首页

职称论文知识库

首页 职称论文知识库 问题

代谢组发表论文

发布时间:

代谢组发表论文

引言的文字不可冗长,内容选择不必过于分散、琐碎,措词要精炼,要吸引读者读下去。引言的篇幅大小,并无硬性的统一规定,需视整篇论文篇幅的大小及论文内容的需要来确定

主持国家自然科学青年基金一项(川丁特罗潜在活性及毒性代谢及其相关酶学研究,项目批准号:81102505),曾参加国家自然科学基金项目2项(骨碎补补肾壮骨药效物质基础的代谢组学研究,编号-20705021;脂质体电动色谱与药物吸收和分布的关系,编号-30801443),教育部博士点基金项目1项(抗Ⅱ型糖尿病药物作用机制的代谢组学研究),参与过多项人体药物动力学、生物利用度和生物等效性研究。在多组分成分及复杂基质样品分析方法的建立,在HPLC、LC/MS/MS、UPLC/MS/MS等各种分离分析技术,尤其在生物样品分析方面具有较丰富的经验。在国内外学术刊物和会议上发表相关科研论文二十余篇,其中SCI收载十二篇,曾获2008年、2010年辽宁省自然科学学术成果三等奖。

更好的“组学”?代谢组学是继基因组学、蛋白质组学、转录组学后出现的新兴“组学”,自1999年以来,每年发表的代谢组学研究的文章数量都在不断增加。从表面上看,代谢组学的发展很迅速,但是仍然远远落后于基因组学和蛋白质组学。“我们还在期待着重大发现”,Griffin博士解释说,在Nature上发表的那些文章,让人们对代谢组学充满了期待:寻找一种新的生物标记物,发现一条新的代谢途径,或更深入的了解目前已知的这些途径。尽管还没有经典论文出现,但是研究人员相信,与基因组学和蛋白质组学相比,代谢组学将在临床上发挥更大的作用。许多公司通过市场研究发现,健康人并不希望进行基因型分析,所以,对于这些人群来说,基因组学研究在临床上的应用很有限。而代谢组学与临床化学较为相似,且相对于基因组学来说,提供的个人信息更少,故其在临床上的应用有可能产生一定的影响。较低的费用,是促使代谢组学在临床上易于接受的另一个原因。Griffin博士指出,与其他“组学”研究相比,代谢组学的费用更低,研究人员可以通过代谢组学研究筛检出代谢产物,然后采用更昂贵的基因组学和蛋白质组学的方法对有意义的代谢产物进一步加以研究。首先,必须识别出代谢产物,这并不是简单的工作。Siuzak博士认为,代谢组学研究最大的挑战就在于对代谢产物的识别,这也是最有趣的方面,而更具挑战性的工作,是进一步确认所有代谢物的功能。此外,质谱分析发现,代谢产物的同质性不高,由于缺乏均匀性,使色谱分析变得更加困难,无法识别出样品中的未知物质。

代谢组投稿期刊

发明时间是1965年。经科学家证明,苦味素在100℃时加热半小时,只有0.3%的谷氨酸钠生成焦谷氨酸钠,对人体影响甚微。苦味素可以分为一萜类、倍半萜类、二萜类和三萜类。此类成分除共同具有苦味外,生物活性是多方面的,

韩非子·外储说左上》有云 :“夫良药苦于口,而智者劝而饮之,知其入而已己疾也”,良药苦口由此而来。最近,国内研究团队揭开了这类“苦口良药”的神秘面纱,成果相继发表在Nature Genetics(2013)、Science(2014)和Nature Plants(2016)等国际知名学术期刊上。研究者通过研究黄瓜发现:黄瓜苦味正是由三萜化合物葫芦素C导致的,葫芦素是一类高度氧化的四环三萜化合物,仅在葫芦科植物中(黄瓜、西瓜和甜瓜等)发现,苦是这类化合物最显著的特点,因此,葫芦素也叫苦味素。极低量的葫芦素(0.1 mg/L)就能引起明显的苦味,比典型的苦味剂咖啡因还要苦100倍左右。图1.苦味素的来源-黄瓜 苦味素的发现对黄瓜育种和抗肿瘤药物开发具有重大的意义。植物的生长面对各种外界生物胁迫和非生物胁迫,极苦的苦味素是最佳的防御武器,可用来抵御病虫害的侵入。因此,苦味素是保护植物的 “绿色农药”。科学家通过黄瓜功能基因组研......阅读全文代谢组学的最新进展:快速、高灵敏度和高通量分析分析测试百科网译 代谢组学致力于研究生物系统中存在的小分子或代谢物。通过分析生物体或细胞内存在的代谢物来得到其生理状态的化合物指纹谱。从营养、食品科学到了解人类疾病,代谢组学表征在许多领域中具有广泛的应用。随着分析技术的不断发展和功能的增强,这个应用领域将会越来越广。为了进一步了解代谢组2019-11-13 16:18News WIKI 相关搜索刘双江纪海丽:微生物组研究:关乎人类的未来当人类第一次认识到微生物的存在时,并不知道这种个头微小的生命体是地球生态系统的基石、关系人类健康的重要因素——它不仅将极大地帮助人类克服当今所面临的生存挑战,还能提供人类未来生存之道。如今,人类基因组的神秘面纱已渐渐揭开,微生物组又成为各国生命科学竞争的焦点,纷纷启动微生物组研究计划。科学家们呼2018-03-27 15:05News WIKI 相关搜索100%有奖调查:聚合物的表征分析技术盘点11个每个人与众不同的“标签”:DNA首当其冲不管两个人看起来有多么相像,他们永远不可能成为一个人。近日,英国《新科学家》杂志网站为我们梳理出了11个让人与众不同的特征。 看看你周围的人,你可以一目了然地发现,他们之间是多么的不同。他们的脸、身体、言行举止以及个性

细胞生物学Q1区。期刊接收的Original Article、Protocol和Review领域包括:细胞生物学、转录基因组学、蛋白质和代谢组学、信号转导、生物组学、干细胞等几乎所有与细胞相关的研究领域。

苦味素1998-07 是一类具苦味化合物的通称,在中草药成分中主要指除了生物碱、甙类以外具有苦味性质的物质。从化学上看,它们基本上都属

代谢组学投稿期刊

又到了高校硕博生撸起袖子加油发论文的季节,生信类文章作为一种短平快的手段受到广大科研者的喜爱。我在pubmed中简单用“TCGA”关键词统计了近十年的SCI发表情况,发现从2010年开始生信SCI成指数性增长由年15篇增加到2700多。令人惊叹,2020年截止当前已经发表1212篇。管中窥豹,如此海量的生信文章,如何异军突起荣获审稿人青睐?近来有不少人抱怨,纯生信投稿杂志越来越少,投稿杂志风向变动太快,审稿人反馈要功能验证,要求补试验。如此看来,给生信文章加点实验料是生信类SCI大势所趋。那么各组学筛选的标记物实验验证的方法有哪些?我本期将给大家奉上多种组学的标记物实验验证方法,供大家参考。 Suorce: Pubmed 为了方便大家快速理解,我查阅大量资料以文字加图片的形式板块化呈现常见的各组学方案及简明实验步骤,本期分享基因组学、蛋白组学、代谢组学以及转录组学4个组学的标记物检测方法,废话少说,直接上干货。 一、基因组学marker验证实验 1. 基因表达 逆转录定量PCR(qRT-PCR)是在样品量少或者非常珍贵的情况研究基因表达的模式。这种方法主要的优点是范围宽、敏感性高、精确度高,无PCR后处理步骤,避免了交叉污染,且产出率高,可以进行多重检测等。具体是通过对PCR扩增反应中每一个循环产物荧光信号的实时检测从而实现对起始模板定量及定性的分析。在实时荧光定量PCR反应中,引入一个荧光化学物质,随着PCR反应的进行,PCR反应产物不断累计,荧光信号强度也等比增强。每经过一个循环,收集一个荧光强度信号,通过荧光强度变化检测产物量变化,最终得到一条荧光扩增曲线。实验思路见参考文献[1]。 实验材料 新鲜、冰冻的组织、细胞,新鲜、冷冻的血液或血浆等  基因表达量的检测方法还包括:PCR[2]、RT-PCR[3]。 2.  甲基化 检测 甲基化特异性的PCR(Methylation-specific PCR,MSP)是一种灵敏度高,且不受限制酶限制的DNA甲基化检测技术。通常是设计两对引物,一对MSP引物扩增经亚硫酸氢盐处理后的DNA模板,另一对扩增未甲基化片段。若第一对引物能扩增出片段,则说明该检测位点存在甲基化,若第二对引物能扩增出片段,则说明该检测位点不存在甲基化。实验思路见参考文献[4]。 实验材料 新鲜、冷冻、石蜡包埋细胞或组织等       甲基化检测的其他技术还包括:亚硫酸氢盐处理+测序[5]、联合硫酸氢钠的限制性内切酶分析法(COBRA)[6]等。二、蛋白组学marker验证实验 蛋白质印迹法(免疫印迹试验,Western blot)是将电泳分离后的细胞或组织总蛋白质从凝胶转移到固相支持物NC膜或PVDF膜上,然后用特异性抗体检测某特定抗原的一种蛋白质检测技术,其基本原理是通过特异性抗体对凝胶电泳处理过的细胞或生物组织样品进行着色。实验方法应用广泛,是常见的蛋白定性及定量检测方法。实验思路见参考文献[7]。 实验材料 新鲜、冷冻的细胞或者组织 酶联免疫吸附测定(Enzyme Linked Immunosorbent Assay,ELISA)是利用抗原抗体特异性结合进行免疫反应的定性和定量检测方法。基本原理:使抗原或抗体结合到固相载体表面,并保持其免疫活性。使抗原或抗体与某种酶连接成酶标抗原或抗体,这种酶标抗原或抗体既保留其免疫活性,又保留酶的活性。在测定时,把受检标本和酶标抗原或抗体按不同的步骤与固相载体表面的抗原或抗体起反应。用洗涤的方法使固相载体上形成的抗原抗体复合物与其他物质分开,最后结合在固相载体上的酶量与标本中受检物质的量成一定的比例。加入酶反应的底物后,底物被酶催化变为有色产物,产物的量与标本中受检物质的量直接相关,故可根据颜色反应的深浅有无定性或定量分析。实验思路见参考文献[8]。 实验材料 新鲜、冷冻的细胞或者组织 免疫组织化学(IHC)又称免疫细胞化学。是应用免疫学及组织化学原理,对组织切片中的蛋白水平检测。其是采用标记的特异性抗体(或抗原)对组织内抗原(或抗体)的分布进行组织和细胞原位检测,检测相应的目的抗原(或抗体),并进行定位、定性和定量分析。根据标记物的性质检测技术分为:免疫荧光技术、免疫酶技术、免疫金属技术和放射免疫自影法。实验中应用较多的为免疫荧光技术和免疫酶技术。实验思路见参考文献[9]。 实验材料 石蜡包埋的组织、细胞标本以及冰冻组织切片 三、代谢组学marker验证实验  气相色谱质谱联用(GC-MS):气相色谱法是利用不同物质在固定相和流动相中的分配系数不同,使不同化合物从色谱柱流出的时间不同,达到分离化合物的目的。质谱法是利用带电粒子在磁场或电场中的运动规律,按其质荷比(m/z)实现分离分析,测定离子质量及强度分布,可以给出化合物的分子量、元素组成、分子式和分子结构信息,具有定性专属性、灵敏性高级检测快速等特点。实验思路见参考文献[10]。 实验材料 小分子、易挥发、热稳定、能气化的化合物  液相色谱质谱联用(LC-MS):具有分析范围广、分离能力强、定性分析结果可靠、检测限低、分析时间快、自动化程度高。其是以液相色谱作为分离系统,质谱为检测系统。样品在质谱部分和流动相分离,被离子化后,经质谱的质量分析器将离子碎片按质量数分开,经检测器得到质谱图。实验思路见参考文献[11]。 实验材料 不挥发、极性化、热不稳定及大分子(蛋白、多肽、多聚物等)四、转录组学marker验证实验 1. 表达量验证 qRT-PCR(见基因组学)和Northern blot。 Northern印迹杂交(Northern blot)是用于检测样品中是否含有基因的转录产物(mRNA)及对其进行定量。原理是在变性条件下将待检的RNA样品进行琼脂糖凝胶电泳,继而将在凝胶中的位置转移到硝酸纤维素膜或尼龙膜上,固定后再与同位素或其他标志物标记的RNA探针进行反应。应用的文献较少,实验思路见参考文献[12]。 实验 材料 总RNA样品或mRNA样本(RNA容易降解,需要注意保存方法及周期) 灵敏度:qRT-PCR>Northern blot,特异性:Nortern blot>qRT-PCR(上述已说明实验方案)。 2. RNA和蛋白质相互作用 RNA免疫沉淀(RIP):是将所关注的RNA结合蛋白(RBP)与其结合的RNA一起进行免疫沉淀,鉴定结合转录RNA。可以通过RT-PCR、微阵列或测序检测,是一种基于抗体,用于定位体内的RNA-蛋白质相互作用的技术。实验思路见参考文献[13]。 实验材料 细胞 RNA-pull down:是将RNA进行标记(如生物探针标记)再与胞浆蛋白提取液共同孵育,从而形成RNA-蛋白质复合物,通过SDS-PAGE分离蛋白质,最后通过Western blot或质谱检测蛋白质。用于寻找与目的RNA结合的蛋白。实验思路见参考文献[14]。 实验材料 细胞胞浆蛋白  此外还包括:甲基化RNA免疫沉淀(MeRIP)[13]。 今天的分享就到这里,由于各组学marker验证的方法繁多,本期主要分享常见的方案,期望大家对各组学marker的实验方法有一个简单的认识,基于各组学的后续机制相关探究,还需要加入如细胞功能学实验的细胞增殖、细胞迁移、侵袭、细胞凋亡实验以及动物模型等,这些机制探究的方法大多大同小异,相信大家在阅读相关的文献后很快会发现个中规律~ 最后祝大家SCI逢稿必中! 参考文献 1. Liu X, Wang J, Chen M, Liu S, Yu X, Wen F. Combining data from TCGA and GEO databases and reverse transcription quantitative PCR validation to identify gene prognostic markers in lung cancer. Onco Targets Ther. 2019;12:709‐720. Published 2019 Jan 21. doi:10.2147/OTT.S183944 2. Rodriguez, Rebecca M et al. “The landscape of bacterial presence in tumor and adjacent normal tissue across 9 major cancer types using TCGA exome sequencing.” Computational and structural biotechnology journal vol. 18 631-641. 13 Mar. 2020, doi:10.1016/j.csbj.2020.03.003 3. Zhou F, Liu X, Zuo D, et al. HIV-1 Nef-induced lncRNA AK006025 regulates CXCL9/10/11 cluster gene expression in astrocytes through interaction with CBP/P300. J Neuroinflammation. 2018;15(1):303. Published 2018 Oct 31. doi:10.1186/s12974-018-1343-x 4. Xie K, Zhang K, Kong J, et al. Cancer-testis gene PIWIL1 promotes cell proliferation, migration, and invasion in lung adenocarcinoma. Cancer Med. 2018;7(1):157‐166. doi:10.1002/cam4.1248 5. Hu H, Chen X, Zhou C, et al. Aberrant methylation of mutL homolog 1 is associated with increased risk of non-small cell lung cancer. J Clin Lab Anal. 2018;32(5):e22370. doi:10.1002/jcla.22370  6. Pangeni, Rajendra P et al. “The GALNT9, BNC1 and CCDC8 genes are frequently epigenetically dysregulated in breast tumours that metastasise to the brain.” Clinical epigenetics vol. 7,1 57. 27 May. 2015, doi:10.1186/s13148-015-0089-x 7. Han D, Yu T, Dong N, Wang B, Sun F, Jiang D. Napabucasin, a novel STAT3 inhibitor suppresses proliferation, invasion and stemness of glioblastoma cells. J Exp Clin Cancer Res. 2019;38(1):289. Published 2019 Jul 5. doi:10.1186/s13046-019-1289-6 8. Wang D, Yuan W, Wang Y, et al. Serum CCL20 combined with IL-17A as early diagnostic and prognostic biomarkers for human colorectal cancer. J Transl Med. 2019;17(1):253. Published 2019 Aug 6. doi:10.1186/s12967-019-2008-y 9. Liu L, Liu X, Dong Z, et al. N6-methyladenosine-related Genomic Targets are Altered in Breast Cancer Tissue and Associated with Poor Survival. J Cancer. 2019;10(22):5447‐5459. Published 2019 Aug 29. doi:10.7150/jca.35053 10. Chen H, Pan D, Yang Z, Li L. Integrated analysis and knockdown of RAB23 indicate the role of RAB23 in gastric adenocarcinoma. Ann Transl Med. 2019;7(23):745. doi:10.21037/atm.2019.11.130 11. Apaya MK, Shiau JY, Liao GS, et al. Integrated omics-based pathway analyses uncover CYP epoxygenase-associated networks as theranostic targets for metastatic triple negative breast cancer. J Exp Clin Cancer Res. 2019;38(1):187. Published 2019 May 9. doi:10.1186/s13046-019-1187-y 12. Wang XL, Shi WP, Shi HC, et al. Knockdown of TRIM65 inhibits lung cancer cell proliferation, migration and invasion: A therapeutic target in human lung cancer. Oncotarget. 2016;7(49):81527‐81540. doi:10.18632/oncotarget.13131 13. Chen Y, Peng C, Chen J, et al. WTAP facilitates progression of hepatocellular carcinoma via m6A-HuR-dependent epigenetic silencing of ETS1. Mol Cancer. 2019;18(1):127. Published 2019 Aug 22. doi:10.1186/s12943-019-1053-8 14. Liao M, Liao W, Xu N, et al. LncRNA EPB41L4A-AS1 regulates glycolysis and glutaminolysis by mediating nucleolar translocation of HDAC2. EBioMedicine. 2019;41:200‐213. doi:10.1016/j.ebiom.2019.01.035 15. 高通量测序后的实验验证手段——转录组篇(上)

细胞生物学Q1区。期刊接收的Original Article、Protocol和Review领域包括:细胞生物学、转录基因组学、蛋白质和代谢组学、信号转导、生物组学、干细胞等几乎所有与细胞相关的研究领域。

代谢组的投稿期刊

之前本来打算根据自己对蛋白质组学数据分析的经验和理解写一系列相关教程出来供复习参考,没想到在网上查到别人已经做过了,而且笔记相当全面,从样本处理到质谱仪原理再到数据分析等等都有提及,虽然是2016-2017年的课程,但内容并未过时,对我自己也大有益处。虽然其中一些内容有重复,但我也不想再进行整理了。因为笔记链接只有微信稿,担心后期会失效,所以这里只是简单地拷贝过来,以供复习之用。

1. 蛋白质组学研究方法概述(上) 1. 蛋白质组学研究方法概述(下) 2. 蛋白质组学样品前处理(1) 2. 蛋白质组学样品前处理(2) 2. 蛋白质组学样品前处理(3) 2. 蛋白质组学样品前处理(4) 3. 蛋白质谱的原理及使用(1) 3. 蛋白质谱的原理及使用(2) 3. 蛋白质谱的原理及使用(3) 3. 蛋白质谱的原理及使用(4) 4. 蛋白质组学数据分析基础(1) 4. 蛋白质组学数据分析基础(2) 4. 蛋白质组学数据分析基础(3)

库鑫 博士,2007年毕业于华中科技大学同济医学院,获学士学位。同年9月被保送至中科院上海药物研究所并于2010年取得硕士学位。2010年10月至2014年6月在德国慕尼黑工业大学(Technische Universität München)生物分析与蛋白质组学研究所(Prof. Bernhard Kuster)攻读博士学位,专业方向为基于串联质谱的蛋白质组学在肿瘤药物研究中的应用。库鑫在博士期间发展了基于定量质谱的化学蛋白组学方法用于近生理条件下激酶小分子药物脱靶效应的研究,相关结果发表于J Prot Res, J Prot等杂志上。现任职于上海交通大学系统生物医学研究院,研究方向:肿瘤相关生物标志物的发现和蛋白质糖基化修饰的研究。

刘晓慧 博士,高级工程师,复旦大学化学系/生物医学研究院 。 蛋白质组学与系统生物学实验室,2003年毕业于湖南师范大学 获理学学士学位,2006年毕业于湖南师范大学 获生物化学与分子生物学硕士学位,2014年毕业于复旦大学,获化学生物学博士学位。2006年至今,工作于复旦大学化学系,从事基于生物质谱的蛋白质和多肽定量方法的应用和开发,熟悉iTRAQ,MRM,MRM-HR,SWATH等相关技术,参与发表相关论文30余篇。

李溱 博士,副教授。中国农业大学生物学院,植物生理学与生物化学国家重点实验室,中国农业大学“985”功能基因组中心生物质谱实验室。李博士1999年毕业于北京师范大学,获得理学学士学位,2007年毕业于美国德克萨斯州Texas A&M大学,获得博士学位。2008年-2009年在University of Illinois at Urbana-Champaign从事博士后研究,2011年至今,就职于中国农业大学生物学院,负责生物质谱实验室日常运行,对外提供蛋白质组学和代谢组学技术服务,开展基于高分辨质谱技术的植物代谢组学和蛋白质组学研究工作。

廖日晶 博士,副研究员。2006.9-2011.7于中科院上海有机化学研究所硕博连读,研究方向为天然产物抗生素的生物合成机制,2011.8-2015.5于诺华(中国)生物医学研究所从事博士后研究,研究方向为运用生物质谱技术开发组蛋白后修饰的新型分析方法学。2015年6月至今任中科院上海临床研究中心副研究员,从事生物质谱技术在基础以及临床科研方面的运用和开发新型分析方法学的研究。在攻读博士与博士后期间,以第一作者身份在美国化学会志(JACS IF: 13.0)、分析化学(Analytical Chemistry IF: 5.9)、化学和生物学(Chemistry & Biology IF: 6.6)等重要刊物上发表多篇论文

沈诚频 博士,2005年毕业于复旦大学化学系,获得理学学士学位;同年保送至复旦大学生物医学研究院攻读博士学位,师从复旦大学生物医学研究院常务副院长杨芃原教授,2011年获得理学博士学位,攻读博士学位期间,作为访问学者于2009年-2011年前往美国麻省理工大学生物工程系交流学习。主要开展的工作包括:人肝蛋白质组学,蛋白质组学信息学,糖蛋白质组学。于2011年作为应用科学家加盟康昱盛信息科技有限公司生物信息学部,并于2013年聘为公司高级应用科学家及生物信息学部主管,主要负责蛋白质组学及生物通路分析软件和方法的技术支持及方案咨询。

唐家澍 博士,2006年毕业于南京大学理科强化部,生物化学专业,获得学士学位。2013年毕业于中科院上海生化所,师从曾嵘研究员,主要从事蛋白质组学技术和应用研究。随后在中科院上海生科院系统生物学重点实验室进行了为期两年的博士后训练,主要从事系统生物学和基于分子生物学的功能研究。从2016年1月开始,在赛默飞世尔科技色谱质谱事业部担任应用工程师,主要擅长磷酸化蛋白质组学技术,定量蛋白质组学技术以及质谱数据的生物统计学和生物信息学分析。

吴泽明 赛默飞质谱代谢组学业务发展经理,2012年毕业于中科院大连化物所,同年加入Thermo,先后任Chemist、Application Scientist与北区技术负责人等职。近10年来一直从事和密切介入基于质谱技术的代谢组学、脂质组学相关研究,在PNAS、MOL BIOSYST等杂志发表论文多篇。现专注致力于质谱与各种分离技术在Metabolomics/Lipidomics及其在疾病、生物功能与食品组学等方向的应用方法开发、技术支持和科学项目合作。

张伟 博士,赛默飞转化医学业务发展经理,在Chem. Comm., Anal. Chem., J. Proteome Res., Proteomics, J.Proteomics等知名杂志上发表论文14篇,其中第一作者10篇。2012年毕业于复旦大学生物医学研究院,获博士学位;2012年加入赛默飞公司,从事生物质谱与蛋白质组学领域的研究、技术开发、市场开拓工作。

周岳 毕业于中国科学院生物物理研究所,致力于蛋白质组学,生物制药的应用开发,技术支持和科学研究工作。在生物质谱蛋白定性分析,翻译后修饰以及蛋白定量方面有丰富的经验,参与完成多篇高水平文章的质谱工作。在赛默飞世尔科技担任质谱应用工程师期间,优化了QE系列产品,fusion系列产品在蛋白质组学应用中的质谱参数,并在Orbitrap用户中进行推广。建立了基于QE,Fusion的DIA数据采集以及数据分析流程,实现了7500个蛋白的DIA定量分析。

2022年1月19日,广西农科院经济作物所严华兵团队联合菲沙基因在园艺领域权威期刊 Horticulture Research (IF=6.79)上发表了题为“ 《Chromosomal-level genome and multi-omics dataset of Pueraria lobata var. thomsonii provide new insights into legume family and the isoflavone and puerarin biosynthesis pathways》 ”的研究论文,该研究通过PacBio和Hi-C测序 构建了粉葛高质量的染色体水平基因组,解析了粉葛的基因组特征,随后利用包括基因组、转录组、代谢组在内的多组学技术深入解析了粉葛重要次生代谢物的生物合成机制 ,从而为粉葛的资源利用、遗传育种等研究提供了新见解。

鉴于粉葛杂合度较高,研究者选用了PacBio和Hi-C测序,构建的粉葛基因组大小为 1.38Gb , Contig N50=598 kb ,并将99.3%的序列锚定到 11 条染色体上,BUSCO评估基因组完整性为 92.9% 。通过注释,共获得了 45,270 个蛋白编码基因,其中94.4%的基因可以得到功能注释,基因组中重复序列占比为 62.7% 。

将粉葛与16个近缘物种(包含5个豆科植物)进行比较基因组分析,结果表明:

通过对高葛根素ZG-19和低葛根素ZG-39进行转录组和代谢组分析,研究者检测到了614种225种 差异代谢物(DMs) ,1814个 差异表达基因(DEG) ,DMs和DEG的丰富功能类别重叠,这说明 它们都是与类黄酮、异黄酮和ABC转运相关的基因或代谢物 。

进一步分析 代谢物与基因表达的相关系数 ,结果表明代谢物和基因对在样本中高度相关,60%的显著相关性涉及上调的代谢物和下调或不变的基因,在15%的显著相关性中, 代谢物和基因表达的变化方向相同 。

此外,研究者在异黄酮生物合成途径中发现了大量的DMs和DEG。这充分解析了粉葛中异黄酮的生物合成途径。

通过 同源基因搜索 ,研究者发现编码葛根素合成途径中关键酶的9个基因家族在粉葛中都有所 扩张 ;通过分析糖基转移酶家族中催化糖基化修饰的基因,共鉴定出104个GT基因,有13个基因与8-C-葡萄糖基转移酶(8-C-GT)同源,其中6个与先前研究的催化大豆苷元C-糖基化为葛根素的PIUGT43基因同源。

编码大豆异黄酮合酶(IFS)的基因(CHR11G3854.1)催化着葛根素合成的中间代谢物大豆苷元的合成, 被鉴定为与葛根素的合成途径高度相关 。总之,上述分析初步解析了粉葛中葛根素的生物合成途径。

综上,该研究通过构建高质量的粉葛基因组解析了粉葛基因组的进化特征;通过多组学分析深入解析了粉葛中重要次生代谢物异黄酮、葛根素等生物合成途径,从而为粉葛的资源利用、遗传育种等研究提供了新见解。

广西农业科学院经济作物研究所严华兵研究员团队近些年与华中农业大学、菲沙基因、上海大学、广西中医药大学、广西医科大学等单位持续开展联合攻关,在全球葛根资源收集与鉴定评价、葛属资源分类、葛根基因组与分子生物学、粉葛和野葛品种选育、健康种苗生产、高产高效栽培等方面取得了一系列的成果。团队到目前为止,已广泛收集全球葛属种质资源419份,包括野葛、粉葛、葛麻姆、大花葛、泰葛、苦葛、红葛、须弥葛、食用葛等;通过开发葛SSR分子标记,构建了广西葛核心种质库;通过广泛靶向代谢组解析葛属葛种野葛、粉葛和葛麻姆等3个变种块根中影响食用品质和药用品质的代谢差异;结合表型鉴定通过叶绿体基因组研究,揭示了葛及其近缘种之间的系统发育关系;挖掘了调控葛根素合成代谢相关的结构基因和转录因子,并正在开展相关基因功能验证工作;选育出适合开发葛花茶、高葛根素粉葛、无渣粉葛、药用野葛等系列葛根新品种,并逐步建立配套种苗繁育和高效栽培技术。以上研究相关成果先后发表在Horticulture Research、Frontier in Plant Science、Molecules、植物遗传资源学报、植物生理学报等期刊,相关研究先后得到了国家自然科学基金委、广西科技厅等部门项目的资助。粉葛基因组文章的发表将进一步推动全世界葛属植物的进化与分类研究,促进我国葛根产业的科技进步,发挥基础研究源头供给作用以进一步推动广西地方特色优势粉葛产业的高质量发展。

说到葛根大家一定不陌生,野葛在美国开始被用作生态治理后来泛滥成灾被列为入侵生物,泰国葛根产业及其健康功效风靡全球。最早关于葛的文献记载出现在周代,《神农本草经》记载“(葛根)主消渴,身大热,呕吐,诸痹,起阴气,解诸毒”。葛根具有解肌退热,生津止渴,透疹,升阳止泻,通经活络,解酒毒等。现代药理研究表明,葛根在改善心血管系统、抗氧化、降血糖、解热、抗炎、解酒护肝、神经保护、抗骨质疏松和雌激素样作用等方面具有较好的药理活性。

粉葛为豆科葛属植物,为药食同源两用植物,素有“亚洲人参”、“南葛北参”的美誉,广泛种植在广西、广东、江西、湖南、湖北等地,其中广西是粉葛主要种植产区,种植面积全国第一!其中梧州藤县和平镇是中国著名的“葛根之乡”,藤县葛色天香和平粉葛产业(核心)示范区被评为广西现代特色农业(核心)四星级示范区。当前广西粉葛产业发展仍然面临很多亟待解决的问题,粉葛基因组的解析将为粉葛产业高质量发展提供科技支撑。

转自:

代谢组学中文期刊投稿

一般都是省级的比较多,你要用于评职呢 还是?

研究对象 :肝脏肥大细胞(CCH)的肝切除(Phx) 标题 :肝再生过程细胞代谢路径的重构 期刊 :Developmental Cell(IF=9.616) 发表时间 :2018.10.18 关键词 :肝脏再生,转录组学,代谢组学,高级分子影像学,线粒体氧化线肝脏疾病与肝细胞分裂能力下降密切相关,并且细胞代谢对组织稳态和再生很重要。由于代谢变化是肝脏疾病的标志,因而对代谢和细胞分裂之间的联系进行了研究。运用转录组学、代谢组学分析以及功能性氧化还原体内成像技术,确定了肝脏再生过程不同阶段的全局性代谢变化。结果表明,再生期间阻断肝细胞分裂导致线粒体功能障碍和氧化途径的下调。这导致氧化还原比率增加和线粒体功能受损,并引起丙氨酸转氨酶的活性增强,使得丙酮酸产生丙氨酸和α-酮戊二酸的流量增加。总的说来, 肝再生过程中,细胞分裂导致肝脏代谢重塑。此外,肝细胞具有灵活的代谢机制,能够动态适应组织再生过程中的变化。 细胞和有机体肝脏再生过程的生理变化 该研究使用切除2/3肝脏质量的小鼠模型(PHx),使用鬼笔环肽和DAPI对冷冻切片进行染色来呈现再生过程不同阶段(图1A)中肝细胞大小的变化(图1B)。 图1 野生型小鼠肝脏再生的生理学变化 肝脏切除后细胞尺寸的变化如图1C,在36 h达到峰值,然后又慢慢降低。图1D中36 h的细胞存在两个肝细胞群,而其他时间点仅有一个细胞群,这表明在36 h肝细胞群可能存在异质性。在研究细胞周期时(图1E),确定了两个重要基因的表达––––细胞周期蛋白依赖性激酶1(Cdk1)和细胞周期蛋白依赖性激酶抑制剂(p21CIP1/WAF1)。Cdk1是细胞分裂的必需激酶,其缺失肝细胞将不会分裂。如图所示,Cdk1的RNA水平36 h达到峰值并在168 h回到基线,表明这段时间的细胞分裂很重要。相反,p21CIP1/WAF1的RNA水平在8 h相较于0 h增加,在36 h(DNA复制期)一直保持很低的水平(图1F)。 另外,该研究测量了肝损伤和代谢的两个替代指标––––血清中丙氨酸转氨酶(ALT)和葡萄糖的水平。8h的ALT比0 h增加24倍,随后逐渐恢复到初始水平(图1G)。在肝再生的起始阶段(8 h)总葡萄糖大概降低到初始阶段的一半,然后在168 h时恢复到0 h的水平。这些结果均表明肝脏再生伴随着转氨酶和葡萄糖代谢的变化。 转录组学结合体内分子成像技术揭示肝再生过程中生物氧化的变化 该研究使用RNA-seq确定mRNA的表达量,以此来探究与肝再生相关的代谢途径。统计学分析表明显著变化有60个途径,其中24个含有最具代表性的基因组(图2A)。 图2 肝再生过程中的肝细胞分裂伴随着NADH和FAD的增加 由于通过基因表达数据确定氧化代谢的变化存在一定的局限,本研究使用活体成像技术来分析小鼠的代谢。如图2B所示,NADH在肝再生期间持续的增加,表明NADH在肝脏分裂和组织恢复中起作用。总FAD显示出类似的趋势(图2C和图2F)。此外,通过生物化学法测定脱朊样品中总NADH(图2G)和NADPH(图2H),结果表明NADH在肝再生过程中表现出持续的增加,而NADPH在8 h时达到峰值,随后降低。这些结果表明活体成像能够用于肝再生期间氧化还原力的测量,并且在野生型动物的肝再生过程中NADH起主导作用。 此外,该研究测量了NAD+依赖型的谷氨酰胺合酶(Nadsyn1)和烟酰胺磷酸核糖转移酶(Nampt)的基因表达(图2I和图2J),它们分别参与NAD+的从头合成和补救途径。96 h这两种酶的mRNA表达量均达到最高。图2K中,0 h 到8 h谷胱甘肽过氧化物酶(Gpx3) 的表达量增多,这与NADPH的变化趋势一样,而过氧化氢酶(Cat) (图2L)和超氧化物歧化酶(Sod1) (图2M)的mRNA水平大体上是减少的。总之,这些结果表明生物氧化过程在肝再生过程中发挥不同的作用:肝脏再生的初始阶段需要氧化压力,之后对于NADH的需求增加,后期组织损伤得以消退。 抑制肝细胞分裂导致氧化代谢减少和氧化还原比增加 肝切除之前,与WT相比, 肝细胞代偿性肥大(CCH)的小鼠的ALT活性约是WT的2倍,8 h后活性最高,然后在96 h恢复到初始水平(图3A和1G)。然而,在每个时间点,CCH中ALT活性均高于WT,表明CCH的肝损伤比WT小鼠更严重。相较于WT小鼠,CCH小鼠的血糖水平明显减少,并且一直保持在较低的水平直到168 h才恢复到正常水平(图3B和1H)。此外,图像分析表明,36 h的CCH细胞大小是WT的3倍(图3C,3E)。代谢通路分析结果表明下调途径大多为代谢反应,氧化途径的下调更加显著,并且这一现象在CCH中比WT中更加明显(图3D)。 图3 肝细胞补偿性肥大的小鼠肝再生过程中氧化作用减少 通过CCH与WT的转录组学分析,揭示CCH小鼠生理学变化的根本原因。研究发现848(6.3%)个基因的表达变化倍数大于2,2305个基因(17%)的变化倍数大于1.5。 为了进一步验证氧化代谢的减少,然后该研究使用活体成像技术来对CCH和WT中NADH和FAD进行定量(图3E-3H)。FAD在再生过程中略微增加,但NADH在8 h和36 h明显下降(图3I),然后在96 h恢复到初始水平(图3J)。在WT肝脏再生期间,氧化还原比接近1,这表明细胞处于氧化还原稳态。但是,CCH肝脏中的氧化还原比较高。为研究氧化反应的来源,对NAD+/NADH和NADP+/NADPH进行了测定(图3N和3O)。有趣的是,与0 h相比,再生期间WT小鼠的NAD+/NADH降低,表明线粒体代谢为肝脏再生提供了支持。NADP+/NADPH的比例在8 h和36 h降低,但在96 h增加约3倍。在CCH肝脏中,NAD+/NADH显著升高,表明减少的氧化代谢可能与线粒体代谢的受损有关。 CCH组织再生导致线粒体功能降低 线粒体氧化代谢是肝再生过程所需代谢物和能量的最有效的产生方式。由于线粒体电子传递链(ETC)是NADH和FAD的主要来源之一,因而CCH组织再生受损,并且肝脏的再生速度将慢于WT。但事实上,肝脏再生的速率并未受到严重损害。所以,尽管氧化途径显著减少,CCH的肝再生也能够完成。为了验证这一结论,对CCH再生过程线粒体中的代谢进行了研究。首先分析了OXPHOS蛋白的表达(图4A),在WT(图4B)和CCH(图4C)中复合物II,琥珀酸脱氢酶B(SDHB)的变化较明显。此外,WT中SDHB蛋白浓度与肝脏中的NADH荧光成正相关(图4D)。SDHB是唯一参与TCA和OXPHOS代谢的酶,因此它是线粒体代谢反应的中心酶。图4 CCH组织再生与线粒体代谢受损的相关性然后,该研究使用Seahorse分析原代肝细胞的线粒体呼吸参数。结果表明WT动物的肝细胞(iWT),在肝切除后36 h耗氧率(OCR)显着增加(图4E),其与线粒体呼吸参数的增加相关(图4F)。CCH的肝细胞(iCCH)在肝切除后36 h后无明显增加(图4G),线粒体呼吸参数基本不变(图4H)。这表明WT肝细胞从静止状态(肝切除前)到增殖状态(DNA复制期)伴随着OCR的增加。相反,CCH肝细胞由于Cdk1的缺失而不增殖,因此它们需要替代的代谢变化。将iWT和iCCH肝切除前后的OCR值进行比较时,结果显示iCCH肝细胞的呼吸储备能力显著降低,表明iCCH肝细胞的能量应激能力受损(图4I)。此外,iCCH肝细胞在肝切除36 h基础代谢和ATP相关的呼吸减少,这表明iCCH肝细胞从线粒体呼吸作用产生ATP的能力下降(图4J)。同时通过肝细胞的四甲基罗丹明乙酯(TMRE)染色测定线粒体膜电位,在肝切除之前,与iWT相比,iCCH肝细胞的线粒体中TMRE信号无明显差异(图4K和4L)。但在肝切除36 h,iCCH肝细胞的TMRE信号相较于野生型减少很多(图4M和4N)。这些结果都证实了在肝再生期间,iCCH肝细胞的线粒体代谢反应显著降低。 转录组学和代谢组学整合分析揭示了CCH肝再生引起氨基酸代谢增加 为了解肝再生过程中代谢途径的全局变化并且深入了解其代谢变化,该研究使用QTOF质谱法进行了非靶向代谢组学分析,并且将RNA-seq和QTOF的数据放在一起进行整合分析。 WT与CCH的比较中,通过RNA-seq和代谢组学数据整合分析,结果表明12个途径在所有时间点均有显著改变,表明这些路径是细胞肥大或Cdk1缺失后特有的代谢路径(图5A)。与WT相比,CCH的次级代谢产物和碳水化合物的合成下调,但丙氨酸、天冬氨酸和谷氨酰胺代谢上调(图5B)。具有mRNA和代谢物的变化的图谱用以描绘再生肝脏的代谢组学的整体变化(图5C)。总体而言,氨基酸代谢包括富马酰乙酰乙酸水解酶(Fah)和精氨基琥珀酸合成酶1(Ass1) 的减少,此外,CREB,Jun,ERK,AKT和AMPK的信号通路也有所增加。 图5 代谢组学和转录组学的整合分析揭露了CCH肝再生过程的代谢重塑 此外,本研究通过LC-MS进行了靶向代谢组学分析(图5D-5I)。CCH中碳水化合物代谢衍生物略微减少,如己糖和磷酸烯醇丙酮酸(图5D和5E),ATP和GMP的水平没有太大的变化(图5F和5G),表明WT和CCH中能量持续不断得产生。这可能是由于存在其他的补偿途径,因为在一般情况下,存在其他途径可以补救减少的氧化代谢。为了证实这一猜测,对苹果酸和天冬氨酸的浓度进行了测定,它们在WT和CCH中水平相当,这可能是由于补偿途径的作用(图5H和5I)。同时,通过qPCR 测定了碳水化合物(图5J-5M)和氨基酸代谢(图5N和5O)中几种酶的mRNA表达,结果表明G6Pase水平在WT中相对恒定,而在CCH中36 h和168 h达到峰值, (图5J)。Pepck和Pfkl大约8 h达到峰值且随后减少(图5K和图5L), 而Pklr是丙酮酸激酶的肝脏同工酶,8-96 h显著降低(图5M),表明碳水化合物代谢可能减少。编码线粒体ALT(Gpt2) 和天冬氨酸转氨酶AST(Got1)的基因表达量在8 h达到峰值,随后在WT和CCH中再生期间降低,表明碳水化合物代谢相关酶表达减少的同时转氨作用相关酶的表达增加。 总之,这些实验结果表明,当肝细胞的细胞分裂减少时,肝NADH减少与氨基酸代谢的增加相关。这些结果表明只有产生于线粒体的NADH可能受到影响,因为氧化还原辅酶可来自其他代谢路径,例如苹果酸-天冬氨酸线粒体穿梭系统。最后,线粒体ALT表达的增加表明丙酮酸转氨酶可能在这一代谢重塑中起重要作用。 代偿性肥大细胞的肝再生导致丙酮酸通量的重塑 代谢组学和转录组学数据的生物信息学整合分析表明,CCH的肝再生过程中,生物氧化和碳水化合物代谢降低,丙氨酸和谷氨酰胺途径增强,这表明碳水化合物向谷氨酰胺利用的转变。因此,测量了AST、丙酮酸羧化酶+丙酮酸脱氢酶(PC + PDH)、乳酸脱氢酶和ALT的代谢通量,它们能分别将葡萄糖生成的丙酮酸转化为乳酸或丙氨酸(图6A)。在所有条件下,AST和PC + PDH均没有什么变化,表明乙酰辅酶A和天冬氨酸水平不受影响。在肝脏切除之前,与WT小鼠相比,CCH中LDH和ALT的代谢通量略微增加,表明两者的代谢通路是相当的(图6B和6C)。与WT相比,肝切除后36 h,ALT代谢通量显着增加(图6E),但LDH却没有增加。这表明CCH在肝组织再生期间,碳水化合物代谢物(丙酮酸)主要用于产生丙氨酸而不是乳酸。 图6 CCH肝脏再生中丙氨酸代谢增加了α-酮戊二酸和葡萄糖的产生 通过LC-MS测量肝再生期间不同时间点丙酮酸转化为丙氨酸和乳酸的相关代谢物。在WT中,α-酮戊二酸,乳酸,谷氨酰胺和谷氨酸的水平在肝再生过程中相当恒定,但丙酮酸和丙氨酸在后期略有下降(图6F)。在CCH中,丙酮酸,乳酸和谷氨酰胺是恒定的,但丙氨酸,α-酮戊二酸和谷氨酸明显增加。除丙氨酸外,在再生期间CCH肝脏中谷氨酸和α-酮戊二酸的含量也增加,这表明当线粒体不能有效工作时,用于合成代谢途径的谷氨酰胺的使用量增加。为了证实这一点,对氨基酸代谢的替代标记----血尿素氮(BUN)进行了测量。结果表明除了168 h,CCH小鼠中BUN均少于WT(图6H),表明在CCH肝脏中线粒体氧化减少伴随ALT活性增强和丙氨酸的增加,并以此来以维持肝脏再生所需的合成代谢途径。 最后,探究了肝再生过程中ALT活性增强的潜在生理影响。肝脏中丙氨酸的主要功能是进行糖异生。因此,本研究探究了当线粒体代谢受损时, ALT活性的增强是否会影响葡萄糖的浓度。首先进行了丙氨酸耐量试验,在先前禁食的小鼠中注射了大量丙氨酸,并在腹膜内注射后的不同时间点测量了血液中的葡萄糖浓度。在WT小鼠中,丙氨酸注射对葡萄糖水平具有轻微影响,在肝切除后36 h后略微增加,在90 min内恢复正常。在肝切除前的CCH肝脏中,葡萄糖水平与WT相当。与WT小鼠相比有趣的是,在肝切除后36 h,丙氨酸注射后,CCH中血糖水平显著增加,注射120 min后葡萄糖浓度是初始水平的2倍(图6I)。 为了进一步验证这种效应是由ALT活性增强引起的,使用转氨酶抑制剂氨氧基乙酸半盐酸盐(AOA)阻断ALT活性。将AOA注射5天并在CCH和WT同窝小鼠中进行肝切除,然后在肝切除后36 h进行丙氨酸耐量试验。在CCH和WT小鼠中,葡萄糖水平保持不变,表明丙氨酸仅在ALT存在活性时才能够增加血糖浓度。 总结 本文通过转录组学分析、代谢组学分析和活体成像技术来描述肝脏再生的代谢变化,揭示了由线粒体功能受损和细胞氧化减少引起的代谢重塑,特别是当代偿性肥大细胞的肝脏再生时这一现象更加明显。本研究的直接临床意义是使用NAD+补充来调节NADH水平的可能性,以促进组织损伤后的肝细胞分裂或调节丙氨酸水平。

以下是北大中文核心的目录,在北大的目录里级别其实难度,级别都是一样的,所以找合适自己的研究方向就可以,没有容难的区别。因此优助推荐从目录里找:中华医学杂志 第三军医大学学报 南方医科大学学报 中国医学科学院学报 北京大学学报(医学版) 中山大学学报(医学科学版) 第二军医大学学报 解放军医学杂志 四川大学学报(医学版) 中南大学学报(医学版) 西安交通大学学报(医学版) 浙江大学学报(医学版) 中国现代医学杂志 医学争鸣 复旦学报(医学版) 重庆医科大学学报 上海交通大学学报(医学版) 中国全科医学 吉林大学学报(医学版) 华中科技大学学报(医学版) 首都医科大学学报 中国医科大学学报 重庆医学 医学研究生学报 实用医学杂志 广东医学 南京医科大学学报(自然科学版) 郑州大学学报(医学版) 中国比较医学杂志 安徽医科大学学报 山东大学学报(医学版) 上海医学 军事医学 东南大学学报(医学版) 福建医科大学学报 山东医药 中华流行病学杂志 中国卫生经济 中华预防医学杂志 中国公共卫生 卫生研究 中华医院感染学杂志 中国卫生统计 中国卫生事业管理 中国医院管理 营养学报 中华医院管理杂志 环境与健康杂志 中国感染控制杂志 环境与职业医学 现代预防医学 中国卫生政策研究 中国卫生资源 卫生经济研究 中国健康教育 中国消毒学杂志 中华疾病控制杂志 中国学校卫生 中国疫苗和免疫 中华地方病学杂志 中国艾滋病性病 中国地方病防治杂志 中国职业医学 中草药 中国中药杂志 中药材 针刺研究 中成药 中华中医药杂志 北京中医药大学学报 中国中西医结合杂志 中药新药与临床药理 中国针灸 中药药理与临床 天然产物研究与开发 中华中医药学刊 南京中医药大学学报 中医杂志 辽宁中医杂志 中国实验方剂学杂志 中国中医基础医学杂志 时珍国医国药 中国人兽共患病学报 中国寄生虫学与寄生虫病杂志 中华医学遗传学杂志 生物医学工程学杂志 中国生物医学工程学报 中国病理生理杂志 医用生物力学 细胞与分子免疫学杂志 免疫学杂志 生理学报 中华微生物学和免疫学杂志 中国心理卫生杂志 解剖学报 中国免疫学杂志 病毒学报 中国临床解剖学杂志 现代免疫学 解剖学杂志 中国病原生物学杂志 生物医学工程研究 寄生虫与医学昆虫学报 中国临床心理学杂志 神经解剖学杂志 生理科学进展 中国医学影像技术 中国康复医学杂志 中华危重病急救医学 中华病理学杂志 中华超声影像学杂志 中国感染与化疗杂志 中国超声医学杂志 临床与实验病理学杂志 中华物理医学与康复杂志 中华急诊医学杂志 中华检验医学杂志 中国康复理论与实践 中华护理杂志 中国急救医学 中国中西医结合急救杂志 中国医学影像学杂志 中国临床医学影像杂志 中国输血杂志 中国组织工程研究 中华心血管病杂志 中华结核和呼吸杂志 中华内科杂志 中华肝脏病杂志 中华内分泌代谢杂志 中华高血压杂志 中国血吸虫病防治杂志 中国实用内科杂志 中国实验血液学杂志 中华肾脏病杂志 中国糖尿病杂志 中华血液学杂志 中国内镜杂志 中国老年学杂志 临床心血管病杂志 中华消化杂志 中华风湿病学杂志 中国动脉硬化杂志 中国呼吸与危重监护杂志 中华老年医学杂志 中华消化内镜杂志 中华传染病杂志 中国循环杂志 肠外与肠内营养 中华外科杂志 中华骨科杂志 中国实用外科杂志 中国矫形外科杂志 中国修复重建外科杂志 中国脊柱脊髓杂志 中华显微外科杂志 中华实验外科杂志 中华泌尿外科杂志 中华神经外科杂志 中华消化外科杂志 中华创伤骨科杂志 中国普通外科杂志 中华创伤杂志 中华手外科杂志 中国微创外科杂志 中华男科学杂志 中华麻醉学杂志 中华普通外科杂志 中华肝胆外科杂志 中国骨质疏松杂志 中华胃肠外科杂志 临床麻醉学杂志 肾脏病与透析肾移植杂志 中华整形外科杂志 中华烧伤杂志 中华妇产科杂志 中国实用妇科与产科杂志 实用妇产科杂志 现代妇产科进展 中国妇产科临床杂志 生殖与避孕 中华儿科杂志 中国循证儿科杂志 临床儿科杂志 中华实用儿科临床杂志 中国当代儿科杂志 中国实用儿科杂志 中华肿瘤杂志 肿瘤 中国肿瘤生物治疗杂志 中华放射肿瘤学杂志 中国肿瘤临床 中国癌症杂志 肿瘤防治研究 中国肺癌杂志 中华肿瘤防治杂志 中华神经科杂志 中华行为医学与脑科学杂志 中国神经精神疾病杂志 中华精神科杂志 中国脑血管病杂志 中风与神经疾病杂志 中华神经医学杂志 临床神经病学杂志 国际神经病学神经外科学杂志 中华皮肤科杂志 临床皮肤科杂志 中国皮肤性病学杂志 中华耳鼻咽喉头颈外科杂志 临床耳鼻咽喉头颈外科杂志 中华耳科学杂志 听力学及言语疾病杂志 中华眼科杂志 中华眼底病杂志 中华实验眼科杂志 眼科新进展 眼科 中华口腔医学杂志 华西口腔医学杂志 实用口腔医学杂志 口腔医学研究 国际口腔医学杂志 中华放射学杂志 中国介入影像与治疗学 介入放射学杂志 临床放射学杂志 中国运动医学杂志 实用放射学杂志 中华核医学与分子影像杂志 中国医学计算机成像杂志 放射学实践 中华放射医学与防护杂志 航天医学与医学工程 药学学报 中国药学杂志 中国药理学通报 中国新药杂志 中国药科大学学报 药物分析杂志 中国医院药学杂志 中国医药工业杂志 毒理学杂志 中国抗生素杂志 中国临床药理学杂志 沈阳药科大学学报 中国新药与临床杂志 国际药学研究杂志 中国药理学与毒理学杂志 中国药房 医学与哲学(B)

1 高等植物中的多肽激素 李琛; 宋秀芬; 刘春明 中国科学院植物研究所植物信号转导与代谢组学研究中心; 中国科学院植物研究所植物信号转导与代谢组学研究中心; 中国科学院植物研究所植物信号转导与代谢组学研究中心 北京 【期刊】植物学通报 2006-09-302 被子植物胚胎发育的分子调控 蒋丽; 齐兴云; 龚化勤; 刘春明 中国科学院植物研究所信号转导与代谢组学研究中心; 中国科学院植物研究所信号转导与代谢组学研究中心; 中国科学院植物研究所信号转导与代谢组学研究中心 北京 【期刊】植物学通报 2007-05-153 科学之游戏规则 刘春明 中国科学院植物研究所 【期刊】生命世界专栏连载

相关百科

热门百科

首页
发表服务