得职位、争取资源、赢得荣誉的重要途经和手段。目前杂志数量爆发式增长,研究人员在发表论文的时候自然有了更多的选择,但同时也给学术的评估带来了不小的麻烦,于是乎评估人员只好依赖于期刊的质量指标来评定研究质量。比如汤普森的影响因子就是为了将这个复杂而微妙的判定简化为一个数字,当然这也是目前业内使用广泛的指标。理论上影响因子似乎是期刊所发表研究的质量,但这一假设目前却越来越受到质疑。学术圈的人都深切体会到一篇文章能否在某个期刊终发表出来,除了科学质量方面的因素外还有其他一些很重要的因素。比如我们一直在告诫学生,一篇稿件在写作风格上、突出重点上和表达上些微的差别就可能影响杂志的接收情况。那么,这究竟只是老道的论文作者的感觉,还是不同期刊上文章的表达真的存在着这样那样的差别呢?如果这些差别真的存在,那么是否就表明影响因子真的与科学质量以外的东西有关呢,而作者是否可以通过改善一些相对简单的写作技巧,以此来提高他们在高影响因子期刊上发表论文的机会呢?在竞争激烈的学术圈中,年轻的研究人员和学生们必须尽可能地发表更多的论文,也希望大限度地争取在好的刊物上发表文章的机会,那么我们应该怎么做呢?美国南伊利诺斯大学的Brady Neiles及其同事在近一期的Bulletin of the Ecological Society of America上撰文分析了不同影响因子期刊中发表的论文,他指出:在竞争激烈的环境下,作者如果要让他们的稿件脱颖而出,改善写作的风格可能是一个有效的手段。而有力的科学写作手段也可看作是某种程度的推销和讲故事,作者必须找到如何创造性地讲故事并清晰地表达这些发现的重要性。

发表图像分类相关论文

SDNET: MULTI-BRANCH FOR SINGLE IMAGE DERAINING USING SWIN 最近,流行的transformer具有全局计算特性,可以进一步促进图像去雨任务的发展。本文首次将Swim-transformer引入图像去雨领域,研究了Swim-transformer在图像去雨领域的性能和潜力。具体来说,我们对Swim-transformer的基本模块进行了改进,设计了一个三分支模型来实现单幅图像的去雨。前者实现了基本的雨型特征提取,而后者融合不同的特征进一步提取和处理图像特征。此外,我们还采用jump connection来融合深层特征和浅层特征。实验表明,现有的公共数据集存在图像重复和背景相对均匀的问题。因此,我们提出了一个新的数据集Rain3000来验证我们的模型。 Transformer[28]最初是自然语言处理(NLP)领域的一个模型,用于并行处理单词向量,以加速模型推理。它的全局计算特性适用于远距离传递特征。这正是计算机视觉领域中卷积运算所不擅长的。Dosovitskiy等人[29]将图像分割成16x16个图像块,将不同的图像块作为不同的词输入到transformer中,提高了图像分类的精度。近年来,人们从深度[30]、多尺度[31]等角度应用transformer来完成相关任务。然而,Transformer也有不可忽视的缺点,例如计算量与图像大小之间存在二次关系,这限制了它的应用环境。Liu等人[32]提出的Swin-transformer使用滑动窗口使模型具有线性计算复杂度,通过跨窗口连接改善了窗口间的信息交换,最终提高了模型在图像分类、目标检测和实例分割等方面的性能。 本文提出了一种新的图像去雨网络SDNet,它是利用Swim-transformer强大的特征表示能力构建的端到端去雨网络。具体地说,我们改进了Swim-transformer的基本模块,重新设计了一个双分支模型,实现了单图像去雨。前者实现了基本的雨型特征提取,后者融合了不同分支的特征。此外,我们采用jump connection来融合深度特征和浅层特征,以提高网络模型的性能。 本文贡献如下: 最近有大量的研究工作将transformer引入CV域,并取得了良好的效果。具体来说,Dosovitskiy等人[29]将图像分成16X16个图像块,然后将其拉伸成一维向量,然后送入网络中完成图像分类任务。Chen等人[38]提出了一种基于卷积运算的transformer与Unet相结合的TransUnet方法,实现医学图像的分割。蒋等[39]设计了与对抗生成网络结构相同的图像生成transformer。transformer中的self-attention导致模型计算直线增长,导致transformer不能在低计算能力的硬件上运行。Liu[32]提出了一种利用滑动窗口方法使网络计算线性增长并加速网络推理的方法。我们的方法是基于这种方法来实现一个单一的图像去雨任务的融合特征。 本文的方法是基于这种方法[32]来实现一个单一的图像去雨任务,融合不同分支的特征、深度特征和浅层特征。 Transformer是一个功能强大的网络模块,可以取代CNN操作。但其中的Muti-Head Attention导致模型的计算量迅速增加,导致transformer模型无法在许多底层硬件中测试和使用,注意力的数学表达式如下:本文使用一个简单而强大的前馈网络作为主干,如图2所示。SDnet网络基本上由三个多分支融合模块组成,称为MSwt,一个多分支模块MSwt-m和两个基本block模块。此外,还增加了跳转连接,目的是融合深特征和浅特征,以提高网络去雨的性能。为了更灵活地构建网络,提出了Basic-block的概念,并设计了两个三分支特征融合块。如图4和图5所示,与后者相比,前者有一个用于融合特征的附加基本块。数学表达式如下: 其中F(·)表示基本块的操作。x表示模块Mswt的输入。这种设计的思想来源于自我注意中的多头注意机制。通过学习F1、F2、F3,可以自适应地学习不同的特征。将输入映射到不同的子空间,分别提取不同的特征。与自我注意不同的是,我们对提取的特征求和,而不是级联操作。通过F4融合增加的特征,实现进一步的特征提取。由于设计思想来源于多头注意机制,多分支具有与该机制相同的特点,即在一定范围内,分支越多,模型性能越好。为了平衡模型的规模和模型的性能,我们选择了三个分支进行特征提取。 虽然transformer可以保持特征在长距离传播,但是仍然需要在网络中结合深特征和浅特征,为此我们设计了一个没有特征融合的Mswt模块,我们称之为Mswt-m,如图5所示,其数学表达式如下: F1、F2、F3将输入映射到三个不同的空间进行特征提取,对提取的特征求和,然后与第二个Mswt模块的输出求和,再经过一个基本块,实现深度特征和浅层特征的融合,如图2中的小跳跃连接所示,而图2中相对较长的跳跃连接则考虑了主要特征中包含的丰富的空间和纹理信息,有助于完成深度特征中缺失的纹理信息。 其中,O为雨图像,B为对应标签。是绝对差(SAD)之和,用于计算相似预测图像和标签之间的像素损失,如等式6所示。SSIM(结构相似性)是结构相似性,最初用作评估两个图像内容的结构相似性的度量。Ren等人[41]证明了SSIM作为损失函数在图像降额任务中的有效性的负面作用,其数学表达式如等式7所示。尽管使用该损失函数可以获得高SSIM度量,但图像仍然存在失真和低峰值信噪比(PSNR)。identity loss(等式8)由CycleGAN[42]导出,CycleGAN[42]用于约束生成图像的颜色丢失,这里我们使用它来约束图像去雨后的图像样式,这减少了图像失真,提高了网络性能。α , β , λ 是SAD损失、SSIM损失和identity loss的系数。在本文中,分别设置为0.2、4和1。 实验使用Tesla V100 16G GPU进行训练,使用Pytorch框架1.7.0和(Adam)[43],初始学习率为5× 10−4,减少到5× 10−5和5× 10−6当训练迭代次数分别为总迭代次数的3/5和4/5时。输入模型的图像大小设置为231×231. batch size为5。 我们提出了一个全新的数据集用于网络训练和消融实验。该数据集是从ImageNet中随机抽取的10万幅图像,保证了图像的多样性。从Efficientderain[12]降雨模式数据集中随机选择一到四种降雨模式,并添加到选定的图像中。我们最终选择了3000张合成图像作为训练集,400张作为测试集。我们把这个数据集命名为Rain3000。此外,我们还使用公开的数据集Rain100L和Rain100H[44]来验证SDnet模型。两个公开的数据集都包含1800个训练图像和200个测试图像。 使用SSIM和PSNR作为评价指标,这两种指标已被广泛用于评价预测图像的质量。PSNR是根据两幅图像之间的像素误差来计算的,误差越小,值越大,图像越相似,除雨效果越好。相反,图像去雨的效果越差 首先,本文提出了一种基于Swin-transformer的三分支端到端除雨网络,它充分利用了Swin-transformer强大的学习能力,用一种改进的Swin-transformer代替卷积运算,并设计了一个多分支模块来融合不同空间域的信息,使用跳转连接来融合深特征和浅特征。此外,我们提出了一个新的数据集,由3000个训练对和400个测试对组成。该数据集是基于ImageNet生成的,具有丰富的背景和雨型组合,便于模型的推广。我们提出的模型在数据集Rain3000和公共数据集Rain100L、Rain100H上都达到了最佳性能。我们的工作还有些不足。例如,在参数数目相同的情况下,哪种方法更适合于并行或串行的图像去噪任务还没有详细探讨。以及是否可以使用多个不同大小的滑动窗口来实现窗口间的进一步信息交换,以提高网络降容的性能。此外,我们正在使用更简单的前馈网络,更复杂的网络仍然值得研究

随着图像处理技术的迅速发展,图像识别技术的应用领域越来越广泛。我整理了图像识别技术论文,欢迎阅读!

图像识别技术研究综述

摘要:随着图像处理技术的迅速发展,图像识别技术的应用领域越来越广泛。图像识别是利用计算机对图像进行处理、分析和理解,由于图像在成像时受到外部环境的影响,使得图像具有特殊性,复杂性。基于图像处理技术进一步探讨图像识别技术及其应用前景。

关键词:图像处理;图像识别;成像

中图分类号:TP391 文献标识码:A 文章编号:1009-3044(2013)10-2446-02

图像是客观景物在人脑中形成的影像,是人类最重要的信息源,它是通过各种观测系统从客观世界中获得,具有直观性和易理解性。随着计算机技术、多媒体技术、人工智能技术的迅速发展,图像处理技术的应用也越来越广泛,并在科学研究、教育管理、医疗卫生、军事等领域已取得的一定的成绩。图像处理正显著地改变着人们的生活方式和生产手段,比如人们可以借助于图像处理技术欣赏月球的景色、交通管理中的车牌照识别系统、机器人领域中的计算机视觉等,在这些应用中,都离不开图像处理和识别技术。图像处理是指用计算机对图像进行处理,着重强调图像与图像之间进行的交换,主要目标是对图像进行加工以改善图像的视觉效果并为后期的图像识别大基础[1]。图像识别是利用计算机对图像进行处理、分析和理解,以识别各种不同模式的目标和对像的技术。但是由于获取的图像本事具有复杂性和特殊性,使得图像处理和识别技术成为研究热点。

1 图像处理技术

图像处理(image processing)利用计算机对图像进行分析,以达到所需的结果。图像处理可分为模拟图像处理和数字图像图像处理,而图像处理一般指数字图像处理。这种处理大多数是依赖于软件实现的。其目的是去除干扰、噪声,将原始图像编程适于计算机进行特征提取的形式,主要包括图像采样、图像增强、图像复原、图像编码与压缩和图像分割。

1)图像采集,图像采集是数字图像数据提取的主要方式。数字图像主要借助于数字摄像机、扫描仪、数码相机等设备经过采样数字化得到的图像,也包括一些动态图像,并可以将其转为数字图像,和文字、图形、声音一起存储在计算机内,显示在计算机的屏幕上。图像的提取是将一个图像变换为适合计算机处理的形式的第一步。

2)图像增强,图像在成像、采集、传输、复制等过程中图像的质量或多或少会造成一定的退化,数字化后的图像视觉效果不是十分满意。为了突出图像中感兴趣的部分,使图像的主体结构更加明确,必须对图像进行改善,即图像增强。通过图像增强,以减少图像中的图像的噪声,改变原来图像的亮度、色彩分布、对比度等参数。图像增强提高了图像的清晰度、图像的质量,使图像中的物体的轮廓更加清晰,细节更加明显。图像增强不考虑图像降质的原因,增强后的图像更加赏欣悦目,为后期的图像分析和图像理解奠定基础。

3)图像复原,图像复原也称图像恢复,由于在获取图像时环境噪声的影响、运动造成的图像模糊、光线的强弱等原因使得图像模糊,为了提取比较清晰的图像需要对图像进行恢复,图像恢复主要采用滤波方法,从降质的图像恢复原始图。图像复原的另一种特殊技术是图像重建,该技术是从物体横剖面的一组投影数据建立图像。

4)图像编码与压缩,数字图像的显著特点是数据量庞大,需要占用相当大的存储空间。但基于计算机的网络带宽和的大容量存储器无法进行数据图像的处理、存储、传输。为了能快速方便地在网络环境下传输图像或视频,那么必须对图像进行编码和压缩。目前,图像压缩编码已形成国际标准,如比较著名的静态图像压缩标准JPEG,该标准主要针对图像的分辨率、彩色图像和灰度图像,适用于网络传输的数码相片、彩色照片等方面。由于视频可以被看作是一幅幅不同的但有紧密相关的静态图像的时间序列,因此动态视频的单帧图像压缩可以应用静态图像的压缩标准。图像编码压缩技术可以减少图像的冗余数据量和存储器容量、提高图像传输速度、缩短处理时间。

5)图像分割技术,图像分割是把图像分成一些互不重叠而又具有各自特征的子区域,每一区域是像素的一个连续集,这里的特性可以是图像的颜色、形状、灰度和纹理等。图像分割根据目标与背景的先验知识将图像表示为物理上有意义的连通区域的集合。即对图像中的目标、背景进行标记、定位,然后把目标从背景中分离出来。目前,图像分割的方法主要有基于区域特征的分割方法、基于相关匹配的分割方法和基于边界特征的分割方法[2]。由于采集图像时会受到各种条件的影响会是图像变的模糊、噪声干扰,使得图像分割是会遇到困难。在实际的图像中需根据景物条件的不同选择适合的图像分割方法。图像分割为进一步的图像识别、分析和理解奠定了基础。

2 图像识别技术

图像识别是通过存储的信息(记忆中存储的信息)与当前的信息(当时进入感官的信息)进行比较实现对图像的识别[3]。前提是图像描述,描述是用数字或者符号表示图像或景物中各个目标的相关特征,甚至目标之间的关系,最终得到的是目标特征以及它们之间的关系的抽象表达。图像识别技术对图像中个性特征进行提取时,可以采用模板匹配模型。在某些具体的应用中,图像识别除了要给出被识别对象是什么物体外,还需要给出物体所处的位置和姿态以引导计算初工作。目前,图像识别技术已广泛应用于多个领域,如生物医学、卫星遥感、机器人视觉、货物检测、目标跟踪、自主车导航、公安、银行、交通、军事、电子商务和多媒体网络通信等。主要识别技术有:

2.1 指纹识别

指纹识别是生物识别技术中一种最实用、最可靠和价格便宜的识别手段,主要应用于身份验证。指纹识别是生物特征的一个部分,它具有不变性:一个人的指纹是终身不变的;唯一性:几乎没有两个完全相同的指纹[3]。一个指纹识别系统主要由指纹取像、预处理与特征提取、比对、数据库管理组成。目前,指纹识别技术与我们的现实生活紧密相关,如信用卡、医疗卡、考勤卡、储蓄卡、驾驶证、准考证等。

2.2 人脸识别 目前大多数人脸识别系统使用可见光或红外图像进行人脸识别,可见光图像识别性能很容易受到光照变化的影响。在户外光照条件不均匀的情况下,其正确识别率会大大降低。而红外图像进行人脸识别时可以克服昏暗光照条件变化影响,但由于红外线不能穿透玻璃,如果待识别的对象戴有眼镜,那么在图像识别时,眼部信息全部丢失,将严重影响人脸识别的性能[4]。

2.3 文字识别

文字识别是将模式识别、文字处理、人工智能集与一体的新技术,可以自动地把文字和其他信息分离出来,通过智能识别后输入计算机,用于代替人工的输入。文字识别技术可以将纸质的文档转换为电子文档,如银行票据、文稿、各类公式和符号等自动录入,可以提供文字的处理效率,有助于查询、修改、保存和传播。文字识别方法主要有结构统计模式识别、结构模式识别和人工神经网络[5]。由于文字的数量庞大、结构复杂、字体字形变化多样,使得文字识别技术的研究遇到一定的阻碍。

3 结束语

人类在识别现实世界中的各种事物或复杂的环境是一件轻而易举的事,但对于计算机来讲进行复杂的图像识别是非常困难的[6]。在环境较为简单的情况下,图像识别技术取得了一定的成功,但在复杂的环境下,仍面临着许多问题:如在图像识别过程中的图像分割算法之间的性能优越性比较没有特定的标准,以及算法本身存在一定的局限性,这使得图像识别的最终结果不十分精确等。

参考文献:

[1] 胡爱明,周孝宽.车牌图像的快速匹配识别方法[J].计算机工程与应用,2003,39(7):90—91.

[2] 胡学龙.数字图像处理[M].北京:电子工业出版社,2011.

[3] 范立南,韩晓微,张广渊.图像处理与模式识别[M].北京:科学出版社,2007.

[4] 晓慧,刘志镜.基于脸部和步态特征融合的身份识别[J].计算机应用,2009,1(29):8.

[5] 陈良育,曾振柄,张问银.基于图形理解的汉子构型自动分析系统[J].计算机应用,2005,25(7):1629-1631.

[6] Sanderson C,Paliwal K K.Information Fusion and Person Verification Using Speech & Face Information[C].IDIAP-RR 02-33,Martigny,Swizerland,2002.

点击下页还有更多>>>图像识别技术论文

自己很早就看到过这篇论文了,论文中的工作和我的一个项目也是有很多共通之处,但是自己实力不够也没有想法去把它们全部总结下来,只能在此膜拜一下大佬。 自从2012年AlexNet在图像分类任务上大放异彩后,深度卷积神经网络已经成为图像分类任务上最有效的方法,在ImageNet上的准确率也从62.5%提升至82.7%。然而这些提升不仅仅是网络结构上的改进,还有很多训练策略上的改进,如损失函数、数据预处理、优化方法等,但是这些改进的关注度却非常低,有些重要的tricks甚至只能在源码中找到。本论文总结了一个技巧大礼包,通过和baseline对比,评估这些技巧的有效性。同样的,关于这些技巧的结论也适用于其他计算机视觉任务,比如目标检测、语义分割、实例分割等等。 baseline的训练方法主要是参考Resnet的训练过程。 近些年来,硬件(GPU)上发展迅速,所以在权衡性能上的选择也发生了改变。现在在训练时会去选择使用低数值精度和更大的batch size。 对于同样个数的epoch,大的batch_size效果不如小的batch_size。可以用以下启发式方法来解决这个问题 通常神经网络都是用32位浮点型(FP32)精度训练,也就是说所有参数的存储和运算都是用FP32。然而当前的新硬件支持更低精度的数据类型。比如V100用FP32能提供14TFLOPS,但是用FP16能提供100TFLOPS。在V100上从FP32切换到FP16后,整体训练速度加快了2到3倍。(本人不太了解混合精度训练,论文里也只是简单提了几句,大概看了一下百度的那篇混合精度论文,有误的话请指正) 尽管使用FP16可以大大加快训练速度,但是有些梯度在FP16范围之外,如果用FP16进行更新,梯度都会是0,无法正常训练。所以这里主要有两个方法: 模型调整是对网络体系结构的微小调整,例如改变特定卷积层的步幅。这种调整通常几乎不会改变计算复杂性,但可能对模型精度产生不可忽略的影响。在本节中,我们将使用ResNet作为示例来研究模型调整的影响。 ResNet由一个输入主干,后续的四个阶段和一个输出层组成。 ResNet有两个流行的调整,在这里我们分别成为ResNet-B和ResNet-C,我们也提出了一个新的模型调整,ResNet-D。 使用第三节提到的BS=1024,精度为FP16的ResNet50进行实验。ResNet50和ResNet50-D的浮点数计算成本差异在15%内,在训练过程中,ResNet50-D仅仅只慢了3%,精度提升了1%。我自己也大概计算了一下将用3个3x3替代一个7x7增加的FLOPs。(不包含bias,BN,ReLu等计算)本节进一步介绍提高模型精度的四种训练策略的改进。 在训练过程中,学习率是一个至关重要的参数,在使用warm up后,我们通常会随着训练进程,逐步降低学习率。广泛使用的策略是学习率指数衰减。在ResNet中是每30轮降低0.1,称之为step decay;在Inception中是每两轮降低0.94。另一种策略是2016年提出的学习率余弦衰减。简化版本是通过余弦函数将学习速率从初始值降低到0。从上图可以看出,起初余弦衰减的学习率缓慢下降,在中间部分几乎是线性下降,在最后又缓慢下降。(但是似乎准确率没有提升,而且也没有加速收敛,只是验证准确率曲线更加平滑) 图像分类网络的最后一层通常是全连接层。由 表示 类的预测得分,可以通过 算子对这些得分进行归一化得到预测概率。总共有 类, 类的概率 可以通过以下公式计算:另外,如果图像的真实标签是 ,我们可以得到分布 : 负交叉熵计算(论文中此处公式有误): 通过训练,使得 两个分布越来越接近。损失计算也可以转换为下式: 所以最优解是 ,同时保持其他值很小。换句话说,这样做也鼓励输出的分数有显著区别,从而可能导致过拟合(通过softmax学到的模型太自信了)。 标签平滑的想法首先被提出用于训练Inception-v2,它改变了真实概率 的分布: 其中 是一个常数,所以最后的解为: 其中 可以是任意实数。这样可以调整全连接层的输出,得到更好的泛化能力。 在知识蒸馏中,我们使用教师模型来帮助训练当前模型,这被称为学生模型。教师模型通常是具有更高准确度的预训练模型,因此通过模仿,学生模型能够在保持模型复杂性相同的同时提高其自身的准确性。一个例子是使用ResNet-152作为教师模型来帮助培训ResNet-50。 在训练期间,我们添加蒸馏损失来惩罚教师模型的Softmax出书和学生模型之间的差异。给定输入,假设 是真实概率分布,并且 分别是学生模型和教师模型最后全连接层的输出。我们之前是使用负交叉熵损失 来衡量 之间的差异。加上只是蒸馏后,其损失函数变为:2017年提出的mixup。每次随机选两个样本作为一个样本对 ,然后通过这一个样本对,生成一个新的样本:这里作者没有提及采用mix up后损失函数计算方法的改变,我补充一下: 知乎的讨论---如何评价mixup: BEYOND EMPIRICAL RISK MINIMIZATION? 我们设置 用于标签平滑,使用 用于知识蒸馏,对于ResNet152-D模型,同时使用余弦学习率衰减和标签平滑作为教师网络。在mix up 中,我们在Beta分布中选择 ,并且将训练轮数由120增加到200,因为mix up要求使用更多的轮数才能够更好的收敛。当我们同时使用mix up 和知识蒸馏时,教师网络也会使用mix up进行训练。 知识蒸馏在ResNet上运行良好,但是它在Inception-V3和MobileNet上运行不佳。我们的解释是,教师模型不是来自学生的同一个家庭,因此在预测中有不同的分布,并对模型带来负面影响。 迁移学习是图像分类模型的一个主要用途,我们在选择了两个重要的计算机视觉任务:物体检测和语义分割,通过改变基本模型来评估他们的性能。 我们分别使用VOC 2007 trainval和VOC 2012 trainval的联合集进行培训,并使用VOC 2007测试进行评估。我们在这个数据集上训练了Faster-RCNN,其中包括来自Detectron的改进,例如线性warm up 和 long training schedul。将Faster-RCNN的基础网络替换,保持其他设置相同,因此收益仅来自于模型。ImageNet上精度为79.29%的最佳基础模型在VOC上的最佳mAP为81.33%,优于标准模型4% 我们使用完全卷积网络FCN在ADE20K 数据集上训练模型,在Stage3和Stage4中使用扩张卷积。与我们在物体检测上的结果相矛盾,余弦学习速率表有效地提高了FCN性能,而其他改进则没有效果。对该现象的潜在解释是语义分割在像素级别中预测。虽然使用标签平滑,蒸馏和mix up 的模型有利于软化标签,但模糊的像素级信息可能会降低精度。 在本文中,我们调查了十几个技巧,以训练深度卷积神经网络,以提高模型的准确性。这些技巧为模型架构,数据预处理,损失函数和学习速率进行了微小的修改。我们在ResNet-50,Inception-V3和MobileNet上的实证结果表明,这些技巧可以始终如一地提高模型精度。更令人兴奋的是,将所有这些堆叠在一起可以显着提高准确性。此外,这些改进的预训练模型在转移学习中显示出强大的优势,这改善了对象检测和语义分割。我们相信,这种优势可以扩展到更广泛的领域。 作者总结了一大堆技巧,并且对于这些技巧都做了足够的实验,可以将其作为一本指导手册,帮助自己在以后训练网络的过程中少踩坑。其中每一个tricks在本文中也只是简单交代,想要了解更多的细节还需要去找相关论文继续深入。

相关百科

热门百科

首页
发表服务