1、论文题目:要求准确、简练、醒目、新颖。2、目录:目录是论文中主要段落的简表。(短篇论文不必列目录)3、提要:是文章主要内容的摘录,要求短、精、完整。字数少可几十字,多不超过三百字为宜。4、关键词或主题词:关键词是从论文的题名、提要和正文中选取出来的,是对表述论文的中心内容有实质意义的词汇。关键词是用作机系统标引论文内容特征的词语,便于信息系统汇集,以供读者检索。 每篇论文一般选取3-8个词汇作为关键词,另起一行,排在“提要”的左下方。主题词是经过规范化的词,在确定主题词时,要对论文进行主题,依照标引和组配规则转换成主题词表中的规范词语。5、论文正文:(1)引言:引言又称前言、序言和导言,用在论文的开头。 引言一般要概括地写出作者意图,说明选题的目的和意义, 并指出论文写作的范围。引言要短小精悍、紧扣主题。〈2)论文正文:正文是论文的主体,正文应包括论点、论据、 论证过程和结论。主体部分包括以下内容:a.提出-论点;b.分析问题-论据和论证;c.解决问题-论证与步骤;d.结论。6、一篇论文的参考文献是将论文在和写作中可参考或引证的主要文献资料,列于论文的末尾。参考文献应另起一页,标注方式按《GB7714-87文后参考文献著录规则》进行。中文:标题--作者--出版物信息(版地、版者、版期):作者--标题--出版物信息所列参考文献的要求是:(1)所列参考文献应是正式出版物,以便读者考证。(2)所列举的参考文献要标明序号、著作或文章的标题、作者、出版物信息。
首先,你要去看论文库里的范文,看格式,引用和参考其次,你要真有可以写的东西,不在于长度,在于深度其三,写好了,可以查个重,在修改,差不多改不了个,可以请老师看看最后,发给学术杂志或者网站就可以了
本人写过一篇数学的,写的是圆锥曲线在现实生活中的运用。高中生写论文不必太深奥,找到一个课题然后进行调查研究总结规律就可以了。车流量、楼梯台阶宽度、黄金分割等等都是不错的材料。
就一个知识点,延伸一下,可以说说这个知识点的历史、发展,以及这个知识点适用范围~~~
《科学教育管理》国家及核心期刊!如果愿意发表!你可以联系下那个编辑!965476282不知道你愿意不!最好找个好点的!
有很多的,〈中等职业教育〉、〈中小学教学参考〉〈中学生数理化〉、〈教学探索〉、〈教学与管理〉〈吉林教育学院学报〉等,你可以根据你自己的要求选择,是要省级的还是国家级的,这几个价格都不一样的
花点钱啊,可以发论文的地方多呢,大学校园里贴满了广告,不是投了就一定会收,但是花了钱就是很快的了,呵呵~~~
北师大的高中数理化
我们老师说《初等数学研究》这本杂志不错
这个流程要根据具体是什么要求来,像省级国家级的话,因为比较简单,流程相对简单。如果是核心的话,因为刊物难度大,流程会相对复杂一些。但是你第一次弄的话,估计是初级或者中级职称。具体就看你讠仑文方向。
《中学教学参考》★★《小学教学参考》★★《中国体卫艺教育》(山东)★★《中学生数理化》★★《素质教育论坛》《中学课程辅导》教师版★★《教师》《中学英语之友》★★《数理化学习》★★《语文天地》《理科考试研究》《学生之友》★《教育研究与实践》 《文理导航》 ★《小学时代》 《数学教学通讯》《数学学习与研究》★《技术物理教学》★★《地理教育》《内蒙古教育》《陕西教育》《吉林教育》★《山西教育》《黑河学刊》《教育艺术》《文科爱好者》《理科爱好者》《读与写》《海外英语》《新课程学习》《现代企业教育》 《校本教研》《当代班主任》《学问现代教育研究》《中国科教创新导刊》《中国管理信息化》《中国信息技术教育》《中国教育技术装备》《中国教师》《中国校外教育》《中小学信息技术教育》这里有你需要的期刊吗?详细我可以帮你引见一下
鉴于你目前的学识水平,可能发专业的数学期刊是不行的,可以尝试去《数理应用》等偏数学应用的杂志投稿,或者找一些级别相对较低的大学校刊投稿试试。
中国的学术界已经快到了穷途末路的地步了,要晋升职称就要发表论文,要发表论文需要向出版社交一笔出版费,只要出钱就可以发表一些无关痛痒的文章,于是论文的质量就很难判断了.所以我建议你向外国的杂志投稿吧,还可以赚稿费,得大奖.
翻译成英文,投到国外期刊上去。给数学专家,有可能就不是你的了。
本人写过一篇数学的,写的是圆锥曲线在现实生活中的运用。高中生写论文不必太深奥,找到一个课题然后进行调查研究总结规律就可以了。车流量、楼梯台阶宽度、黄金分割等等都是不错的材料。
当然不会急着否定,我这种笨蛋,只敢说看见了一点点历史上那么多数学奇才,这么简单的问题他们都不会,我怎么会啊?
高中的数学论文,那么一般来说你先选择一个要研究的方向,然后去查阅资料在研究你所感兴趣的方面,写下你的研究过程,最后得出结论。
问题一:高中数学研究性学习论文怎么写啊,第一次写,不知道如何下手。 美国教育学家布卢姆在其“目标分类学”和“掌握学习策略”的理论中指出,以目标为核心,运用评价手段,构成教学过程三要素。教学目标是教学活动的指南,教学评价的依据。布卢姆认为学生学业成绩的差异与教学方法及教学内容呈现顺序有关。所以教师如何合理安排内容,制订符合学生认知规律的实施程序,便尤为重要。同时,思维科学表明,人类思维是一个整体性的活动过程,又是一个系统结构,而且是一种有层次的系统结构。不同的思维表现为不同的思维层次,思维“是由模糊→清晰→高一层次模糊→高一层次清晰…螺旋上升的”。故教师在设计教学过程时,既要适合学生现有的思维水平,又要考虑为下一个思维阶段的发展奠定基础。以下是关于二面角的平面角的目标层次(思维)教学,望与同行共勉。 目标层次教学过程 层次1 知识目标:理解二面角的平面角的概念,寻找“三要素”,模拟“三步曲”。 能力目标:通过二面角的平面角的空间模型,培养空间想象能力。 情感目标:建立学习数学的自信心,培养学习数学的兴趣。 教学难点:由于取点P的任意性引起作图的不确定,容易造成学生思维不稳定性。就这点而言,需要教师通过具体模型,进行比较、辨别,使解题与作图过程简洁,自然。 展示过程: (1)展示空间模型,强化“三要素”(二面α,β,一棱l)。 (图1)(图2) (2)依托空间模型,模拟“三步曲”(二垂直、一连接)。 第1步:在面α内任取一点P,作P,B⊥面β,点B为垂足。 第2步:在面β内作BA⊥l,交l于点A。 第3步:连接A、P,此时∠PAB为二面角α-l-β的平面角(其中图2二面角的平面角为∠PBA的补角)。 举例测评: 例1已知三棱锥V-ABC(如图3)。作出:①二面角V-AB-C的平面角;②二面角B-AV-C的平面角;③二面角A-VB-C的平面角。 (图3)(图4) 反馈评注: (1)显然对数学的恐惧心理,使得部分学生在解题1之前整整捉摸了5、6分钟,让他们为难的是不知点V的射影应落在何处。在再三鼓励与督促下,终于作图如4。老师及时强化三要素,定式三步曲,目的是使其在思维上造成一种定式、定图,学会模仿,形成一个具体的感性认识和一个具体思维框架。此后再找二面角V-CB-A的平面角,显然就容易多了。 (2)面对问2,图形的经过翻转,部分学生又显得措手无策了。这暴露了他们空间想象能力的缺乏,平时忽视对概念的本质的正确认识和深层次理解,同时思维也缺乏广阔性与灵活性。如何让他们有空间立体的概念?我用铅丝制作了一个立体模型,在注重情感交流的同时,更注重了让他们有一个“观察,模拟,表达,总结”的过程,去伪存真,把握问题的实质。在完成问题2之后,问题3的解决似乎并不是很艰难的。 层次2 让学生原有认知结构中相应的旧知识与所学新知识产生同化和顺应,促进认知结构的不断更新。要从学生已掌握的知识水平基础上创设最近发展区,并促进学生知识的提高和水平的发展。 知识目标:掌握二面角平面角的作法(巧练“三元素”,定式“三步曲”)。 能力目标:培养空间想象能力与逻辑推理能力,尤其是批判性思维能力。 情感目标:增强学生学习的自信心,体验成功的喜悦。 教学难点:对于三步曲中的第一步曲:过点作面的垂线,分成三个层次: (1)直接找(从已有的边上找,如例2); (2)面内作(通常作法,如例3); (3)空间作(转化为面作,如例2)。 举例展示: 例2......>> 问题二:高一数学小论文怎么写 数学小论文 高一是数学学习的一个关键时期.我发现,许多小学、初中数学学科成绩的佼佼者,进入高中阶段,第一个跟斗就栽在数学上.要学好高中数学,要求自己对高中数学知识有整体的认识和把握. *** 进入高中,学习数学的第一课,就是 *** .概念抽象、符号术语多是 *** 单元的一个显著特点,例如交集、并集、补集的概念及其表示方法, *** 与元素的关系及其表示方法, *** 与 *** 的关系及其表示方法,子集、真子集和 *** 相等的定义等等. *** 中的元素具有“三性”:(1)确定性: *** 中的元素应该是确定的,不能模棱两可.(2)互异性: *** 中的元素应该是互不相同的,相同的元素在 *** 中只能算作一个.(3)无序性: *** 中的元素是无次序关系的.例:已知 *** M={X|X2+X-6=0} *** N={Y|aY+2,a∈R},且N∩CuM=Φ,则实数a=多少?因为N∩CuM=Φ所以N? M\x09因为M={X|X2+X-6=0}={-3,2}所以N={2}或{-3}或{-3,2}\x09当N=Φ时,a=0\x09当N={2}时,2a+2=0,a=-1\x09当N={-3}时,-3a+2=0,a=2/3\x09所以实数a=0或a=-1或a=2/3注意:不能忘记Φ时的情况 不等式(1)绝对值的问题,考虑去绝对值,去绝对值的方法有:对绝对值内的部分按大于、等于、小于零进行讨论去绝对值;通过两边平方去绝对值;需要注意的是不等号两边为非负值.含有多个绝对值符号的不等式可用“按零点分区间讨论”的方法来解.(2)分式不等式的解法:通解变形为整式不等式;(3)不等式组的解法:分别求出不等式组中,每个不等式的解集,然后求其交集,即是这个不等式组的解集,在求交集中,通常把每个不等式的解集画在同一条数轴上,取它们的公共部分.(4)解含有参数的不等式:解含参数的不等式时,首先应注意考察是否需要进行分类讨论.如果遇到下述情况则一般需要讨论:①不等式两端乘除一个含参数的式子时,则需讨论这个式子的正、负、零性.需要使用指数函数、对数函数的单调性时,则需对它们的底数进行讨论.③在解含有字母的一元二次不等式时,需要考虑相应的二次函数的开口方向,对应的一元二次方程根的状况(有时要分析△),比较两个根的大小.例:解关于x的不等式x-a/x+1
浅析高中数学创新能力高中学生的数学创新能力贯穿于高中整个数学教学过程之中,在数学教学过程中,教师应注重培养学生的创新能力,使学生能够独立的分析问题,思考问题,解决问题并能够延伸问题,达到举一反三的目的。教师不仅仅要传授给学生知识,更重要的是要培养学生的创新能力,而数学创新能力的培养有利于学生养成良好的数学思维品质和严密的思维逻辑能力。首先教师要更新教学观念。高中数学是一门极灵活的学科,而不只是几个概念,原理和公式而已。高中数学教师应当更新教育观念,教师既不是传授知识的机器,学生也不是被动接受知识的容纳器。教师要从教学的“指挥者”转向“引导者”,由重教学的“结论”转向教学的“过程”,由重教师“教”转向重学生“学”。教师在教学过程中,应当引导学生逐步的发现问题,分析问题,解决问题,并启发学生的思维,让学生通过一个问题能够发现其中的规律并加以总结归纳。在教学过程中,教师要树立师生平等、民主的观念。美国纽约道尔顿学校的校长理查德. 布卢姆索联系中国和美国学校教育的实际指出,在美国的学校里,教师是在学生圈子中的,甚至在课堂上你分辨不出哪个是老师;而在中国,老师常常是站在全班学生的面前,成为学生门的中心。而在美国,大多数教师总是鼓励学生提出问题,共同研究,解决问题,假如把老师问倒了,老师非但不会不高兴,反而会表扬这个学生,这样一来,学生受到鼓励,学习上更加自主,学习效果更加良好。我们可以吸取国外好的教学方式,先进的教学观念,因此对老师来说,建立一种民主化的观念是非常重要的;老师甚至也要向学生学习,从学生身上吸取智慧力量。其次教师要在教学活动中突出对学生的创新能力培养。中学阶段是青少年成长的关键时期,学生心理和生理发育趋于成熟,具有一定的独立思考能力与判断能力,思想活跃,接纳信息量大,求知欲强,可塑性较大,为培养创新能力提供了心理和生理基础,因此,在高中数学教学中要突出对学生的创新能力的培养,活跃学生的思维,这样一来,能够有效地提高学生的学习效率。努力提高学生的自学能力是创新能力培养的基础。自学是一种重要的学习方式,人的一生毕竟是有限的,能够得到教师指导的阶段更是有限的,许多知识必须靠学生自学,积极思考,主动学习,才能够获得新的知识。所以教师应当倡导学生自学,并给予一定的指导,提高学生的自学能力和创新能力,让学生在自学中发现问题,并能够自主解决。在发现问题的过程中,教师还应当引导学生进行逆向思考,传统的思维定势有时候并不能有效的解决问题,可如果换个角度或从对立面来看,可能就可以获得解决的方案。因此,教师还应当培养学生逆向思维的能力,引导学生打破传统的、固定的思维的束缚,从不同的角度深入探索和挖掘问题的本质,得出正确的答案。第三,教师应当创造一个活泼轻松的教学环境。心理学研究证明:一个人的感知、注意、记忆、思维、想象等智力因素,都受主体情绪的影响。在极其轻松自如的环境下,人的自主探索和体验生命本体的状态最富有创造性和开拓性。也就是说,只有当课堂充满生动活泼的心理气氛时,学生的精神才会饱满,情绪才会高涨,兴趣才会浓厚,思维才会活跃,接受能力才会增强,学习效率才会提高。在轻松活跃的教学环境中,学生的思维能力和创新能力才能够得到最大限度的发挥。因此,教师应当设计多种教学方式,优化教学活动,创造一个活泼有序而有利于学生发展的教学环境。教师要充分利用高中数学教材中的探究式活动,使学生在探究式活动中培养创新能力,因为创新能力是在实践的过程中得来的,而不是依靠背诵和记忆。探究式学习可以让学生在实践活动中获得研究探索的体验,养成善于发现问题,乐于思索,勤于动手的习惯,激发学生对数学问题进行探索创新的积极性。最后,教师应充分保护学生的学习兴趣和创新兴趣。教师在教学过程中,应积极激发学生的学习兴趣,而创新的过程需要兴趣来维持。同时,教师应当根据教学目标、内容和学生的接受能力来设计教学,提出难度适中的问题,启发学生进行思考。这样才会激发学生学习的兴趣,引发强烈的求知欲望,从而进行创新性的思考。在教学中,教师单从提高语言表达能力和语言直观上下工夫是不够的,还应充分利用直观教学的各种手段。“直观”具有看的见,摸得到的优点,它有时能直接说明问题,有时能帮助理解问题,会给学生留下深刻的印象,使学生从学习中得到无穷乐趣。如在教学中要尽量举一些学生熟悉的实例,运用幻灯、模型、实物等教具,形象而又直观地引导学生去观察、分析、综合,从而激发学生学习知识的兴趣,使学生在轻松愉快的环境中能化繁为简,化难为易地掌握所学知识。总之,高中学生的创新能力是贯穿于整个数学教学活动中的,要善于引导学生进行发现问题,分析问题,解决问题,并能够总结问题,从而在此基础上,培养学生的数学创新能力,为终身的学习打下良好的基础。