首页

> 学术论文知识库

首页 学术论文知识库 问题

吡啶类化合物的合成毕业论文

发布时间:

吡啶类化合物的合成毕业论文

吡啶和甲基吡啶通常从煤焦化副产中回收,它分布在焦炉煤气、粗苯和焦油中。一般从煤气转移到硫铵母液里的吡啶类水合物沸点都很低,在95-97 ℃之间,回收得到的粗轻吡啶盐基中,2-甲基吡啶含15%左右,进一步精馏可切取得到2-甲基吡啶。随着吡啶和甲基吡啶用途的扩大,合成法生产吡啶和甲基吡啶不断发展。国外约95%的吡啶及吡啶类化合物是用合成法生产的。主要的合成法有乙醛法、乙炔法、丙烯腈法等。乙醛法: 乙醛、甲醛和氨反应,主要产品是2-甲基吡啶、3-甲基吡啶和4-甲基吡啶。乙炔法: 乙炔和氨反应,主要产品是2-甲基吡啶和4-甲基吡啶。乙烯法: 乙烯和氨反应,主要产品是2-甲基吡啶和2-甲基-5-乙基吡啶。丙烯腈法: 丙烯腈和过量丙酮反应,主要产品是2-甲基吡啶。另外,丙烯醛和氨反应主要生成3-甲基吡啶。

2006 年第26 卷 有 机 化 学 Vol. 26, 2006第2 期, 260~262 Chinese Journal of Organic Chemistry No. 2, 260~262* E-mail: wuxiaohong@ March 14, 2005; revised June 2, 2005; accepted August 26, 2005.·研究简报·钯碳催化法合成4,4'-二甲基-2,2'-联吡啶吴晓宏* 杨占成 秦 伟 姜兆华(哈尔滨工业大学应用化学系 哈尔滨 150001)摘要 以4-甲基吡啶为原料, 钯碳催化合成了4,4'-二甲基-2,2'-联吡啶. 通过1H NMR, GC-MS, 元素分析对产物进行了表征, 对催化反应进行了分析, 并且讨论了钯碳催化反应的机理.关键词 4-甲基吡啶; 4,4'-二甲基-2,2'-联吡啶; 钯碳Synthesis of 4,4'-Dimethyl-2,2'-bipyridine Catalyzed by Pd/CWU, Xiao-Hong* YANG, Zhan-Cheng QIN, Wei JIANG, Zhao-Hua(Department of Applied Chemistry, Harbin Institute of Technology, Harbin 150001)Abstract 4,4'-Dimethyl-2,2'-bipyridine was synthesized from 4-methylpyridine using Pd/C as a product was characterized by 1H NMR, GC-MS spectra and elemental analyses. The catalytic mechanismof Pd/C was 4-methylpyridine; 4,4'-dimethyl-2,2'-bipyridine; Pd/C2,2'-联吡啶类化合物作为重要的化工合成中间体,能与各种金属离子反应生成配合物[1,2], 广泛应用于检测微量金属离子存在和含量的指示剂、光敏化剂[3]和金属类催化剂的配体[4]等. 4,4'-二甲基-2,2'-联吡啶是2,2'-联吡啶类化合物中重要的一种, 是合成敏化剂所需的一种重要原料, 尤其在染料敏化太阳能电池用的敏化剂领域, 其是合成敏化效果最好的染料RuL2(SCN)2 (L=2,2'-联吡啶-4,4'-二甲酸)的配体原料[5]. 近年来以镍和钯为催化剂合成2,2'-联吡啶成为研究热点, 如Tiecco研究小组[6], Caubere等[7]用镍化合物作催化剂以卤代吡啶为原料偶联成功地得到联吡啶; Hasson 研究小组[8]用镍和钯等过渡金属络合物催化下以卤代吡啶为原料, 合成得到了联吡啶. 但是由于以上这些方法的原料是卤代吡啶, 所以不能直接合成4,4'-二甲基-2,2'-联吡啶. 首先需要由4-甲基吡啶经取代反应制得2-卤代吡啶, 这样就大大降低了合成4,4'-二甲基-2,2'-联吡啶的纯度和收率, 提高了生产成本, 所以这种方法是不可取的.钯碳作为一种重要的催化剂是将金属钯附着在碳基体上形成的, 它是一种高效的加氢催化剂, 同时在偶联反应中也有重要的应用[9,10]. 采用钯碳作催化剂合成4,4'-二甲基-2,2'-联吡啶反应温和、产物分离简便、纯度高, 钯碳可重复使用, 并且未参加反应的4-甲基吡啶也可以重复利用.因而, 我们提出了一种以4-甲基吡啶为原料、钯碳为催化剂, 经济、简便地制备高纯度4,4'-二甲基-2,2'-联吡啶的方法(Eq. 1).1 实验部分 仪器和试剂1H NMR数据在Bruker AV300 (300 MHz)上测得,溶剂为DMSO, 以TMS 为内标; 气相色谱-质谱数据在5973N GC/MSD (Agilent Technologies, USA)上测得; 元No. 2 吴晓宏等:钯碳催化法合成4,4'-二甲基-2,2'-联吡啶 261素分析数据是在Italian 生产的Thermo Finnigan Eager300 上测得. 4-甲基吡啶购于J&K Chemica, 钯碳催化剂购于上海久山化学品有限公司, 其它原料为国产分析纯试剂. 实验步骤取4-甲基吡啶, 蒸馏去除反应物中的色素和其它杂质; 将蒸馏后的4-甲基吡啶 g 和钯碳催化剂 g按50∶1(物质的量比)的比例混合, 加热回流3 d, 抽滤,滤液用旋转蒸发器减压蒸发, 得白色固体, 用乙酸乙酯对产品进行重结晶, 即得到纯度≥99%的4,4'-二甲基-2,2'-联吡啶晶体 g, 收率. . 175~176℃;1H NMR (DMSO, 300 MHz) δ: (s, 6H, 2CH3), (d, J= Hz, 2H, H-5, H-5'), (s, 2H, H-3, H-3'), (d, J= Hz, 2H, H-6, H-6'), 与文献[11]一致; MS m/z:184 [M+], 169 [M+-CH3], 92 [M/2]+, 77 [M/2-CH3]+(产品质谱与4,4'-二甲基-2,2'-联吡啶标准质谱图的相似度为96%, 证明产品为目标产物). Anal. calcd forC12H12N2: C , H , N ; found C , , N .旋转蒸发反应液得到4-甲基吡啶 g; 反应后的钯碳回收可重复使用.2 结果与讨论 钯碳催化机理吡啶类化合物一个重要的反应类型是邻位和对位的亲核取代反应. 这是因为吡啶环上N原子的吸电子效应, 使得邻位和对位的电荷密度降低, 通过ab initio 分子轨道(MO)方法计算的吡啶环中各原子的π 电子密度[12]如图1所示. H也是一种离去基团, 4-甲基吡啶N的对位已经被甲基占据, 甲基的推电子作用对其间位的活化远小于对其邻位的活化, 即甲基邻位C上的电子密度增大程度远大于甲基间位C上的电子密度增大程度. 因而在N吸电子和甲基推电子的共同作用下, N 邻位最容易发生亲核取代. 钯碳催化反应就是利用了N和甲基的作用, 发生了亲核取代反应.图1 吡啶中π-电子密度的分布Figure 1 The distribution of π-electron density of pyridine催化反应主要经历三个过程(Scheme 1): 第一步,钯催化剂插入邻位氢和吡啶环之间形成中间体R-Pd-H;第二步, 过渡金属化产生R-Pd-R中间体; 第三步, 发生还原消除反应生成偶联产物, 同时钯碳催化剂重复上述过程.Scheme 催化反应通过对反应机理的分析可知, 在反应过程中一种可能是Pd 催化剂进入4-甲基吡啶N 的邻位位置, 另外一种可能是Pd催化剂进入N的间位, 形成间位中间体, 进而反应生成3,3'-联吡啶或是2,3'-联吡啶, 如Scheme 2所示. 其中3,3'-联吡啶和2,3'-联吡啶与2,2'-联吡啶相比,配位能力和敏化效果相差较多, 为了得到高纯度的2,2'-联吡啶, 应避免副反应发生.Scheme 2通过以上对催化反应的分析可知, 在产物中可能存在3,3'-联吡啶或2,3'-联吡啶. 为了避免因重结晶而对产物成份产生影响, 对未经重结晶的初产品进行气相色谱分析, 其结果如图2 所示. 在色谱图上只出现了单峰, 且峰形尖锐, 没有出现旁峰和峰形变形, 所以产品中只存在4,4'-二甲基-2,2'-联吡啶. 同时4,4'-二甲基-2,2'-联吡啶中的氢存在于4种化学环境, 根据1H NMR 图谱显示的初产品信息, 不存在其它化学环境下的氢原子. 以上分262 有 机 化 学 Vol. 26, 2006析表明, 钯碳催化反应的产物主要是4,4'-二甲基-2,2'-联吡啶, 副产物3,3'-联吡啶和2,3'-联吡啶基本上不存在.图2 产品的气相色谱图Figure 2 GC diagram of the product这是由于4-甲基吡啶N的间位碳电子密度较高, 不利于亲核取代的发生; 而N 的邻位发生亲核取代反应,即催化过程的副反应基本上不存在, 只得到高纯度的4,4'-二甲基-2,2'-联吡啶.3 结论由于4-甲基吡啶N原子和甲基的共同作用, 使得N的邻位发生亲核取代反应, 因而以其为原料, 通过钯碳催化法可以合成高纯度的4,4'-二甲基-2,2'-联吡啶.References1 Nazeeruddin, M. K.; Zakeeruddin, S. M.; Humphry-Baker,R.; Gorelsky, S. I.; Lever, A. B. P.; Grätzel, M. . Rev. 2000, 208, Hu, .; Wang, .; Zhou, .; Song, .; Li,.; Zheng, .; Xin, . Chin. J. Inorg. , 19, 215 (in Chinese).(胡月华, 王玉晓, 周建良, 宋瑛林, 李一志, 郑和根, 忻新泉, 无机化学学报, 2003, 19, 215.)3 Nazeeruddin, M. K.; Kay, A.; Rodicio, I.; Humphry-Baker,R.; Müller, E.; Liska, P.; Vlachopoulos, N.; Grätzel, M. . Chem. Soc. 1993, 115, Qian, .; Wang, C.; Tao, .; Huang, . Chin. . Chem. 2003, 23, 1264 (in Chinese).(钱延龙, 王晨, 陶晓春, 黄吉玲, 有机化学, 2003, 23,1264.)5 Murakoshi, K.; Kogure, R.; Wada, Y.; Yanagida, S. . 1997, 91, Tiecco, M.; Testaferri, L.; Tingoli, M.; Chianelli, D.; Montanucci,M. Synthesis 1984, Fort, Y.; Becker, A.; Caubère, P. Tetrahedron 1994, 50, Hassan, J.; Penalva, V.; Lavenot, L.; Gozzi, C.; Lemaire, 1998, 54, Brase, S.; Waegell, B.; Meijere, A. Synthesis-Stuttgart1998, 2, Deng, W.; Liu, L.; Guo, . Chin. J. Org. Chem. 2004,24, 150 (in Chinese).(邓维, 刘磊, 郭庆祥, 有机化学, 2004, 24, 150.)11 Gerhard, S.; Herhta, W. S.; Pierre, P. K.; Havid, G. W. . Chem. Soc. 1997, 119, Del Bene, J. E. J. Am. Chem. Soc. 1979, 101, 6184.(Y0503141 LI, W. H.; LING, J.)

参考文献是论文写作中可参考或引证的主要文献资料,可以反映论文作者的科学态度和论文具有真实、广泛的科学依据。下面是我带来的关于化学论文参考文献的内容,欢迎阅读参考! 化学论文参考文献(一) [1] 王亮. 薄层等离子体与表面等离子体激元的实验研究[D]. 中国科学技术大学 2009 [2] 汪建. 射频电感耦合等离子体及模式转变的实验研究[D]. 中国科学技术大学 2014 [3] 马新欣. 基于COSMIC掩星数据的电离层分布特征及地震响应研究[D]. 中国地震局地球物理研究所 2014 [4] 王若鹏. 地震电离层前兆短期预报研究[D]. 武汉大学 2012 [5] 何昉. 地基大功率无线电波加热电离层对空间信息链路影响研究[D]. 武汉大学 2009 [6] 汪枫. 高频电波人工调制低纬电离层所激发的ELF波的研究[D]. 武汉大学 2011 [7] 邓忠新. 电离层TEC暴及其预报方法研究[D]. 武汉大学 2012 [8] 刘宇. 实验室研究化学物质主动释放形成的电离层空洞边界层的非线性演化[D]. 中国科学技术大学 2015 [9] 宋君. 返回式电离层探测技术应用研究[D]. 武汉大学 2011 [10] 冯宇波. 电离层等离子体分析仪的设计与研制[D]. 中国科学院研究生院(空间科学与应用研究中心) 2011 [11] 李正. 电离层暴及“行星际扰动-磁暴-电离层暴”的观测研究[D]. 中国科学院研究生院(空间科学与应用研究中心) 2011 [12] 赵莹. GNSS电离层掩星反演技术及应用研究[D]. 武汉大学 2011 [13] 牛田野. 特殊等离子体环境物理信息获取与处理的研究[D]. 中国科学技术大学 2008 [14] 黄勇,时家明,袁忠才. Numerical Simulation of Ionospheric Electron Concentration Depletion by Rocket Exhaust[J]. Plasma Science and Technology. 2011(04) 化学论文参考文献(二) [1] 徐凯. 硝基甲烷及其分解产物的从头算分子动力学研究[D]. 四川大学 2014 [2] 李倩,徐送宁,宁日波. 用发射光谱法测量电弧等离子体的激发温度[J]. 沈阳理工大学学报. 2011(01) [3] 李兵,张明安,狄加伟,魏建国,李媛. 电热化学炮内弹道参数敏感性研究[J]. 电气技术. 2010(S1) [4] 赵晓梅,余斌,张玉成,严文荣. ETPE发射药等离子体点火的燃烧特性[J]. 火炸药学报. 2009(05) [5] 张祎. 小口径固体电枢电磁轨道炮发射稳定性与初始装填过程影响规律的研究[D]. 南京理工大学 2012 [6] 弯港. 基于格子Boltzmann方法的流动控制机理数值研究[D]. 南京理工大学 2013 [7] 李海元. 固体发射药燃速的等离子体增强机理及多维多相流数值模拟研究[D]. 南京理工大学 2006 [8] 王争论. 中心电弧等离子体发生器及其在电热化学炮中的应用研究[D]. 南京理工大学 2006 [9] 林鹤. HMX共晶炸药的制备与理论研究[D]. 南京理工大学 2014 [10] 王娟. 2,3-二羟甲基-2,3-二硝基-1,4-丁二醇衍生物的合成及其应用研究[D]. 南京理工大学 2014 [11] 董岩. 多氨基多硝基苯并氧化呋咱及其金属配合物的合成与性能研究[D]. 南京理工大学 2014 [12] 刘进剑. 多氨基多硝基吡啶及吡嗪氮氧化物含能配合物的合成、性能及应用[D]. 南京理工大学 2014 [13] 赵国政. 氮杂环硝胺化合物的理论设计与母体合成[D]. 南京理工大学 2014 [14] 郭长平. 一步法微气孔球扁药成孔机理、燃烧性能及应用研究[D]. 南京理工大学 2013 [15] 金涌. 电热等离子体对固体火药的辐射点火及燃烧特性研究[D]. 南京理工大学 2014 化学论文参考文献(三) [1] 王晓东. 蛋白质复合体及蛋白质相互作用研究新策略[D]. 北京协和医学院 2012 [2] 罗孟成. H5N1亚型禽流感病毒DNA疫苗及分子佐剂研究[D]. 武汉大学 2010 [3] 吴志强. 应用RNA干扰技术抑制手足口病重要病原体的基因表达与复制研究[D]. 武汉大学 2010 [4] 刘丹. 乙型肝炎病毒Pol蛋白对NF-κB信号通路抑制作用的研究[D]. 武汉大学 2014 [5] 江淼. RNA结构在其诱导细胞先天免疫反应中的作用及其相关信号通路研究[D]. 武汉大学 2011 [6] 詹蕾. 呼吸道合胞病毒的纳米免疫分析新方法研究[D]. 西南大学 2014 [7] 易昌华. 麻疹病毒血凝素蛋白H诱导HeLa细胞凋亡及其分子作用机制研究[D]. 武汉大学 2014 [8] 杨景晖. H3N2亚型流感病毒Vero细胞冷适应株减毒特性及假病毒评价中和抗体的研究[D]. 北京协和医学院 2014 [9] 刘娟. 人呼吸道腺病毒55型的基因组学与病原学特征研究[D]. 中国人民解放军军事医学科学院 2014 [10] 喻正源. 全基因组测序与病毒捕获测序技术探讨EB病毒进化及整合规律的初步研究[D]. 中南大学 2013 [11] 陈晓庆. 天然产物抗单纯疱疹病毒感染活性评价及机理研究[D]. 南京大学 2014 [12] 李康. 抗流感病毒和EV71新靶标及新药物研究[D]. 北京工业大学 2014 [13] 王君. 白细胞介素-6受体介导A型流感病毒感染诱导白细胞介素-32及白细胞介素-6表达的研究[D]. 武汉大学 2013 [14] 申彦森. 基于内含子剪切的人工miRNA结构和靶向位点与基因沉默效率的关系研究[D]. 武汉大学 2009 [15] 金旭. 冠状病毒N7甲基转移酶甲基化核苷酸GTP的特性研究[D]. 武汉大学 2013 [16] 陶佳莉. SARS冠状病毒非结构蛋白nsp14的结构功能关系研究[D]. 武汉大学 2013 [17] 高国振. 宿主因子Cyclin T1和Sam68在Ⅰ型人免疫缺陷型病毒生活周期中的功能研究[D]. 武汉大学 2012 [18] 柳叶. 阻断HIV-1辅助受体CXCR4的新方法研究[D]. 武汉大学 2012 [19] 李围. Akt1蛋白质复合体的纯化鉴定及其相互作用蛋白质的功能研究[D]. 中国人民解放军军事医学科学院 2007 [20] 鞠湘武. H5N1型禽流感病毒损伤细胞溶酶体的机制研究和南极极端环境下科考队员的应激反应研究[D]. 北京协和医学院 2012 猜你喜欢: 1. 化学论文参考范文 2. 关于科学论文参考文献 3. 药学论文参考文献 4. 药学毕业论文参考文献 5. 毕业论文参考文献国家标准

吡唑醇的合成毕业论文

吡唑醛是一种重要的有机合成中间体,广泛应用于医药、农药和染料等领域。其合成方法有多种,以下介绍其中两种常用的合成方法。1. 吡唑酮氨基酸法将吡啶-2-甲酸与甲酸二乙酯缩合得到吡啶-2, 6-二甲酸二乙酯,然后再与肽链反应,去除乙酸,得到吡唑酮氨基酸。最后通过还原酰基和氧化氢氧化,分离出吡唑醛。该方法优点在于反应条件温和、环保,且产品纯度高。但需要前期合成若干原料,成本较高。2. 邻苯基硝基还原法将邻苯基硝基(o-NO2)取代的苯酚经过酰化、碱催化等步骤后得到邻苯基羧酸。邻苯基羧酸再与亚硫酸钠反应得到对苯二酚,这是该方法的关键步骤。然后,将对苯二酚与醛反应,得到吡唑醛。该方法优点在于反应途径简单、高效,产品成本相对较低。但是需要使用有毒、易燃的物质,操作需谨慎。总体来说,吡唑醛的合成根据需求选择不同合成方法,合理安排合成方案,可以获得理想的产量和纯度。

您好,吡唑醛是一种有机化合物,其化学式为C4H4N2O。它可以通过多种方法合成,其中比较常用的是以下两种方法:1. 吡唑和甲醛反应合成吡唑醛首先将吡唑和甲醛放入反应瓶中,加入一定量的盐酸作为催化剂,然后在适当的温度下进行反应。反应完成后,用氢氧化钠溶液将反应混合物进行中和,然后用乙醚等有机溶剂提取吡唑醛,最后用旋转蒸发器将有机溶剂去除,得到纯净的吡唑醛。2. 2-氨基吡啶和甲醛反应合成吡唑醛首先将2-氨基吡啶和甲醛放入反应瓶中,加入一定量的盐酸作为催化剂,然后在适当的温度下进行反应。反应完成后,用氢氧化钠溶液将反应混合物进行中和,然后用乙醚等有机溶剂提取吡唑醛,最后用旋转蒸发器将有机溶剂去除,得到纯净的吡唑醛。以上两种方法都是比较常用的吡唑醛合成方法,但具体反应条件和催化剂种类可能会因实验条件的不同而有所变化。

1、一种制法是苯肼与乙酰乙酸乙酯反应而得。将苯肼和乙醇加热至50℃左右,开始加入乙酰乙酸乙酯,加完后回流4h。稍冷后放置过夜析出黄色结晶,过滤,将粗品用乙醇重结晶即为成品。2、另一种制法是由苯肼与丁酮酰胺反应。将苯肼与丁酮酰胺在50℃左右反应,反应结束后过滤、水洗、干燥而得成品。

吡唑醛(pyrazaldehyde)是一种有机化合物,化学式为C3H4N2O。它是一种具有重要生物活性的化合物,常用作医药、染料和有机合成等方面的原料。吡唑醛的合成方法有很多种,其中比较常见的有以下几种:1. 亲核加成法:将甲醛和硫脲在碱催化下加热反应生成氨基甲醛,再与乙酸酐反应生成吡唑醛。2. 异肽化反应法:将异肽(如2-氨基吡啶)与甲醛反应生成吡唑醛。3. 光化学反应法:将吡唑或其衍生物在紫外光照射下与苯甲醛反应,生成吡唑醛。4. 氧化还原法:将1,3-二甲基尿囊肽溶于氢氧化钠水溶液中加热,再加入甲醛水溶液,在还原剂NaBH4的作用下生成吡唑醛。以上是吡唑醛的一些合成方法,每种方法都有其特点和适用范围。在实际应用中,应根据需要选择合适的合成方法。

将化合物全合成的期刊

《药物化学》这本国际中文期刊,包含了药物制备、药物的化学结构与生物活性这两个方面的论文,还包含了多个方面的论文:计算机辅助药物设计、定量构效关系研究、药物合成方法、药物合成反应研究、药物合成工艺改进剂最新技术、天然产物分离鉴定及全合成研究、镇静催眠药和抗癫痫药、中枢兴奋药和改善脑功能的药物、新药开发与设计基础、抗生素、药物的变质反应与药物代谢。

药学学报 ,中国药学杂志 , 中国药理学通报,药物分析杂志,中国新药杂志,中国新药与临床杂志,中国医院药学杂志,中国医药工业杂志,中国药科大学学报,中国抗生素杂志,沈阳药科大学学报,中国药理学与毒理学杂志,中国临床药理学杂志,中国...

需要什么等级的呢

大类学科:化学 2区;

小类学科:CHEMISTRY, INORGANIC & NUCLEAR 无机化学与核化学 1区;

综述期刊 :否。

《无机化学》(Inorganic Chemistry ,常缩写为Inorg. Chem.)是美国化学会在1962年创办的一个学术期刊,经由同行评审,涉及无机化学的各个领域。

该杂志目前为双周刊,每年发行24期;前任主编为来自罗彻斯特大学的 Richard Eisenberg ,现任主编为明尼苏达大学的 William Tolman。该杂志2014年影响因子为。

Inorganic Chemistry发表关于整个元素周期表中所有无机化学主题的实验和理论基础研究,包括但不限于配位化学、主族化学、生物无机化学、有机金属化学、固态/材料/纳米级化学、能源和光化学、催化和理论/计算。

该期刊提供完整的文章和直接感兴趣的交流,以及受邀的观点文章和受邀的论坛文章(有关描述,请参阅作者指南)。该杂志不发表综合评论或书评。如果提出了重要的新结果或见解,将考虑对在期刊或其他地方发表的先前工作的评论。

无机化学强调对新的和重要的已知化合物的合成和机制、结构、热力学、动力学、反应性、光谱学、键合和功能特性的科学严谨的研究。

只有那些充分强调无机化学方面的手稿才会被考虑。不被考虑的手稿示例包括描述定义不清或特征化的化合物或材料,或被认为强调材料的形态、纳米级或更大尺度属性、生物现象、分析方法、推测性或主要技术方面的手稿。理论或技术应用。不鼓励描述科学文献增量添加的常规研究报告。

期刊范围

1、配位和有机金属化学

对包含主族、过渡金属和/或镧系元素/锕系元素的新配位和有机金属配合物的设计和合成进行基础研究,这些配合物具有定制的反应性和/或功能性电子、光学和磁性特性。

2、生物无机化学

化学领域的研究应强调新的无机结构、溶液化学、生物功效或反应的详细机制或光谱特性。无机化学必须成为该领域的核心并为该领域贡献新的视角,例如在仿生和仿生配位化学、金属蛋白和金属药物以及金属探针等领域。

3、固态、材料和纳米级化学

鼓励提交对充分表征的分子、纳米结构或扩展无机化合物(簇和超分子化合物)的重要新合成、机械或结构洞察力的提交,并推动功能无机化学的前沿- 依赖于材料特性、表征技术或理论描述。

药物合成类论文范文

抗生素的不良反应【摘要】 目的 帮助临床医生了解抗生素的药物不良反应,促进临床合理使用抗生素药物,保证患者用药安全、有效、合理。方法 复习文献资料,从过敏反应、毒性反应、特异性反应、二重感染、联合用药引起或加重不良反应等几个方面,综述抗生素的药物不良反应及临床危害。结果 抗生素的药物不良反应可以预防和控制,应重视患者用药过程中的临床监护。结论 抗生素的药物不良反应应引起临床医生的高度重视。【关键词】 抗生素;不良反应药物的不良反应是临床用药中的常见现象。它不仅指药物的副作用,还包括药物的毒性、特异性反应、过敏反应、继发性反应等〔1〕。抗菌药物是临床上最常用的一类用药,包括抗生素类、抗真菌类、抗结核类及具有抗菌作用的中药制剂类。其中以抗生素类在临床使用的品种和数量最多。目前临床常用抗生素品种有100多种。抗生素挽救了无数生命,但其在临床应用也引发了一些不良反应〔2〕。抗生素药物不良反应的临床危害后果是严重的。在用药后数秒钟至数小时乃至停药后相当长的一段时间内均可发生不良反应。常见的有过敏性休克、固定型药疹、荨麻疹、血管神经性水肿等过敏性反应、胃肠道反应、再生障碍性贫血等,严重的甚至会引起患者死亡〔3〕。因此,加强临床用药过程中的监督和合理使用抗生素对减少临床不良反应的发生具有特别重要的意义〔4〕。1 过敏反应抗生素引起的过敏反应最为常见〔5〕,主要原因是药品中可能存在的杂质以及氧化、分解、聚合、降解产物在体内的作用,或患者自身的个体差异。发生过敏反应的患者多有变态反应性疾病,少数为特异高敏体质。 过敏性休克 此类反应属Ⅰ型变态反应,所有的给药途径均可引起。如:青霉素类、氨基糖苷类、头孢菌素类等可引起此类反应,头孢菌素类与青霉素类之间还可发生交叉过敏反应。因此,在使用此类药物前一定要先做皮试。 溶血性贫血 属于Ⅱ型变态反应,其表现为各种血细胞减少。如:头孢噻吩和氯霉素可引起血小板减少,青霉素类和头孢菌素类可引起溶血性贫血。 血清病、药物热 属于Ⅲ型变态反应,症状为给药第7~14天出现荨麻疹、血管神经性水肿、关节痛伴关节周围水肿及发热、胃肠道黏膜溃疡和肠局部坏死。如:青霉素类、头孢菌素类、林可霉素和链霉素均可引起以上反应。头孢菌素类、氯霉素等抗菌药物还可引起药物热。 过敏反应 这是一类属于Ⅳ型变态反应的过敏反应。如:经常接触链霉素或青霉素,常在3~12个月内发生。 未分型的过敏反应 有皮疹(常见为荨麻疹)〔6〕、血管神经性水肿、日光性皮炎、红皮病、固定性红斑、多形性渗出性红斑、重症大疱型红斑、中毒性表皮坏死松解症,多见于青霉素类、四环素类、链霉素、林可霉素等;内脏病变,包括急慢性间质性肺炎、支气管哮喘、过敏性肝炎、弥漫性过敏性肾炎,常见于青霉素类、链霉素等。复方新诺明还可引起严重的剥脱性皮炎。2 毒性反应抗生素药物的毒性反应是药物对人体各器官或组织的直接损害,造成机体生理及生化机能的病理变化,通常与给药剂量及持续时间相关。 对神经系统的毒性 如:青霉素G、氨苄西林等可引起中枢神经系统毒性反应,严重者可出现癫痫样发作。青霉素和四环素可引起精神障碍。氨基糖苷类、万古霉素、多粘菌素类和四环素可引起耳和前庭神经的毒性。链霉素、多粘霉素类、氯霉素、利福平、红霉素可造成眼部的调节适应功能障碍,发生视神经炎甚至视神经萎缩。新的大环内酯类药物克拉霉素可引起精神系统不良反应。另有报道,大环内酯类药物克拉霉素和阿奇霉素可能减少突触前乙酰胆碱释放或加强了突触后受体抑制作用,可诱导肌无力危象。 肾脏毒性 许多抗生素均可引起肾脏的损害,如:氨基糖苷类、多粘菌素类、万古霉素。氨基糖苷类的最主要不良反应是耳肾毒性。在肾功能不全患者中,第3代头孢菌素的半衰期均有不同程度延长,应引起临床医生用药时的高度重视。 肝脏毒性〔7〕 如:两性霉素B和林可霉素可引起中毒性肝炎,大剂量四环素可引起浸润性重症肝炎,大环内酯类和苯唑青霉素引起胆汁淤滞性肝炎,头孢菌素中的头孢噻吩和头孢噻啶及青霉素中的苯唑西林、羧苄西林、氨苄西林等偶可引起转氨酶升高,链霉素、四环素和两性霉素B可引起肝细胞型黄疸。 对血液系统毒性 如:氯霉素可引起再生障碍性贫血和中毒性粒细胞缺乏症,大剂量使用青霉素时偶可致凝血机制异常,第3代头孢菌素类如头孢哌酮、羟羧氧酰胺菌素等由于影响肠道菌群正常合成维生素K可引起出血反应。 免疫系统的毒性 如:两性霉素B、头孢噻吩、氯霉素、克林霉素和四环素〔6〕。对机体免疫系统和机制具有毒性作用。 胃肠道毒性 胃肠道的不良反应较常见。可引起胃肠道反应的药物如:口服四环素类、青霉素类等,其中大环内酯类、氯霉素类等药物即使注射给药,也可引起胃肠道反应。 心脏毒性 大剂量青霉素、氯霉素和链霉素可引起心脏毒性作用,两性霉素B对心肌有损害作用,林可霉素偶见致心律失常。3 特异性反应特异性反应是少数患者使用药物后发生与药物作用完全不同的反应。其反应与患者的遗传性酶系统的缺乏有关。氯霉素和两性霉素B进入体内后,可经红细胞膜进入红细胞,使血红蛋白转变为变性血红蛋白,对于该酶系统正常者,使用上述药物时无影响;但对于具有遗传性变性血红蛋白血症者,机体对上述药物的敏感性增强,即使使用小剂量药物,也可导致变性血红蛋白症。4 二重感染在正常情况下,人体表面和腔道黏膜表面有许多细菌及真菌寄生。由于它们的存在,使机体微生态系统在相互制约下保持平衡状态。当大剂量或长期使用抗菌药物后,正常寄生敏感菌被杀死,不敏感菌和耐药菌增殖成为优势菌,外来菌也可乘机侵入,当这类菌为致病菌时,即可引起二重感染。常见二重感染的临床症状有消化道感染、肠炎、肺炎、尿路感染和败血症。5 抗菌药物与其他药物合用时可引发或加重不良反应〔8〕在临床治疗过程中,多数情况下是需要联合用药的,如一些慢性病(糖尿病、肿瘤等)合并感染,手术预防用药,严重感染时,伴器官反应症状,需要对症治疗等。由于药物的相互作用,可能引发或加重抗菌药物的不良反应。 与心血管药物合用 红霉素和四环素能抑制地高辛的代谢,合用时可引起后者血药浓度明显升高,发生地高辛中毒。 与抗凝药合用 头孢菌素类、氯霉素可抑制香豆素抗凝药在肝脏的代谢,使后者半衰期延长,作用增强,凝血时间延长。红霉素可使华法林作用增强,凝血时间延长。四环素类可影响肠道菌群合成维生素K,从而增强抗凝药的作用。 与茶碱类药物合用 大环内酯类药物也可以抑制肝细胞色素P450酶系统,使茶碱血药浓度增加。红霉素与茶碱合用时,茶碱血药浓度可增加约40%,而茶碱可影响红霉素的吸收,使红霉素的峰浓度降低。 与降糖药合用 氯霉素与甲苯磺丁脲及氯磺丙脲合用时,可抑制后者的代谢,使其半衰期延长,血药浓度增加,作用增强,可导致急性低血糖。 与利尿剂合用 氨基糖苷类药物庆大霉素与呋喃苯胺酸类合用时,有引起耳毒性增加的报道。头孢噻啶与呋噻米合用时可增加肾毒性,原因可能是合用时前者的清除率降低。环孢菌素与甘露醇合用时,可引起严重的肾坏死性改变,停用甘露醇后,移植肾的功能可得到恢复。 与其他药物合用 红霉素、四环素与制酸剂合用时,可使抗生素的吸收降低。大环内酯类红霉素与卡马西平合用时,可引起卡马西平中毒症状。综上所述,合理使用抗生素,重视患者用药过程中的临床监护对于临床医生安全用药,保证患者生命健康,减少不良反应的发生有重要的意义。正确诊断分清是否为细菌感染,如利用标本的培养判断认为是细菌感染,才是应用抗菌药物的适应证。熟悉抗生素的药理作用及不良反应特点,掌握药物的临床药理作用、抗菌谱、适应证、禁忌证、不良反应以及制剂、剂量、给药途径与方法等,做到了解病人用药过敏史,使用药有的放矢,避免不良反应发生。在医、护、药三方加强ADR监测〔9~11〕。同时对药物监测、临床血液及生化指标检验监测、护理监护等〔12〕。特别是对氨基糖苷类抗生素药物进行血药浓度监测的同时也应监测肾功能和听力;合并用药时对受影响药物的血药浓度进行监测,如红霉素或四环素与地高辛合用时,对地高辛药物浓度进行监测或避免合用;口服抗凝剂与氯霉素、四环素、红霉素合用时,应监测患者的凝血时间,或避免合用;必须合用时,须调整口服抗凝剂的剂量。护理人员与患者接触较多,认真细致的护理工作,特别是对儿童及老年患者的周到护理,是对药物不良反应及时发现和处理的重要环节。对护理人员进行临床药理知识的培训,增加他们这方面的知识,以便及时发现问题及时报告和处理。一旦发现不良反应应采取果断措施,如停药或换药。若出现过敏反应,应立即采取抢救措施。这些做法对抗生素不良反应的预防和补救都是行之有效的。【参考文献】1 张克义,赵乃才.临床药物不良反应大典.沈阳:辽宁科学技术出版社, 2001, 杨利平.再谈抗菌药物的合理应用.医学理论与实践,2004,17(2): 王正春,李秋,王珊.药物不良反应803例分析.医药导报,2004,23(9): 张立新,王秀美.抗生素应用中的问题与探讨.实用医技杂志,2004,11(8): 张紫洞,熊方武.药物导致的变态反应、过敏反应.抗感染药学,2004,1(2): 吴文臻,刘建慧.药疹220例临床分析.现代中西医结合杂志,2004,13(13): 刘斌,彭红军.药物性肝炎136例分析.药物流行病学杂志,2004,13(5): 程悦.联合用药致变态反应探析.现代中西医结合杂志,2004,13(13): 马冬梅,李净,舒丽伟.如何合理使用抗生素.黑龙江医学,2004,28(12): 吴安华.临床医师处方抗菌药物前需思考的几个问题.中国医院,2004,8(8): 高素华.抗生素滥用的危害.内蒙古医学杂志,2005,37(11): 魏健,郦柏平,赵永根,等.抗生素合理应用自动监控系统的构建.中华医院管理杂志,2004,20(8):479-481.

生物医药产业近年来引起世界各国的高度重视,我国也把生物医药产业作为重点发展的支柱性产业,从政策和规划上积极进行扶持。下面是我为大家整理的生物医药论文,供大家参考。

合成生物学在医药中的应用

生物医药论文摘要

摘 要:合成生物学是在项目学理论的带领下,对天然生物体系从头开展策划以及整改。并且策划同时制造新的生物部件、模式以及体系的全新科目。合成生物学是自然科目前进到一定程度形成的新学科,同时在医药方面已获取了明显的成就。 文章 综合讲述了在项目细胞使用合成生物科目方式研究出了能够抵抗疟病的治理药物的前身青蒿二烯,抵抗癌症的药物前身紫杉二烯,还有脂肪醇、酸以及高级醇的生成方式等探索进步。除此之外,有的关键的合成生物学有关 措施 ,在很大程度上加快了项目细胞的重新组合以及演化,为建筑运用于制造范畴的新效用细胞供应便利适用的东西。

生物医药论文内容

关键词:合成生物学;基因模块;医药

引言

最近几年,合成生物学发展的速度有了很大程度的提升,慢慢的造就了特征明显的探索实质以及运用范畴。其探索实施关键包含:(1)新生物原件、构件以及体系的策划和建筑。(2)对现在拥有的、自然的生物体系开展从新策划。二零零九年美国医学部门的带领下组建了一支由十二支社会各界学士构成的IDR小组,研究合成生物科目的前进朝向以及多科目交叉状况。认为合成生物科目是集电脑、物理、工程以及生物等科目一起进行研究交叉的科目,能够经过重组生物运用在环境、药物、民众健康、资源等部分。

合成生物科目是项目学以及生物科目一起前进到一定程度形成的。人类基因体和很多形式的生物基因体测定未知序列的完成,还有很多的后基因体作业,促进累计的生物学资料出现了天文级。但是,现在拥有的资料挖掘当时依旧限制于对生命特征的深层探索,很难对生命的内在工作样式开展探索分析。合成生物科目就在这种环境下形成,经过从下到上的建筑生命行为,按照其独具的角度解释生命,为理性策划以及革新生命供应了基础。最近几年,基因体测定未知序列以及合成单位已经在全球范畴内普遍建立,供应品质优、价格低的服务。优异的基因体测定未知序列以及合成措施推动合成生物科目策划新生命组合以及建筑功效细胞更简单。

最关键的是,人类身体健康情况、资源、条件等范畴的巨大需要也推动着合成生物科目的快速前进。把基因部件按照项目的需求,有机从新组建整合在一起,就出现了效用基因模式。在加上对现在已经拥有的生物网络的使用,并且引进新的效用基因模式,表明天然细胞不可以合成的物品,在合成部分已经有了很大程度的前进。现在我们解析一下在药物范畴内使用的合成生物科目

1 青蒿二烯的生物合成

杰伊?科斯林在项目细胞中制造出抵抗疟疾的前身青蒿二烯的探索作业实在经典。在产生青蒿二烯合成方式的重要新基因资料后,科斯林团队在二零零三年在大肠杆菌中胜利的研究出了制造青蒿二烯的另一种方式。这种合成方式划分为两种形式。第一种形式是在Acetyl-CoA为出发点,通过甲瓦龙酸来制造IPP。这就摆脱了大肠杆菌本来的G3P以及乙酰甲酸为前身制造的异戊二烯焦磷酸方式,能够使细胞代谢经过新方式形成异戊二烯焦磷酸分子,为下游制造方式供应足够多的底物分子。第二个形式就是从C5的异戊二烯焦磷酸为出发点,通过异戊二烯链拉长方式形成C15的FPP,最后在ADS酶的功用下制造青蒿二烯,最高形成量能够达到一百二十二毫克每升。上下游模式都是来源于真核生物中的代谢方式,把其密码改善同时从新构筑在原核生物大肠杆菌内,同时胜利制造想要得到的物品,开拓了制造生物的新方式。

2006年,Keasling小组又以酵母菌为宿主,通过对内源的乙酰辅酶A到FPP途径的关键基因进行上调或下调,同时引入基因优化过的外源模块,成功实现了产物青蒿二烯产量的稳步提高。对内源基因上调的方式有两种,其一是增加基因拷贝数,如tHMGR酶的基因,其二是通过转录因子来上调基因表达量,如ERG系列的基因。对内源基因的下调则是采用基因敲除的 方法 。通过对合成路径涉及基因的一系列微调,使产量达到153mg?L-1,是以往报道的二烯类分子产量的500倍。

在此基础上,研究小组又设计了人工蛋白支架(synthetic protein scaffolds),对大肠杆菌内已构建的上游模块:从乙酰辅酶A到甲羟戊酸的合成途径进行了优化。三个反应酶AtoB,HMGS,tHMGR通过蛋白支架以不同分子数比例捆绑在一起发挥作用,解决了中间代谢物积累造成的合成效率降低以及对宿主的毒副作用问题。具体机理是将高等动物细胞中的配体受体作用关系引入到大肠杆菌中,将配体分子的基因序列与模块中的反应酶基因融合表达,从而将受体分子以不同分子数连成一串,构成柔性支架。由于脚手架内各个受体分子间由一定长度的多肽连接,就避免了因多个配体受体结合造成的空间位阻问题。在反复实验与调试后,研究小组发现三个酶分子以1:2:2的比例连在一起作用效果最强,产量达初始值的77倍,约5mmol?I-1(740mg?L-1)。

随着后期工业化发酵,研究小组又发现来自酵母的外源基因HMGS和tHMGR表达的酶不足以平衡外源代谢流,成为瓶颈反应。他们以金黄葡萄菌中的相关酶基因进行替换后,青蒿二烯产量立刻增加一倍。通过与工业发酵过程优化的结合,作为工业产品的青蒿二烯最终产量高达。合成生物学成功用于重要药物的合成,引起了广泛关注。

2 紫杉二烯的生物合成

Gregory Stephanopoulos的科研组织在二零一零年时在大肠杆菌中胜利完成了抵抗癌症药物的前身紫杉二烯物质的合成。这是在这个科研小组在萜类生物代谢方法和大肠杆菌细胞细微调节的长时间探索中获取的成效。科学组织把内在的过氧化二碳酸二异丙酯合成方式定位上游模式,把之后合成紫杉二烯的方式定位成下游模式,其作业也关键聚合在怎样对上下游模式开展微调。因为假如只顾上游,肯定会导致中间代谢物的消耗,并且形成中间障碍;但是如果下游经过量太多就会浪费很多的酶分子,增加了细胞表述负荷。

研究小组采用改变质粒拷贝数和启动子强度的方法对上下游通量的比例进行了微调。通过对已有文献的整合以及自己的测试工作,研究小组确定了三种质粒pSCl01,p15A,pBR322的拷贝数分别urNorphadicnc为5,10,20,而整合入基因组中的基因拷贝数相当于1。三种启动子Trc,T5,T7的相对强度分别为1,2,5。通过这几种质粒和启动子的组合,使上下游模块的通量比例发生变化,再检铡含有不同通量比例的细胞内的产物产量。在此过程中,模块内部基因是单顺反子还是多顺反子表达形式也影响产量变化,即多个基因是在一个启动子后表达还是在各自的启动子后表达。经过一系列微调与组合后,具有最优性状的菌株目标产物的产量高达(1020±80)mg?L-1,实现了对碳代谢流的高效利用和协调。同时,通过蛋白质工程的手段对细胞色素P450氧化还原酶进行改造,在工程菌中首次成功异源表达。

3 展望

合成生物科目根据项目学原理为指引,对现在拥有的、天然具备的生物体系从头策划以及整改,并且全力对策划合成出新的生物部件、模式以及体系努力。特别在使用部分,合成生物科目建筑的人工生物体系能够在制成关键生物品种、呵护人类身体等部分有主要的前进空间。现在合成生物科目的探索成就主要使用在医学方面,将来在别的行业范畴内也肯定会有引人注目的成就出现。总而言之,合成生物科目拥有普遍的运用前提以及强有力的措施撑持。

我国生物医药产业发展研究

生物医药论文摘要

【摘要】生物医药产业是由生物技术产业与医药产业共同组成。本文分析了当前国内外生物医药产业发展状况,分析医药产业发展中存在的问题,并且着重调查生物医药产业发展的基础及发展中存在的不足,寻找对策,在生物医药产业发展的过程中实现“四个化”,促进生物医药产业快速稳步地发展。

生物医药论文内容

【关键词】生物医药发展对策

一、国内生物医药产业发展现状

1986 年我国正式实施“863 计划”,生物技术被列为包括航空航天、信息技术等7 个高技术领域之首。政府在生物技术的研发和产业化发展的过程中给予了一定的优惠和扶持;国内各大企业为生物技术产业投入了大量资金;我国金融界也积极参与生物技术产业的发展,许多有实力的公司进行了生物技术开发,并且从金融市场融资从事生物技术研究和产业化。目前全球正处于生物医药技术大规模产业化的开始阶段,预计2020年后将进入快速发展期,并逐步成为世界经济的主导产业之一。

1、产业政策倾力扶持,高度重视生物医药产业发展

我国政府把生物医药产业作为21世纪优先发展的战略性产业,加大对生物医药产业的政策扶持与资金投入。“十五”规划明确提出“十五” 期间医药的发展重点在于生物制药、中药现代化等。国家对生物医药产品的开发、生产和销售制订了一系列扶持政策,包括对生物制药企业实行多方面税收优惠、延长产品保护期和提供研发资金支持等。同时, 国家为加强行业管理,对生物医药产品的研制和生产采取严格的审批程序,并针对重复建设严重这一情况,对部分生物医药产品的项目审批采取了限制家数的措施,以确保新药的市场独占权和合理的利润回报,鼓励新药的研制。2007年国家发改委公布了《生物产业发展“十一五” 规划》,该《规划》在组织领导、产业技术创新体系、人才队伍、投入、税收优惠政策、市场环境等方面制定了相关政策措施保障生物产业的快速发展, 因而对生物医药产业的发展意义重大。

2、生物医药产业化进程明显加快,投资规模与市场规模迅速扩张

自20世纪80年代中期以来,在国家以及地方各级政府政策的大力支持下,生物医药产业在我国蓬勃发展,国家经贸委的有关资料显示:1998年以前,我国对生物医药技术开发的总投资累计约为40亿元,自1999年开始,国家明显加大了对生物医药的投入力度,平均每年达20亿元左右,2003年这一投入达到60亿元,极大地促进了生物医药产业的发展。在生物医药产业相关优惠政策的作用下,国内一些生物医药企业通过自有资金和银行贷款两种 渠道 获得了大量的资金,用于研发新产品。目前我国从事生物技术产业和相关产品研发的公司、大学和科研院所达600余家,其中注册的生物医药公司有200余家,具备生产能力的有60余家(其中的48家已取得生产基因工程药物试产或生产批文)。

3、初步形成了以上海张江,北京中关村等为代表的医药产业集群

在生物技术产业迅猛发展的浪潮推动下,经过多年的发展和市场竞争,加上政府不失时机地加以引导,我国生物技术、人才、资金密集的区域,已逐步形成了生物医药产业聚集区,由此形成了比较完善的生物医药产业链和产业集群。如由罗氏、葛兰素一史克、先锋药业等40多个国内外一流药厂组成的侧重于基因研究,化合物筛选和新药开发的张江药谷产业集群;拥有诺和诺德制药公司和8个生物科技国家863项目的北京中关村生命科学园区;侧重于生物制药、特别是遗传工程药学的深圳生命科学园区等。这些产业集群聚集了包括生物公司、研究、技术转移中心、银行、投资、服务等在内的大量机构,初步形成了产业群体(药厂),研究开发、孵化创新、 教育 培训、专业服务、风险投资6个模块组成的良好的创新创业环境,对扩大生物医药产业规模、增强产业竞争力作出了重要贡献。

二、国内生物医药产业存在问题

1、投资模式不利于生物制药产业的发展

国际医药产业巨大的经济效益来源于创新,发达国家现代生物医药产业都拥有自己实力雄厚的研究机构,通常每年投入的经费占全部销售额的10%一20%,而美国每年用于研究开发生物药品的投人占总投资额的 60%~70%。每个大型医药公司都有自己“拳头产品”,单个产品的年销售额就可达十亿至几十亿多元。公司拥有这些产品的知识产权,国家给予专利保护,产占可以在10 年或更长时间内独占市场,一个产品就可赢得丰厚的利润,再从利润中拿出巨额资金投入研究开发新的具有知识产权的创新药物,周而复始形成良性循环。

从美国生物制药发展模式来看,技术力量雄厚的专家型小生物技术公司进行技术开发与创新,大制药公司通过战略联盟实现生物技术的产业化,风险投资为生物技术开发提供资金支持,这三种力量的有机结合是生物制药产业良性发展的关键。而从目前我国生物制药产业模式来看,主要通过购买技术实现生产,风险投资机制不足且资金太少,另外技术创新力量薄弱。因此,生物技术产业很难形成气候。

我国的医药企业规模小而分散,大多不具备技术开发与创新能力,生产的产品基本是引起仿制产品,重复开发投资现象也非常严重,恶性性竟争必然带来效益低下的状况。我国药品进口额呈逐年上升趋势,三资企业产品销售额也在逐年增长,一份国外研究 报告 中指出:“如果政府不干预,中国的医药市场将在5 年内完全被国际医药大公司操纵。”

2、低水平重复研究、重复建设严重,市场竞争非常激烈

生物技术产品的广阔前景和丰厚收益吸引了国内众多企业加人开发,但其中多数是仿制国外的,品种少,厂家多,在同一水平上重复建设投资。例如,研制rhuG—CSF 的就有18 家公司。据统计,仅1996-1998年,获卫生部新药批准文号的厂家,重组人白介素一2(l—2)的有10 家,重组人促红细胞生成素(EPO)的有10 多家。如此势必造成资源浪费、竟相压价、市场混乱的局面。更由于一些企业缺少产品 市场调查 分析,造成大量产品堆积,以致投资价格很高的成套流水线设备利用率很低,有的年使用率低于一个月。价格战反过来造成产品质量下降,假劣产品充斥市场。消费者对国产生物技术产品信任度低,而宁愿使用昂贵的国外进口制品。

3、科研和产业脱节现象仍较为严重

在我国科研单位研究目的是为跟进国际先进科技的发展,研究方向过多集中于对几个热门品种上游技术的开发,而能够实现产业化的项目很少,在国外,科研成果完成后,落到企业的研发中心进行进一步孵化,形成技术工艺后再规模化生产,在我国两者严重脱节。缺少有科学头脑的企业家和有技术开发能力的企业将研究成果转变为生产,大大阻碍了产业化发展。

4、开拓市场能力低

由于产品生产工艺水平和经营手段落后,国内市场将面临进口药品的冲击。具体表现为:一是对国外市场开拓不够,许多企业的市场定位不准;二是开发市场的投入量不足;三是生物药品良好的临床效果虽得到医务人员和患者的肯定,但其售价相对偏高,消费能力不足。因此,我国需要进一步加大对生物制药产业的资金与投术投人,并深化科研成果产业化的机制改革,在这一过程中,尤其要发挥资本市场和凤险投资公司的积极作用。

三、加快我国生物医药产业发展的对策建议

我国生物技术药物的研究和开发起步较晚,直到20世纪70年代初才开始将DNA重组技术应用到医学上,但国家高度重视生物产业发展把生物技术产业作为21世纪优先发展的战略性产业,加大对生物医药产业的政策扶持与资金投入。2006年国务院出台的《国家中长期科学和技术发展纲要(2006一2020年)》指出,未来15年,中国要在生物技术领域部署一批前沿技术,包括靶标发现技术、动植物品种与药物分子设计、基因操作和蛋白质工程、基于干细胞的人体组织工程和新一代工业生物技术等。这一部署无疑为中国生物制药的发展指明了方向。一位参与“十二五”医药产业专项规划的专家组成员透露:在正在制定的专项规划中,生物医药产业和产业升级将成为未来3年发展的重点方向。专项规划把生物医药产业发展和产业升级作为“十二五”医药产业的重点,要求追踪生物医药前沿技术,占领生物医药产业制高点。

有关生物医药论文推荐:

1. 生物制药专业论文范文

2. 生物化学论文精选范文

3. 医药公司实习论文

4. 生化制药毕业论文范文

5. 健康论文范文

6. 本科医学毕业论文范本

7. 公共卫生毕业论文精选范文

合成药物毕业论文

这东西貌似都是用人民币结算的

药物分析(习惯上称为药品检验)是运用化学的、物理学的、生物学的以及微生物学的方法和技术来研究化学结构已经明确的合成药物或天然药物及其制剂质量的一门学科。它包括药物成品的化学检验,药物生产过程的质量控制,药物贮存过程的质量考察,临床药物分析,体内药物分析等等。药物分析是分析化学中的一个重要分支, 它随着药物化学的发展逐渐成为分析化学中相对独立的一门学科, 在药物的质量控制、新药研究、药物代谢、手性药物分析等方面均有广泛应用。随着生命科学、环境科学、新材料科学的发展, 生物学、信息科学、计算机技术的引入, 分析化学迅猛发展并已经进入分析科学这一崭新的领域, 药物分析也正发挥着越来越重要的作用, 在科研、生产和生活中无处不在, 尤其在新药研发以及药品生产等方面扮演着重要的角色。药品检验工作的基本程序:一、取样二、性状观测三、鉴别四、检查五、含量测定六、检验记录与报告常用的药物仪器分析方法: [色谱法] 离子交换法 超临界流体色谱法 毛细管色谱法 薄层色谱/扫描法 凝胶色谱法 多维色谱 [光谱法] 紫外可见分光光度法 原子吸收光谱法 荧光分光光度法 红外光谱法 近红外光谱 [其它] 生物芯片技术 体内药物分析 体外分析

这有什么好讲的?首先确定做那个药的药理,然后制造动物病理模型,动物分组(治疗组、对照组等),接着确定给药方式、给药剂量,动物实验,取血做生化或做其他生理指标实验,数据统计学分析,结论。

相关百科

热门百科

首页
发表服务