首页

职称论文知识库

首页 职称论文知识库 问题

韩春雨又要发表科研论文

发布时间:

韩春雨又要发表科研论文

韩春雨在预印本网站BioRxiv上发表了一篇关于基因编辑的新文章:Background free tracking of single RNA in living cells using catalytically inactive CasE。

文章共有5名作者,依次为Feng Gao, Yue Sun, Feng Jiang, Xiaoyue Bai, Chunyu Han,工作单位均为河北科技大学基因编辑研究中心。其中,韩春雨为通讯作者。

据了解,论文中提到的CasE是Ⅰ-E型 CRISPR复合物的核心成分,它通过结合特定的茎环区域单独处理pre-crRNA,称之为 CasE Binding S,简称为CBS。CasE保守His20参与催化活性,ΔHis26-TtCse3突变的CasE(dCasE)则失去了催化活性,但仍然与其靶标紧密结合。

在该研究中,通过将 split 荧光与dCasE的N端和C-末端(ΔHis20)融合,构建了活体RNA跟踪工具VN-dCasE-VC。该系统仅在存在靶RNA时才发出荧光,从而增强信噪比。

在活细胞中进行可视化的RNA追踪,不需要特定的亚细胞分布。CasE-GFP和dCasE-GFP在HEK293T细胞中的高水平表达和均匀分布表明CasE和dCasE适合于活细胞中的RNA操作。

为了测试CasE在哺乳动物细胞中表达时是否具有强活性,作者构建了“关闭”报告基因质粒CBS-GFP-N1。它由5′-UTR中的GFP mRNA和CasE结合位点(CBS)组成。当CasE被引入系统时,GFP表达水平急剧下降。

同时,为了进一步测试CasE活性,作者还构建了“开启”报告基因质粒RED-16×CBS-Lin28-C1,其中CBS插入RED单体基因的3′-UTR区和Lin28的上游。Lin28是RNA核保留信号,在其3′-UTR中具有lin28信号的RED单体mRNA几乎不能翻译成蛋白质。

CBS-CasE依赖限制性切断lin28信号并从核释放靶mRNA用于翻译(图1E和图1F)。这些表明CasE可以结合并切割哺乳动物细胞中的CBS。

另外,为了将dCasE-CBS相互作用设计到RNA追踪系统中,作者通过将split-FP5-7与dCasE蛋白结合。发现一个版本,即VN-dCasE-VC很难发出荧光,这可能是由于不正确的折叠或不稳定的状态,但是当与靶RNA(CBS)结合时,可以在荧光显微镜下清楚地捕获荧光信号,即使VN-dCasE-VC表达质粒的转染剂量非常低。

接下来,作者使用VN-dCasE-VC系统追踪哺乳动物细胞中过表达的β-肌动蛋白(β-Actin)的mRNA,VN-dCasE-VC系统在细胞质中显示出强荧光。此外还观察到,向靶mRNA添加更多CBS可改善信号,荧光追踪更清晰,因此,可以通过增加CBS的数量来检测低丰度的mRNA。

总的来说,韩春雨团队发明了一种新的RNA追踪工具,将其命名为VN-dCasE-VC,该系统能够追踪活细胞中没有背景的特定RNA,通过荧光将其可视化。

目前已有两种活细胞RNA追踪成像工具,一种是MS2,一种是Cas13a,韩春雨团队开发的dCasE系统,成像效果由于MS2,而且,dCasE蛋白的分子量为22kDa,远小于Cas13a的130kDa,dCasE的小分子量更容易递送至细胞内,因此更适合用于活细胞的RNA追踪。

韩春雨在这个平台上发布的论文已经引发了广泛的关注,这个平台是专门用来发布各种类别的论文的,是一个非常好的平台。

新的论文发表了关于DNA荧光追踪技术,发现了新的组成、排列,灵敏性、特异性、遗传性这些都是韩春雨发表的新论文看到的信息。

韩春雨组发表高分论文,开发出新型RNA追踪平台,该平台有何优势?下面就我们来针对这个问题进行一番探讨,希望这些内容能够帮到有需要的朋友们。

能够看见活细胞RNA的成像。如今的我们日常生活标准好啦,比较之下拥有非常大的提升,无论是生活品质层面或是别的的层面都会有非常大的提高。与此同时,伴随着中国智能科技得这般快发生了越来越多的新科技产品就例如。韩春雨组发布高分数毕业论文,开发设计出新式RNA追踪平台,该平台有什么优点?这问题引发了社会发展上很多人的关心,她们对于此事有不一样的观点下边,我便来给大家说一说,自己的观点。

大家我们都知道这一开发设计出新式的RNA追踪平台,他是能够看见活细胞RNA的成像那样,无论是针对咱们的生物技术或是病理学层面的科学研究都是有非常大的协助。大家我们都知道假如生病了以后都必须到医院做好查验,假如由于技术性层面的菊香,导致查验不出来,或是十分伤心的一件事情。

我们大家周了解,如今大家国家存有着二种活细胞,RNA追踪成像专用工具,那麼又新上市了一种,针对大家国家的生物技术或是有特别大的协助在这儿,我坚信韩春雨的精英团队也是通过了十分多的艰辛,我越过了许多的艰难才拥有今日的造就。这个故事也告知大家,在日常生活中一定要不畏艰难的去勤奋去拼搏,那样才会出现非常大的取得成功,假如面对困难就舍弃,真的是不太好的个人行为。

自然发生了这一平台以后会给社会生活产生特别大的啊,协助啊,我们可以根据这一平台追踪RNA的主题活动征兆,搜索的工费月经血是特别便捷了一件事情,与此同时大家国家的研发人员也在每时每刻地为大家国家的技术性开展产品研发在这儿或是特别感谢她们的估算便是我本人的意见和建议了,期待大伙儿可以仔细认真地看一看,针对各位而言协助或是十分大呢?

韩春雨又发表了论文

他时隔6年再次发表新的论文开启了 RNA追踪技术,能够追踪人体中的细胞,开启了荧光追踪平台,具有极高的灵敏度和特异性,而且已经经过了同行之间的验证。

韩春雨在这个平台上发布的论文已经引发了广泛的关注,这个平台是专门用来发布各种类别的论文的,是一个非常好的平台。

韩春雨组发表高分论文,开发出新型RNA追踪平台,该平台有何优势?下面就我们来针对这个问题进行一番探讨,希望这些内容能够帮到有需要的朋友们。

能够看见活细胞RNA的成像。如今的我们日常生活标准好啦,比较之下拥有非常大的提升,无论是生活品质层面或是别的的层面都会有非常大的提高。与此同时,伴随着中国智能科技得这般快发生了越来越多的新科技产品就例如。韩春雨组发布高分数毕业论文,开发设计出新式RNA追踪平台,该平台有什么优点?这问题引发了社会发展上很多人的关心,她们对于此事有不一样的观点下边,我便来给大家说一说,自己的观点。

大家我们都知道这一开发设计出新式的RNA追踪平台,他是能够看见活细胞RNA的成像那样,无论是针对咱们的生物技术或是病理学层面的科学研究都是有非常大的协助。大家我们都知道假如生病了以后都必须到医院做好查验,假如由于技术性层面的菊香,导致查验不出来,或是十分伤心的一件事情。

我们大家周了解,如今大家国家存有着二种活细胞,RNA追踪成像专用工具,那麼又新上市了一种,针对大家国家的生物技术或是有特别大的协助在这儿,我坚信韩春雨的精英团队也是通过了十分多的艰辛,我越过了许多的艰难才拥有今日的造就。这个故事也告知大家,在日常生活中一定要不畏艰难的去勤奋去拼搏,那样才会出现非常大的取得成功,假如面对困难就舍弃,真的是不太好的个人行为。

自然发生了这一平台以后会给社会生活产生特别大的啊,协助啊,我们可以根据这一平台追踪RNA的主题活动征兆,搜索的工费月经血是特别便捷了一件事情,与此同时大家国家的研发人员也在每时每刻地为大家国家的技术性开展产品研发在这儿或是特别感谢她们的估算便是我本人的意见和建议了,期待大伙儿可以仔细认真地看一看,针对各位而言协助或是十分大呢?

这里面有很多的一些数据都被传到专家,而且也能够让人知道一些具体的东西,同时也会更加的有效,经济的效果也是更好的。

韩春雨发表科研论文

这篇论文中所值得关注的就是将有一种新的技术将被进行研发,这些技术就是基于cas6的rna荧光追踪技术,从中可以看出这是一个非常强大的生物科学技术,并且这项技术目前已经经过了一定的实验,正处于新技术的研发过程中,但是从中也可以看出,目前并没有突破性的研究。

文中表示发布出了基于CS6的RNA荧光追踪技术,韩春雨他本人的科研能力是非常强的只要他的想法是正确的方向,通过不断的研究努力,一定能够得到真正可以借鉴的实验成果。

韩春雨,男,1974年1月11日出生于河北石家庄,中国协和医科大学理学博士。

现任河北科技大学生物科学与工程学院生命科学系副教授,硕士研究生导师。

韩春雨事件是韩春雨在顶级学术杂志发表了论文,后面实验结果因为无法重复被质疑,韩春雨主动撤回论文,接受调查的一些列事件:

2016年5月2日,韩春雨作为通讯作者在国际顶级期刊《自然·生物技术》(Nature Biotechnology)杂志上发表了一篇研究成果,即发明了一种新的基因编辑技术——NgAgo-gDNA,向已有的最时兴技术CRISPR-Cas9发起了挑战。

论文发表后,在国内外引发强烈关注,甚至被部分媒体誉为“诺奖级”实验成果。但此后不久,该论文内容就陷入争论:有人提出韩春雨的试验无法重复,有人说可以重复,彼此争论不休、难有定论。

2017年1月19日,《自然-生物技术》发布最新声明指出,该期刊已获得有关韩春雨实验可重复性的新数据,需要调查研究这些数据。

2017年8月3日,《自然-生物技术》发布声明称,韩春雨团队主动申请撤回其于2016年5月2日发表在该期刊的论文

2018年8月31日晚,河北科技大学公布韩春雨团队撤稿论文的调查处理结果称,未发现韩春雨团队有主观造假情况。

扩展资料:

根据论文,实验由不同实验室研究人员独立操作,但实验结果均未证明NgAgo具有任何基因组编辑活性。黄志伟告诉记者,他的实验室也重复很多次,但一直没发现“切割”效果,没得到预想结果。

此外,论文还对韩春雨此前声明的论文结果重现需要“卓越的实验技能”,以及重复实验未果,可能因为NgAgo的活性对培养物中的支原体或细菌非常敏感等言论提出质疑。

论文写道,不论是最初发布的步骤,还是后来在全球科学家质粒共享非盈利组织Addgene网站上更新的信息,似乎都不涉及任何似乎需要“卓越的实验技能”的步骤。

同时提出,不可能所有的独立实验室的细胞都被污染,导致一致阴性结果。

这篇论文结尾处,学者提到,希望韩春雨能够澄清NgAgo的不确定性,并能够提供重复实验结果所需要的细节。

参考资料:百度百科-韩春雨

韩春雨在预印本网站BioRxiv上发表了一篇关于基因编辑的新文章:Background free tracking of single RNA in living cells using catalytically inactive CasE。

文章共有5名作者,依次为Feng Gao, Yue Sun, Feng Jiang, Xiaoyue Bai, Chunyu Han,工作单位均为河北科技大学基因编辑研究中心。其中,韩春雨为通讯作者。

据了解,论文中提到的CasE是Ⅰ-E型 CRISPR复合物的核心成分,它通过结合特定的茎环区域单独处理pre-crRNA,称之为 CasE Binding S,简称为CBS。CasE保守His20参与催化活性,ΔHis26-TtCse3突变的CasE(dCasE)则失去了催化活性,但仍然与其靶标紧密结合。

在该研究中,通过将 split 荧光与dCasE的N端和C-末端(ΔHis20)融合,构建了活体RNA跟踪工具VN-dCasE-VC。该系统仅在存在靶RNA时才发出荧光,从而增强信噪比。

在活细胞中进行可视化的RNA追踪,不需要特定的亚细胞分布。CasE-GFP和dCasE-GFP在HEK293T细胞中的高水平表达和均匀分布表明CasE和dCasE适合于活细胞中的RNA操作。

为了测试CasE在哺乳动物细胞中表达时是否具有强活性,作者构建了“关闭”报告基因质粒CBS-GFP-N1。它由5′-UTR中的GFP mRNA和CasE结合位点(CBS)组成。当CasE被引入系统时,GFP表达水平急剧下降。

同时,为了进一步测试CasE活性,作者还构建了“开启”报告基因质粒RED-16×CBS-Lin28-C1,其中CBS插入RED单体基因的3′-UTR区和Lin28的上游。Lin28是RNA核保留信号,在其3′-UTR中具有lin28信号的RED单体mRNA几乎不能翻译成蛋白质。

CBS-CasE依赖限制性切断lin28信号并从核释放靶mRNA用于翻译(图1E和图1F)。这些表明CasE可以结合并切割哺乳动物细胞中的CBS。

另外,为了将dCasE-CBS相互作用设计到RNA追踪系统中,作者通过将split-FP5-7与dCasE蛋白结合。发现一个版本,即VN-dCasE-VC很难发出荧光,这可能是由于不正确的折叠或不稳定的状态,但是当与靶RNA(CBS)结合时,可以在荧光显微镜下清楚地捕获荧光信号,即使VN-dCasE-VC表达质粒的转染剂量非常低。

接下来,作者使用VN-dCasE-VC系统追踪哺乳动物细胞中过表达的β-肌动蛋白(β-Actin)的mRNA,VN-dCasE-VC系统在细胞质中显示出强荧光。此外还观察到,向靶mRNA添加更多CBS可改善信号,荧光追踪更清晰,因此,可以通过增加CBS的数量来检测低丰度的mRNA。

总的来说,韩春雨团队发明了一种新的RNA追踪工具,将其命名为VN-dCasE-VC,该系统能够追踪活细胞中没有背景的特定RNA,通过荧光将其可视化。

目前已有两种活细胞RNA追踪成像工具,一种是MS2,一种是Cas13a,韩春雨团队开发的dCasE系统,成像效果由于MS2,而且,dCasE蛋白的分子量为22kDa,远小于Cas13a的130kDa,dCasE的小分子量更容易递送至细胞内,因此更适合用于活细胞的RNA追踪。

春雨发表韩春雨发论文

韩春雨,男,中国协和医科大学理学博士,现任河北科技大学生物科学与工程学院生命科学系副教授,硕士研究生导师。

韩春雨事件指的是韩春雨撤稿事件。

2016年5月2日,韩春雨作为通讯作者在国际顶级期刊《自然·生物技术》(Nature Biotechnology)杂志上发表了一篇研究成果,即发明了一种新的基因编辑技术——NgAgo-gDNA,向已有的最时兴技术CRISPR-Cas9发起了挑战。

2016年8月2日,《自然-生物技术》发表声明称,“已有若干研究者联系本刊,表示无法重复这项研究。本刊将按照既定流程来调查此事。作为在自然科研旗下期刊发表论文的条件之一,作者须将材料、数据、代码和相关的实验流程及时向读者提供,不可加以不当限制”。

2017年1月9日,以河北科技大学副教授韩春雨、浙江大学基础医学院研究员沈啸为发明人的专利—以Argonaute核酸酶为核心的基因编辑技术,因申请人未在规定期限内答复国家知识产权局的第一次审查意见通知书,该专利的申请被视为撤回,国家知识产权局发布该专利申请的“视为撤回通知书”。

2018年8月31日晚,河北科技大学公布韩春雨团队撤稿论文的调查处理结果称,未发现韩春雨团队有主观造假情况。撤稿论文已不再具备重新发表的基础,有关方面按照规定已取消了韩春雨所获得的荣誉称号,终止了韩春雨团队承担的科研项目并收回了科研经费,收回了韩春雨团队所获校科研绩效奖励。

扩展资料

韩春雨研发出基因编辑新技术NgAgo-gDNA的成果发表在英国《自然·生物技术》上,向此前最先进的基因编辑技术CRISPR-Cas9发起了挑战,该成果打破了国际基因编辑技术的垄断,实现了中国高端生物技术原创零的突破,有望成为新一代“基因剪刀”。

《自然》杂志执行主编尼克坎贝尔评论说:“虽然这项新技术还处于初期,但有一些理由让我们相信它与现在普遍使用的CRISPR-Cas9技术相比有多种优势,特别是在更精准的基因编辑方面。”

基因编辑技术指能够让人类对目标基因进行“编辑”,实现对特定DNA片段的敲除、加入等。而CRISPR/Cas9技术自问世以来,就有着其它基因编辑技术无可比拟的优势,技术不断改进后,更被认为能够在活细胞中最有效、最便捷地“编辑”任何基因。

参考资料:百度百科-韩春雨

可以帮助我们看到身体的RNA成像,监测RNA在我们人体当中的活动迹象,帮助我们更好的了解我们的身体构造和RNA,是非常有灵敏性的,对人体的细胞观测是非常好的,对我们国家研究生物病理也是非常有帮助的。

现任河北科技大学生物科学与工程学院生命科学系副教授,硕士研究生导师。2016年5月2日,韩春雨作为通讯作者在国际顶级期刊《自然·生物技术》(Nature Biotechnology)杂志上发表了一篇研究成果,即发明了一种新的基因编辑技术——NgAgo-gDNA,向已有的最时兴技术CRISPR-Cas9发起了挑战。论文发表后,在国内外引发强烈关注,甚至被部分媒体誉为“诺奖级”实验成果。但此后不久,该论文内容就陷入争论:有人提出韩春雨的试验无法重复,有人说可以重复,彼此争论不休、难有定论。

韩春雨组发表高分论文,开发出新型RNA追踪平台,该平台有何优势?下面就我们来针对这个问题进行一番探讨,希望这些内容能够帮到有需要的朋友们。

能够看见活细胞RNA的成像。如今的我们日常生活标准好啦,比较之下拥有非常大的提升,无论是生活品质层面或是别的的层面都会有非常大的提高。与此同时,伴随着中国智能科技得这般快发生了越来越多的新科技产品就例如。韩春雨组发布高分数毕业论文,开发设计出新式RNA追踪平台,该平台有什么优点?这问题引发了社会发展上很多人的关心,她们对于此事有不一样的观点下边,我便来给大家说一说,自己的观点。

大家我们都知道这一开发设计出新式的RNA追踪平台,他是能够看见活细胞RNA的成像那样,无论是针对咱们的生物技术或是病理学层面的科学研究都是有非常大的协助。大家我们都知道假如生病了以后都必须到医院做好查验,假如由于技术性层面的菊香,导致查验不出来,或是十分伤心的一件事情。

我们大家周了解,如今大家国家存有着二种活细胞,RNA追踪成像专用工具,那麼又新上市了一种,针对大家国家的生物技术或是有特别大的协助在这儿,我坚信韩春雨的精英团队也是通过了十分多的艰辛,我越过了许多的艰难才拥有今日的造就。这个故事也告知大家,在日常生活中一定要不畏艰难的去勤奋去拼搏,那样才会出现非常大的取得成功,假如面对困难就舍弃,真的是不太好的个人行为。

自然发生了这一平台以后会给社会生活产生特别大的啊,协助啊,我们可以根据这一平台追踪RNA的主题活动征兆,搜索的工费月经血是特别便捷了一件事情,与此同时大家国家的研发人员也在每时每刻地为大家国家的技术性开展产品研发在这儿或是特别感谢她们的估算便是我本人的意见和建议了,期待大伙儿可以仔细认真地看一看,针对各位而言协助或是十分大呢?

韩春雨发表科学论文

他时隔6年再次发表新的论文开启了 RNA追踪技术,能够追踪人体中的细胞,开启了荧光追踪平台,具有极高的灵敏度和特异性,而且已经经过了同行之间的验证。

新的论文发表了关于DNA荧光追踪技术,发现了新的组成、排列,灵敏性、特异性、遗传性这些都是韩春雨发表的新论文看到的信息。

他在论文中主要是围绕着发明的一种新的基因编辑技术这个技术非常的强大,也非常的吸引人心,开发出了荧光追踪技术,而且与RNA有关是人体基因的一部分,可以看出他本人的科研能力还是比较强的。

有一些生物科学的实验数据,开发出了新的追踪技术,是基于CAS6进行开发的,有了新的科研成果,这篇论文在顶级杂志上发布了,提出了新的概念。

相关百科

热门百科

首页
发表服务