首页

> 学术论文知识库

首页 学术论文知识库 问题

傅里叶变换论文参考文献

发布时间:

傅里叶变换论文参考文献

你是数学专业的吗?

一个关于实数离散傅里叶变换(Real DFT)实例先来看一个变换实例,一个原始信号的长度是16,于是可以把这个信号分解9个余弦波和9个正弦波(一个长度为N的信号可以分解成N/2+1个正余弦信号,这是为什么呢?结合下面的18个正余弦图,我想从计算机处理精度上就不难理解,一个长度为N的信号,最多只能有N/2+1个不同频率,再多的频率就超过了计算机所能所处理的精度范围),如下图:9个正弦信号:9个余弦信号:把以上所有信号相加即可得到原始信号,至于是怎么分别变换出9种不同频率信号的,我们先不急,先看看对于以上的变换结果,在程序中又是该怎么表示的,我们可以看看下面这个示例图:上图中左边表示时域中的信号,右边是频域信号表示方法,从左向右表示正向转换(Forward DFT),从右向左表示逆向转换(Inverse DFT),用小写x[]表示信号在每个时间点上的幅度值数组, 用大写X[]表示每种频率的幅度值数组, 因为有N/2+1种频率,所以该数组长度为N/2+1,X[]数组又分两种,一种是表示余弦波的不同频率幅度值:Re X[],另一种是表示正弦波的不同频率幅度值:Im X[],Re是实数(Real)的意思,Im是虚数(Imagine)的意思,采用复数的表示方法把正余弦波组合起来进行表示,但这里我们不考虑复数的其它作用,只记住是一种组合方法而已,目的是为了便于表达(在后面我们会知道,复数形式的傅里叶变换长度是N,而不是N/2+1)。用Matlab进行傅里叶变换FFT是离散傅里叶变换的快速算法,可以将一个信号变换到频域。有些信号在时域上是很难看出什么特征的,但是如果变换到频域之后,就很容易看出特征了。这就是很多信号分析采用FFT变换的原因。另外,FFT可以将一个信号的频谱提取出来,这在频谱分析方面也是经常用的。FFT结果的具体物理意义。一个模拟信号,经过ADC采样之后,就变成了数字信号。采样定理告诉我们,采样频率要大于信号频率的两倍。采样得到的数字信号,就可以做FFT变换了。N个采样点,经过FFT之后,就可以得到N个点的FFT结果。为了方便进行FFT运算,通常N取2的整数次方。假设采样频率为Fs,信号频率F,采样点数为N。那么FFT之后结果就是一个为N点的复数。每一个点就对应着一个频率点。这个点的模值,就是该频率值下的幅度特性。具体跟原始信号的幅度有什么关系呢?假设原始信号的峰值为A,那么FFT的结果的每个点(除了第一个点直流分量之外)的模值就是A的N/2倍。而第一个点就是直流分量,它的模值就是直流分量的N倍。而每个点的相位呢,就是在该频率下的信号的相位。第一个点表示直流分量(即0Hz),而最后一个点N的再下一个点(实际上这个点是不存在的,这里是假设的第N+1个点,也可以看做是将第一个点分做两半分,另一半移到最后)则表示采样频率Fs,这中间被N-1个点平均分成N等份,每个点的频率依次增加。例如某点n所表示的频率为:Fn=(n-1)*Fs/N。由上面的公式可以看出,Fn所能分辨到频率为为Fs/N,如果采样频率Fs为1024Hz,采样点数为1024点,则可以分辨到1Hz。1024Hz的采样率采样1024点,刚好是1秒,也就是说,采样1秒时间的信号并做FFT,则结果可以分析到1Hz,如果采样2秒时间的信号并做FFT,则结果可以分析到。如果要提高频率分辨力,则必须增加采样点数,也即采样时间。频率分辨率和采样时间是倒数关系。假设FFT之后某点n用复数a+bi表示,那么这个复数的模就是An=根号a*a+b*b,相位就是Pn=atan2(b,a)。根据以上的结果,就可以计算出n点(n≠1,且n<=N/2)对应的信号的表达式为:An/(N/2)*cos(2*pi*Fn*t+Pn),即2*An/N*cos(2*pi*Fn*t+Pn)。对于n=1点的信号,是直流分量,幅度即为A1/N。由于FFT结果的对称性,通常我们只使用前半部分的结果,即小于采样频率一半的结果。下面以一个实际的信号来做说明。假设我们有一个信号,它含有2V的直流分量,频率为50Hz、相位为-30度、幅度为3V的交流信号,以及一个频率为75Hz、相位为90度、幅度为的交流信号。用数学表达式就是如下:S=2+3*cos(2*pi*50*t-pi*30/180)+*cos(2*pi*75*t+pi*90/180)。式中cos参数为弧度,所以-30度和90度要分别换算成弧度。我们以256Hz的采样率对这个信号进行采样,总共采样256点。按照我们上面的分析,Fn=(n-1)*Fs/N,我们可以知道,每两个点之间的间距就是1Hz,第n个点的频率就是n-1。我们的信号有3个频率:0Hz、50Hz、75Hz,应该分别在第1个点、第51个点、第76个点上出现峰值,其它各点应该接近0。实际情况如何呢?我们来看看FFT的结果的模值如图所示。从图中我们可以看到,在第1点、第51点、和第76点附近有比较大的值。我们分别将这三个点附近的数据拿上来细看:1点: 512+0i2点: - 点: - 点: - 点: - 192i52点: - 点: 点: + 192i77点: +很明显,1点、51点、76点的值都比较大,它附近的点值都很小,可以认为是0,即在那些频率点上的信号幅度为0。接着,我们来计算各点的幅度值。分别计算这三个点的模值,结果如下:1点: 51251点:38476点:192按照公式,可以计算出直流分量为:512/N=512/256=2;50Hz信号的幅度为:384/(N/2)=384/(256/2)=3;75Hz信号的幅度为192/(N/2)=192/(256/2)=。可见,从频谱分析出来的幅度是正确的。然后再来计算相位信息。直流信号没有相位可言,不用管它。先计算50Hz信号的相位,atan2(-192, )=,结果是弧度,换算为角度就是180*()/pi=。再计算75Hz信号的相位,atan2(192, )=弧度,换算成角度就是180*。可见,相位也是对的。根据FFT结果以及上面的分析计算,我们就可以写出信号的表达式了,它就是我们开始提供的信号。总结:假设采样频率为Fs,采样点数为N,做FFT之后,某一点n(n从1开始)表示的频率为:Fn=(n-1)*Fs/N;该点的模值除以N/2就是对应该频率下的信号的幅度(对于直流信号是除以N);该点的相位即是对应该频率下的信号的相位。相位的计算可用函数atan2(b,a)计算。atan2(b,a)是求坐标为(a,b)点的角度值,范围从-pi到pi。要精确到xHz,则需要采样长度为1/x秒的信号,并做FFT。要提高频率分辨率,就需要增加采样点数,这在一些实际的应用中是不现实的,需要在较短的时间内完成分析。解决这个问题的方法有频率细分法,比较简单的方法是采样比较短时间的信号,然后在后面补充一定数量的0,使其长度达到需要的点数,再做FFT,这在一定程度上能够提高频率分辨力。具体的频率细分法可参考相关文献。

Opencv计算机视觉14(傅里叶变换)

微塑料的概念于2004年首次被提出,通常定义尺寸小于5mm的塑料碎片为微塑料,尺寸为1—100am的塑料碎片为纳米级微塑料。

微塑料尺寸较小,来源广泛,海洋、陆地、大气中都有微塑料的存在,它也被科学家形象的比作海洋中的“”。2017年,中国科学家首次在南极海域发现微塑料,预警人类活动的污染已遍布全球各个角落。

由于微(纳米)塑料尺寸较小,极易被各种生物吞食从而进入食物网。近几年的文献报道显示微(纳米)塑料会随着食物链层层富集,最终在更高等的生物体(如:鱼类、贝类和海鸟等)内富集,最终危害人类健康。

目前,在淡水鱼,海水鱼,海鳌虾体内均检出了微塑料,检出率从至100%不等。微塑料不仅广泛存在于水生动物中,而且和人类密切相关的食物,如蔬菜、食盐、家禽中均可检测到微塑料。全球各地的自来水和瓶装水中也都检测到了微塑料。

微(纳米)塑料可以进入海藻、贝类及各种各样的鱼类(海鱼及河鱼)等生物的体内,研究表明,这些微小的塑料颗粒会随着食物链传递到更高等的生物体内,或以其他途径进入人类食物链(如通过食盐或动物饲料的方式

其中贝类作为一类常见的海洋生态毒理学模式生物,被广泛的应用于各种海洋污染物的毒理研究及生物效应评价,通过对紫贻贝的研究表明,尺寸大于4 um的微塑料会完全的滞留在生物体内,而较小的塑料颗粒的保留效率也高达35 %—7 0%。

由于微塑料的尺寸较大,多数微塑料会积累到动物的肠道阶段,但也有少量的微塑料可通过肠道内丰富的淋巴集结进入到循环系统当中。然而,对于较大尺寸的微塑料,较难深入渗透到器官当中。

根据目前的研究显示,微塑料进入人体,最可能会积累在肠道阶段,影响肠道部

位的免疫系统、引起同部灾征风心。lu火人一的积累情况及转运效率。

而由于微塑料较大表面积以及可能带有电荷,可能会引起蛋白质或者糖蛋白的吸附,进一步加重肠道炎症反应。

除了海洋和陆地是微塑料的主要来源外,大气中存在的微塑料颗粒也是不可忽视的一部分。在巴黎地区进行的一项研究中,大气沉降物中的微塑料回收浓度可达到335个/m2/d,而室内空气传播的微塑料浓度更高。

傅立叶变换的研究论文

选自Nature

作者:Jeffrey M. Perkel

机器之心编译

机器之心编辑部

2019 年,「事件视界望远镜」团队拍下了第一张黑洞照片。这张照片并非传统意义上的照片,而是计算得来的——将美国、墨西哥、智利、西班牙和南极多台射电望远镜捕捉到的数据进行数学转换。该团队公开了所用代码,使科学社区可以看到,并基于此做进一步的 探索 。

而这逐渐成为一种普遍模式。从天文学到动物学,每一个伟大的现代科学发现背后都有计算机的身影。斯坦福大学计算生物学家、2013 年诺贝尔化学奖获得主 Michael Levitt 表示,现在的笔记本电脑在内存和时钟速度方面是 1967 年其实验室计算机的一万倍。「今天,我们拥有大量算力。但问题是,这仍然需要人类的思考。」

如果没有能够处理研究问题的软件以及知道如何编写和使用软件的研究人员,计算机再强大也是无用。「现在的研究与软件紧密相关,软件已经渗透到科研的方方面面。」软件可持续性研究所(Software Sustainability Institute)负责人 Neil Chue Hong 如是说。

最近,Nature 上的一篇文章试图揭示科学发现背后的重要代码,正是它们在过去几十年中改变了科研领域。这篇文章介绍了对科学界带来重大影响的十个软件工具,其中就包括与人工智能领域密切相关的 Fortran 编译器、arXiv、IPython Notebook、AlexNet 等。

语言先驱:Fortran 编译器(1957)

首批出现的现代计算机对用户并不友好。编程实际上是由手工完成的,通过电线连接一排排电路。后来的机器语言和汇编语言允许用户使用代码进行计算机编程,但这两种语言依然要求使用者对计算机架构有深入了解,导致很多科学家无法使用它们。

20 世纪 50 年代,随着符号语言的发展,尤其是「公式翻译」语言 Fortran 的出现,上述境况发生了改变。Fortran 语言由 IBM 的约翰 · 巴科斯(John Backus)团队开发。借助 Fortran,用户可以使用 x = 3 + 5 等人类可读的指令进行计算机编程,之后编译器将这类指令转化为快速高效的机器码。

这台使用 Fortran 编译器编程的 CDC 3600 计算机于 1963 年移送至美国国家大气研究中心。(图源:美国大气科学研究大学联盟 / 科学图片库。)

在早期,编程人员使用穿孔卡片(punch card)输入代码,复杂的模拟可能需要数万张穿孔卡片。不过,Fortran 使得并非计算机科学家的研究者也能够进行编程。普林斯顿大学气候学家 Syukuro Manabe 表示:「我们第一次靠自己进行编程。」他和同事使用 Fortran 语言开发了首批成功的气候模型之一。

60 多年过去了,Fortran 依然广泛应用于气候建模、流体动力学、计算机化学,以及其他涉及复杂线性代数并需要强大计算机快速处理数字的学科。Fortran 代码运行速度很快,仍然有很多编程人员知道如何写 Fortran。古老的 Fortran 代码库依然活跃在世界各地的实验室和超级计算机上。

信号处理器:快速傅里叶变换(1965)

当天文学家扫描天空时,他们捕捉到了随时间变化的复杂信号的杂音。为了理解这些无线电波的性质,他们需要观察这些信号作为频率函数的样子。一种被称为傅里叶变换(Fourier transform)的数学过程允许科学家实现这一点。但问题在于傅里叶变换并不高效,对大小为 N 的数据集它需要进行 N 次运算。

1965 年,美国数学家 James Cooley 和 John Tukey 开发了一种加速傅里叶变换过程的方法。借助递归(recursion)这种「分而治之」的编程方法(其中算法可以实现重复地再运用),快速傅里叶变换(fast Fourier transform, FFT)将计算傅里叶变换问题简化为 N log_2(N) 个步骤。速度也随着 N 的增加而提升。对于 1000 个点,速度提升约 100 倍;对于 100 万个点,速度提升约 5 万倍。

牛津大学数学家 Nick Trefethen 表示,FFT 的发现实际上是一种「再发现」,因为德国数学家卡尔 · 弗里德里希 · 高斯在 1805 年就完成了该发现,不过从未发表。但是,James Cooley 和 John Tukey 开启了 FFT 在数字信号处理、图像分析和结构生物学等领域中的应用。Trefethen 认为 FFT「是应用数学与工程领域伟大的发现之一。」FFT 已经在代码中实现了很多次,其中一种流行的变体是 FFTW(「西方最快的傅里叶变换」)。

默奇森天文望远镜,使用快速傅里叶变换来收集数据。

劳伦斯伯克利国家实验室(Lawrence Berkeley National Laboratory)分子生物物理学和综合生物成像部门主任 Paul Adams 回忆称,当他在 1995 年改进细菌蛋白 GroEL 的结构时,即使使用 FFT 和一台超级计算机,也需要「很多很多个小时,甚至是几天」的计算。但要没有 FFT,很难想象这件事要怎么做,花的时间将难以估量。

线性代数运算标准接口:BLAS(1979)

科学计算通常涉及使用向量和矩阵的数学运算,这些运算相对简单,但计算量大。20 世纪 70 年代,学界并没有出现一套普遍认可的执行此类运算的工具。因此,科研工作者不得不花费时间设计高效的代码来做基础的数学运算,导致无法专注于科学问题本身。

编程世界需要一个标准。1979 年,基础线性代数子程序库(Basic Linear Algebra Subprograms, BLAS)应运而生。直到 1990 年,该标准仍然在发展变化,定义了数十条涵盖向量和矩阵运算的基本程序。

田纳西州大学计算机科学家、BLAS 开发团队成员之一 Jack Dongarra 表示,BLAS 实际上将矩阵和向量运算简化成了像加减法一样的基础计算单元。

Cray-1 超级计算机。(图源:科学 历史 图像 / Alamy)

德州大学奥斯汀分校计算机科学家 Robert van de Geijn 表示:「BLAS 可能是为科学计算而定义的最重要接口。」除了为常用函数提供标准名称之外,研究者可以确保基于 BLAS 的代码能够以相同的方式在任何计算机上运行。该标准也使得计算机制造商能够优化 BLAS 实现,以实现硬件上的快速运行。

40 多年来,BLAS 代表了科学计算堆栈的核心,使得科学软件持续发展。乔治华盛顿大学机械与航空航天工程师 Lorena Barba 将 BLAS 称为「五层代码内的核心机制」。

预印本平台:(1991)

20 世纪 80 年代末,高能物理领域的研究者往往会把自己提交的论文邮寄给同行审阅,这是一种礼仪,但只邮寄给少数几个人。「那些处于食物链底端的人依赖于顶端人的施舍,这往往会把非精英机构中有抱负的研究者完全排除在特权圈之外,」物理学家 Paul Ginsparg 曾在 2011 年的一篇文章中写道。

1991 年,洛斯阿拉莫斯国家实验室(Los Alamos National Laboratory)的 Ginsparg 写了一个电子邮件自动回复器,以建立公平的竞争环境。邮件订阅者每天都会收到一份预印本列表,每份论文都带有标识符。如此一来,世界各地的用户都可以通过一封电子邮件提交或检索来自上述实验室计算机系统的论文。

Ginsparg 原本计划将文章保留三个月,将范围限制在高能物理社区,但他的同事劝他去掉了这些限制。「就是在那一刻,它从布告栏转变成了档案库,」Ginsparg 表示。在这之后,大批论文开始涌入,其学科之广远远超出了 Ginsparg 的预期。1993 年,Ginsparg 把这个系统移植到互联网上。1998 年,他正式将该系统命名为 。

如今,30 岁的 arXiv 收录了 180 万份预印本文章,且全部免费阅读,其每月论文提交量超过 15000 份,每月下载量高达 3000 万次。「不难看出 arXiv 为何如此受欢迎,」Nature Photonics 的编辑曾表示,「该系统为研究者提供了一种快捷、方便的科研方式,可以告诉大家你在做什么、什么时间做的,省去了传统期刊同行评审的繁琐。」

该网站的成功还对生物学、医学、 社会 学等其他学科类似存储库的建立起到了助推作用,成千上万份新冠病毒相关研究预印本的发布就是一个例证。

数据 探索 器:IPython Notebook (2011)

Fernando Pérez 在 2001 年决定「探寻拖延症」,当时他是一名研究生,决定采用 Python 的核心组件。

Python 是一种解释型语言,意味着程序会一行一行地执行。编程人员可以使用一种被称为「读取 - 求值 - 输出循环(REPL)」的计算型调用和响应(call-and-response)工具,他们可以键入代码,然后由解释器执行代码。REPL 允许快速 探索 和迭代,但 Pérez 指出 Python 并不是为科学构建的。例如,它不允许用户轻松地预加载代码模块或保持数据可视化的打开状态。因此 Pérez 创建了自己的版本。

2001 年 12 月,Pérez 发布了交互式 Python 解释器 IPython,它共有 259 行代码。10 年后,Pérez 和物理学家 Brian Granger、数学家 Evan Patterson 合作,将该工具迁移到 Web 浏览器,创建了 IPython Notebook,掀起了一场数据科学的革命。

和其他计算型 notebook 一样,IPython Notebook 将代码、结果、图形和文本组合到了单个文档中。但与其他此类型项目不同的是,IPython Notebook 是开源的,欢迎广大社区开发者为其发展做出贡献,并且支持 Python 这种科学家常用的语言。2014 年,IPython 演变成 Project Jupyter,支持约 100 种语言,并允许用户像在自己计算机上一样轻松地在远程超级计算机上 探索 数据。

Nature 在 2018 年指出:「对数据科学家而言,Jupyter 已经成为一种实际标准」。那时,GitHub 上已经有 250 万个 Jupyter notebook,如今已有近一千万个,其中包括 2016 年发现引力波和 2019 年黑洞成像的记录。Pérez 表示:「我们能为这些项目做出一点贡献也是非常有意义的」。

快速学习器:AlexNet(2012)

人工智能(AI)可分为两类,一类使用编码规则,另一类让计算机通过模拟大脑的神经结构来「学习」。多伦多大学计算机科学家、图灵奖获得者 Geoffrey Hinton 表示:「几十年来,人工智能研究者一直将第二种研究方法视为『荒谬』」。2012 年,Hinton 的研究生 Alex Krizhevsky 和 Ilya Sutskever 证明了事实并非如此。

在当年的 ImageNet 的年度竞赛上,研究者们被要求在包含 100 万张日常物品图像的数据库上训练 AI,然后在另一个图像集上测试算法。Hinton 表示:「在当时,最佳算法会在 1/4 的图像上出现分类错误」。Krizhevsky 和 Sutskever 开发的 AlexNet 是一种基于神经网络的深度学习算法,该算法将误差率降至 16%。Hinton 表示:「我们几乎将误差率降低了一半」。

Hinton 认为,该团队在 2012 年的成功反映出足够大的训练数据集、出色的编程和图形处理单元(最初为了提高计算机视频性能的处理器)新力量的结合。他表示:「突然之间,我们就能够将该算法的速度提高 30 倍,或者说可以学习 30 倍的数据」。

Hinton 表示真正的算法突破实际上发生在 3 年前。当时他的实验室创建了一个比几十年来不断完善的传统 AI 更能准确识别语音的神经网络。虽然准确率只稍微提升了一点,但已值得被记住。

AlexNet 及相关研究的成功带来了实验室、临床等多个领域深度学习的兴起。它让手机能够理解语音查询,也让图像分析工具能够轻松地从显微照片中挑选出细胞。这就是 AlexNet 在改变科学、改变世界的工具中占有一席之地的原因。

表示能将满足一定条件的某个函数表示成三角函数或者它们的积分的线性组合。

傅立叶变换

傅立叶变换能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅立叶变换和离散傅立叶变换。最初傅立叶分析是作为热过程的解析分析的工具被提出的。

由来

要理解傅立叶变换,确实需要一定的耐心,别一下子想着傅立叶变换是怎么变换的,当然,也需要一定的高等数学基础,最基本的是级数变换,其中傅立叶级数变换是傅立叶变换的基础公式。

变换提出

变换分类

根据原信号的不同类型,我们可以把傅立叶变换分为四种类别:

1.非周期性连续信号傅立叶变换(Fourier Transform)

2.周期性连续信号傅立叶级数(Fourier Series)

3.非周期性离散信号离散时域傅立叶变换(Discrete Time Fourier Transform)

4.周期性离散信号离散傅立叶变换(Discrete Fourier Transform)

傅里叶变换是由傅里叶级数推导而来的,傅里叶级数的对象是周期信号,但是如果信号为非周期信号的话(也可视为周期信号的周期无穷大),就推导出了傅里叶变换!

图像傅里叶频谱分析毕业论文

傅里叶基础

法国数学家吉恩·巴普提斯特·约瑟夫·傅里叶被世人铭记的最大的贡献是:他指出任何周期函数都可以表示为不同频率的正弦和/或余弦之和的形式,每个正弦项和/或余弦项乘以不同的系数(现在称该和为傅里叶级数)。无论函数多么复杂,只要它是周期的,并且满足某些适度的数学条件,都可以用这样的和来表示。即一个复杂的函数可以表示为简单的正弦和余弦之和。甚至非周期函数(单该曲线下的面积是有限的)也可以用正弦和/或许·余弦乘以加权函数的积分来表示。在这种情况下的公式就是傅里叶公式。

比如说我们以制作一个饮料的过程,使用时域的角度来看就是这样:

这里是什么意思呢,就是说一个饮料的制作需要在18点整放1个单位冰糖、3个单位红豆、2个单位的绿豆、4个单位的西红柿,还有1个单位的纯净水。然后再18:01分只需要假如一个单位的纯净水。后面也是一致。而频域是怎么描述这件事的呢?

具体来说就是说他发现了一个规律,就是说这个制作过程,每分钟都要加入冰糖,每两分钟都要加入红豆,每三分钟都要加入一次绿豆…。对于时域角度我们这样描述。

对于频域角度我们这样描述这件事,用直方图表示就是:

如果要考虑更精准的时间精度,我们就要引入相位这个概念。他是一个和时间差有关的一个表述。

这里我们说明一下就是时域和频域的表述是互逆的,对于时域我们是时间为横坐标,振幅为纵坐标。对于频域我们以频率为横坐标,振幅为纵坐标。但是可以看得出来频域的表述更加简单,但是比较抽象,不容易理解。傅里叶说: 任何连续周期信号,可以由一组适当的正弦曲线组合而成。 注意这里是一组而不是一个。比如对于这样的一个图像: f(x)=3 ( x)+7 (1/3 x)+2 ( x)

看上去是毫无规律可言吧,但是它也可以由一组正弦函数组成。

他们是可逆的,想不到吧,乱七八糟的东西也有规律了。但是他们就是这样组合而成的吗?不可能吧,所以这里就是不是同时开始的一组余弦函数,在叠加时要体现开始的时间。也就说组合的函数他们的开始时间是不一样的。在这里分别对应0,2,3.看公式就看出来啦。这里多说一嘴就是说傅里叶变换从时域角度来看,这个世界是动态的!从频域角度来看这个世界是静止的。从数学角度来讲:傅里叶变换将一个任意的周期函数分解成为无穷个正弦函数的和的形式。从物理角度来讲:傅里叶变换实现了将信号从空间域到频率域的转换。

傅里叶基础numpy实现

python是可以实现傅里叶变换的,这里就要说到三剑客的numpy了。对应的函数是: 返回一个复数数组(complex ndarray)。 这个函数时表示把将零频率分量移到频谱中心。

还要设置频谱的范围 20*((fshift)) ,对于图像来说就是255了。

结果是:

原图和频谱图像。

逆傅里叶numpy实现

对于傅里叶的逆操作这里没有什么可说的,就是把频域图像转回原图像。

函数是: ,那么还有一个操作就是把中间移动回去对啊。 。 iimg = (逆傅里叶变换结果) 而第二个图就表示低频部分,边缘就表示为高频部分。

首先我们要进行傅里叶变换吧,才可以进行逆操作。结果是:

完全一致!!!

图像的傅立叶变换可参考fft2,abs计算幅度谱,angle计算相位。幅度谱一般代表图像的亮度信息,相位谱代表图像的构造纹理信息,你可有试验使用相位谱和单位幅度谱重构图像。

1、傅里叶变换之后,频谱图有几个特点: ① 中心点是原图整幅图像的平均灰度,频率为0,从图像中心向外,频率增高。即中心对应低频,外围对应高频。 ②如果原图中有明显的横纹(竖纹),那么频谱图中就会有鲜明的竖线(横线)。 2、通过控制傅里叶频谱中某些点,再观察变换回原图的状态,就能有一个比较好的理解了。 下图中,保留中心低频,即去除外围高频,相当于滤掉了图片的高频(边缘)部分,图片自然变得模糊。 下图中,保留中心高频,即去除外围低频,相当于保留了边缘部分,滤掉了中心低频部分。 相关文章:

你把代码贴出来啊,你这个写法显然生成的图片没调整好比如你的幅值图和相位图肯定是没有换成log坐标下归一化处理,看到的赋值图只有零频率的亮点你的相位图应该也是相同的问题要理解实部虚部建议你不要先从软件给出的二维图像变换上来理解,好好看一下数学公式特别是有限长的离散傅里叶变换是怎么在处理代码贴出来了之后再跟你谈操作问题。

复变函数与积分变换论文参考文献

大学的?我是数学专业的你们这应该是一门课吧?你参考下吧复数的概念起源于求方程的根,在二次、三次代数方程的求根中就出现了负数开平方的情况。在很长时间里,人们对这类数不能理解。但随着数学的发展,这类数的重要性就日益显现出来。复数的一般形式是:a+bi,其中i是虚数单位。 以复数作为自变量的函数就叫做复变函数,而与之相关的理论就是复变函数论。解析函数是复变函数中一类具有解析性质的函数,复变函数论主要就研究复数域上的解析函数,因此通常也称复变函数论为解析函数论。复变函数论的发展简况 复变函数论产生于十八世纪。1774年,欧拉在他的一篇论文中考虑了由复变函数的积分导出的两个方程。而比他更早时,法国数学家达朗贝尔在他的关于流体力学的论文中,就已经得到了它们。因此,后来人们提到这两个方程,把它们叫做“达朗贝尔-欧拉方程”。到了十九世纪,上述两个方程在柯西和黎曼研究流体力学时,作了更详细的研究,所以这两个方程也被叫做“柯西-黎曼条件”。 复变函数论的全面发展是在十九世纪,就像微积分的直接扩展统治了十八世纪的数学那样,复变函数这个新的分支统治了十九世纪的数学。当时的数学家公认复变函数论是最丰饶的数学分支,并且称为这个世纪的数学享受,也有人称赞它是抽象科学中最和谐的理论之一。 为复变函数论的创建做了最早期工作的是欧拉、达朗贝尔,法国的拉普拉斯也随后研究过复变函数的积分,他们都是创建这门学科的先驱。 后来为这门学科的发展作了大量奠基工作的要算是柯西、黎曼和德国数学家维尔斯特拉斯。二十世纪初,复变函数论又有了很大的进展,维尔斯特拉斯的学生,瑞典数学家列夫勒、法国数学家彭加勒、阿达玛等都作了大量的研究工作,开拓了复变函数论更广阔的研究领域,为这门学科的发展做出了贡献。 复变函数论在应用方面,涉及的面很广,有很多复杂的计算都是用它来解决的。比如物理学上有很多不同的稳定平面场,所谓场就是每点对应有物理量的一个区域,对它们的计算就是通过复变函数来解决的。 比如俄国的茹柯夫斯基在设计飞机的时候,就用复变函数论解决了飞机机翼的结构问题,他在运用复变函数论解决流体力学和航空力学方面的问题上也做出了贡献。 复变函数论不但在其他学科得到了广泛的应用,而且在数学领域的许多分支也都应用了它的理论。它已经深入到微分方程、积分方程、概率论和数论等学科,对它们的发展很有影响。复变函数论的内容 复变函数论主要包括单值解析函数理论、黎曼曲面理论、几何函数论、留数理论、广义解析函数等方面的内容。 如果当函数的变量取某一定值的时候,函数就有一个唯一确定的值,那么这个函数解就叫做单值解析函数,多项式就是这样的函数。 复变函数也研究多值函数,黎曼曲面理论是研究多值函数的主要工具。由许多层面安放在一起而构成的一种曲面叫做黎曼曲面。利用这种曲面,可以使多值函数的单值枝和枝点概念在几何上有非常直观的表示和说明。对于某一个多值函数,如果能作出它的黎曼曲面,那么,函数在离曼曲面上就变成单值函数。 黎曼曲面理论是复变函数域和几何间的一座桥梁,能够使我们把比较深奥的函数的解析性质和几何联系起来。近来,关于黎曼曲面的研究还对另一门数学分支拓扑学有比较大的影响,逐渐地趋向于讨论它的拓扑性质。 复变函数论中用几何方法来说明、解决问题的内容,一般叫做几何函数论,复变函数可以通过共形映象理论为它的性质提供几何说明。导数处处不是零的解析函数所实现的映像就都是共形映象,共形映像也叫做保角变换。共形映象在流体力学、空气动力学、弹性理论、静电场理论等方面都得到了广泛的应用。 留数理论是复变函数论中一个重要的理论。留数也叫做残数,它的定义比较复杂。应用留数理论对于复变函数积分的计算比起线积分计算方便。计算实变函数定积分,可以化为复变函数沿闭回路曲线的积分后,再用留数基本定理化为被积分函数在闭合回路曲线内部孤立奇点上求留数的计算,当奇点是极点的时候,计算更加简洁。 把单值解析函数的一些条件适当地改变和补充,以满足实际研究工作的需要,这种经过改变的解析函数叫做广义解析函数。广义解析函数所代表的几何图形的变化叫做拟保角变换。解析函数的一些基本性质,只要稍加改变后,同样适用于广义解析函数。 广义解析函数的应用范围很广泛,不但应用在流体力学的研究方面,而且象薄壳理论这样的固体力学部门也在应用。因此,近年来这方面的理论发展十分迅速。 从柯西算起,复变函数论已有170多年的历史了。它以其完美的理论与精湛的技巧成为数学的一个重要组成部分。它曾经推动过一些学科的发展,并且常常作为一个有力的工具被应用在实际问题中,它的基础内容已成为理工科很多专业的必修课程。现在,复变函数论中仍然有不少尚待研究的课题,所以它将继续向前发展,并将取得更多应用。

程序设计。第三版。谭浩强 著。清华出版社 程序设计题解与上机指导。谭浩强 著。清华出版社 程序设计试题汇编。谭浩强 著。清华出版社 4.数据结构(C语音版)。吴伟民 等著 。清华出版社 程序设计题解与上机指导。谭浩强 著。清华出版社 程序设计。谭浩强 著。清华出版社 7.电脑报。 9.精通HTML 。洪锦魁 著。11.高等数学 15.工程数学 复变函数与积分变换 16.数字信号处理教材 第二版 程佩青 著 17.信号与系统 18.工程电磁场基础 19.现代通信原理 第二版 沈保锁 著 20.数字电路与FPGA 21.现代通信原理 22.计算机软件基础 23.移动通信原理、系统及技术 24.电子线路

① 大一通信工程要学习那些课程那些课程是重点课程

老实说,中国的教育都十分落后,大学里有很多课程都没什么用,只要拿到绩点,毕得了业就行了。

应考虑一下自己毕业后想做哪行,然后上网找找学习的书籍。

例如:

程序员(手机、平板上的app)—— 先学“C语言”、然后学“JAVA”或“C++“,接着 Android编程、IOS编程等等,上网找找,有很多书的。

固件程序员(本人的职业) —— 先学“C语言”,然后学“单片机”(同时需要一些电子 的基本知识),接着是”嵌入式“(一般以 ARM 系列 MCU 和 Linux 操作系统为主)。

电子工程师 —— 先学“电路”、“模电”、“数电”,然后学习用电脑画 原理图、PCB(常用的软件是Altium Designer )

RF工程师(射频、无线)—— 这个我也不清楚,不过基本知识还是“电路”、“模 电”、“数电”(基本与电子相关的工作都要学这些),

另外还要学一些“通信”相关的吧。

总之,在中国,大学很多课程应付一下就好,没必要花太多时间,主要还是要靠你自己去学。

最后,如果你不知道该学什么,告诉你一个方法: 上网找招聘信息,招聘的要求里经常讲到那些职位需要什么知识,可以用他们的招聘要求作为参考。

② 谁知道在大学通信工程专业要学习哪些课程丫,是大一到大四喔

通信工程专业 业务培养目标: 业务培养目标:本专业培养具备通信技术、通信系统和通信网等方面的知识,能在通信领域中从事研究、设计、制造、运营及在国民经济各部门和国防工业中从事开发、应用通信技术与设备的高级工程技术人才。 业务培养要求:本专业学生主要学习通信系统和通信网方面的基础理论、组成原理和设计方法,受到通信工程实践的基本训练,具备从事现代通信系统和网络的设计、开发、调测和工程应用的基本能力。 毕业生应获得以下几方面的知识和能力: 1.掌握通信领域内的基本理论和基本知识; 2.掌握光波、无线、多媒体等通信技术; 3.掌握通信系统和通信网的分析与设计方法; 4.具有设计、开发、调测、应用通信系统和通信网的基本能力; 5.了解通信系统和通信网建设的基本方针、政策和法规; 6.掌握文献检索、资料查询的基本方法,具有一定的科学研究和实际工作能力。 主干课程: 主干学科:信息与通信工程、计算机科学与技术。 主要课程:电路理论与应用的系列课程、计算机技术系列课程、信号与系统、电磁场理论、数字系统与逻辑设计、数字信号处理、通信原理等。 主要实践性教学环节:包括计算机上机训练、电子工艺实习、电路综合实验、生产实习、课程设计、毕业设计等。一般要求实践教学环节不少于30周。 修业年限:四年 授予学位:工学学士

③ 大学通信工程专业要学哪些专业课程

对于本科生而言,通信工程主要可以分为光通信,也就是我们一直在说的光纤通信,信息工程,主要是针对信号处理这一方面的,还有控制工程以及通信工程等;比如说电子电路,信号与系统,电路分析基础以及通信原理等,

④ 北邮通信工程大一课程具体都有什么

大一上学期: 思想道德修养与法律基础 3学分 中国近代史纲要 2学分 形势与政策1 学分 高数A/数学分析 6学分(高考数学高分者就会被分数学分析班,一般140以上吧) 大学英语一/二/三级 4/4/3学分(入学英语测试成绩前10%进三级,10%~20进二级班) 大学计算机基础 2学分 体育基础(上) 2学分 军事理论 2学分 选修 2学分 至于大一下学期的就不说了,入校后不久会发一本《培养计划》,上面会告诉你大学四年的课程

⑤ 通信工程专业大一下学期要学些什么课程

公共基础类 像高数 英语 马克思 毛邓概 等等这些是必须要学的 而对于你的专业课程视你大学开课情况而定,基本上一些专业课是必须学的,比如:通信原理,数电模电。微波天线,MATLAB。高频电路。其中通信原理蛮重要的 。等你学的时候主要一些感兴趣的方向,着重学好某方面,所有都想学好也不可能。希望对你有帮助。

⑥ 通信工程专业学什么课程

主干课程:来

电路理论与源应用的系列课程、计算机技术系列课程、信号与系统、电磁场理论、数字系统与逻辑设计、数字信号处理、通信原理等。

核心知识领域:电子线路、数字逻辑电路、计算机基础、信号与系统、数字信号处理、电磁场与 微波技术、通信原理、通信网理论基础、现代通信技术等。

(6)通信工程大一课程扩展阅读:

相关延伸:通讯工程专业具备能力

毕业生应获得以下几方面的知识和能力:

1、掌握通信领域内的基本理论和基本知识;

2、掌握光波、无线、多媒体等通信技术;

3、掌握通信系统和通信网的分析与设计方法;

4、具有设计、开发、调测、应用信通系统和通信网的基本能力;

5、了解通信系统和通信网建设的基本方针、政策和法规;

6、了解通信技术的最新进展与发展动态;

7、掌握文献检索、资料查询的基本方法,具有一定的科学研究和实际工作能力。

⑦ 大一通信工程学什么

大一的都是基础课,开设有 C C++ 英语 物理 高数等,各专业的区别不大,专业课一般最早也要到大一下学期开,现在转专业影响不大,只要对专业感兴趣学起来还是比较轻松的,我就是学通信的。

⑧ 通信工程要学哪些课程

楼主你好,以下是通信工程专业大学四年主要学习的课程(学校不同,所学课程可能略有区别,但大致一样) 大一:学习一些基础课,像“高等数学”“线性代数”“C语言”“大学物理”还有一些公共课,像“大学英语”还有政治,体育什么的 大二:重点学习专业基础课,像“电路分析”“数字电路”“数据结构”“信号与系统”“模拟电子电路”“概率论”“微机原理与接口技术”再有就是英语,政治,体育 大三:开始学习专业课,像“通信原理”“通信电子线路”“交换技术”“电磁场”“移动通信”“光纤通信”“通信网”“数字信号处理”等 大四:基本没什么课了,考研或找工作什么的,然后就是毕业设计

⑨ 通信工程大一学哪些课程

大一都是基础课程,高数,线数,英语,工程制图什么的,大二是专业基础课,大三是专业课,我就是这个专业的

⑩ 通信工程主修课程有哪些

这里有个word文档案,说的很清楚的,所有学校的都大同小异,你可以看个仔细:// 通信工程专业本科生培养方案 一、培养目标 本专业培养具备通信技术、通信系统和通信网等方面的知识,能在通信领域中从事研究、设计、制造、运营及在国民经济各部门和国防工业中从事开发、应用通信技术与设备的高级工程技术人才。 二、培养基本规格要求 本专业学生主要学习通信系统和通信网方面的基础理论、组成原理和设计方法,受到通信工程实践的基本训练,具备从事现代通信系统和网络的设计、开发、调测和工程应用的基本能力。 毕业生应获得以下几方面的知识和能力: 1. 掌握通信领域内的基本理论和基本知识; 2. 掌握光波、无线、多媒体等通信技术; 3. 掌握通信系统和通信网的分析与设计方法; 4. 具有设计、开发、调测、应用通信系统和通信网的基本能力; 5. 了解通信系统和通信网建设的基本方针、政策和法规; 6. 了解通信技术的最新进展与发展动态; 7. 掌握文献检索、资料查询的基本方法,具有一定的科学研究和实际工作能力。 三、主要课程 电路理论与应用的系列课程、计算机技术系列课程、信号与系统、单片机原理及应用、数字信号处理、通信原理、通信电子电路、无线通信方向系列课程、光通信方向系列课程、多媒体通信方向系列课程等。 四、学位课程 信号与系统、通信原理、通信电子电路。 五、毕业最低学分及要求 毕业最低学分160学分,其中必修(含公共基础平台、学科基础平台、专业基础平台)学分为102。学生从无线通信、光通信、多媒体通信三个模块方向中选一个方向主修,获得这个模块专业课程 11学分,并完成专业实习、毕业实习和毕业设计共25学分。每个毕业生要修满22学分的任意选修学分,包括文化素质类课程6学分(其中“两课”延伸课程2学分)、专业选修课12学分、公共选修课4学分。 六、学制 四年。 七、授予学位及要求 工学学士学位。 学生必须满足宁波大学学士学位授予的相关条例 。 八、各类课程设置及学分分配汇总表 课程分类 必修课 选修课 合计 其中:实验、实习、实训、上机 公共基础平台课 学科基础平台课 专业基础平台课 小计 专业方向模块课 任意选修课 小计 公共基础平台课 学科基础平台课 专业基础平台课 专业方向模块课 小计 学分数 52 102 36 22 58 160 2 5 28 占总学分% 100 通信工程专业本科生培养方案 一、培养目标 本专业培养具备通信技术、通信系统和通信网等方面的知识,能在通信领域中从事研究、设计、制造、运营及在国民经济各部门和国防工业中从事开发、应用通信技术与设备的高级工程技术人才。 二、培养基本规格要求 本专业学生主要学习通信系统和通信网方面的基础理论、组成原理和设计方法,受到通信工程实践的基本训练,具备从事现代通信系统和网络的设计、开发、调测和工程应用的基本能力。 毕业生应获得以下几方面的知识和能力: 1. 掌握通信领域内的基本理论和基本知识; 2. 掌握光波、无线、多媒体等通信技术; 3. 掌握通信系统和通信网的分析与设计方法; 4. 具有设计、开发、调测、应用通信系统和通信网的基本能力; 5. 了解通信系统和通信网建设的基本方针、政策和法规; 6. 了解通信技术的最新进展与发展动态; 7. 掌握文献检索、资料查询的基本方法,具有一定的科学研究和实际工作能力。 三、主要课程 电路理论与应用的系列课程、计算机技术系列课程、信号与系统、单片机原理及应用、数字信号处理、通信原理、通信电子电路、无线通信方向系列课程、光通信方向系列课程、多媒体通信方向系列课程等。 四、学位课程 信号与系统、通信原理、通信电子电路。 五、毕业最低学分及要求 毕业最低学分160学分,其中必修(含公共基础平台、学科基础平台、专业基础平台)学分为102。学生从无线通信、光通信、多媒体通信三个模块方向中选一个方向主修,获得这个模块专业课程 11学分,并完成专业实习、毕业实习和毕业设计共25学分。每个毕业生要修满22学分的任意选修学分,包括文化素质类课程6学分(其中“两课”延伸课程2学分)、专业选修课12学分、公共选修课4学分。 六、学制 四年。 七、授予学位及要求 工学学士学位。 学生必须满足宁波大学学士学位授予的相关条例 。 八、各类课程设置及学分分配汇总表 课程分类 必修课 选修课 合计 其中:实验、实习、实训、上机 公共基础平台课 学科基础平台课 专业基础平台课 小计 专业方向模块课 任意选修课 小计 公共基础平台课 学科基础平台课 专业基础平台课 专业方向模块课 小计 学分数 52 102 36 22 58 160 2 5 28 占总学分% 100 九、通信工程专业课程设置总表 课程类别 课程编号 课程名称(中、英文) 学分数 总学时 学时分配 开课学期 建议修读学期 讲课 自主学习 实验 上机 实习 实训 秋季 春季 短学期 公共基础平台 020L13A 德育与法律基础Fundamentals of Morality and Law 51 51 √ 1 020L12A 马克思主义哲学 Marxist Philosophy 51 51 √ 2 020L14A *** 思想与 *** 理论概论Introction to Mao Zedong Thought and Deng Xiaoping Theory 68 68 √ 4 020L10A “两课”社会实践 Social Practice 2周 2周 暑假 暑2 040T01A 大学体育1 Physical Ecation (1) 34 34 √ 1 040T02A 大学体育2 Physical Ecation (2) 34 34 √ 2 040T03A 大学体育3 Physical Ecation (3) 34 34 √ 3 004C03A 军事理论 Basic Military Knowledge 3周 3周 √ 短1 004C04A 军事技能训练 Basic Military Training √ 080J01F 高等数学A1Advanced Mathematics (A1) 102 102 √ 1 080J02G 高等数学A2Advanced Mathematics (A2) 85 85 √ 2 080J10B 线性代数A Linear Algebra (A) 51 51 √ 2 080J15A 概率统计A Probability Statistics (A) 51 51 √ 3 080J24C 复变函数与积分变换Functions of Complex Variables & Integral Transformations 51 51 √ 3 大学英语类课程:15学分,具体课程见“《大学英语》分层次教学课程设置一览” 小计 学分 学科基础平台 100J06A 计算机导论 Introction to Computers Science and Technology 68 34 34 √ 1 100J05A 程序设计基础(C语言)Programming in C 68 34 34 √ 1 101G01G 电路原理(一)Principles of Electrical Circuits(1) 42 42 √ 2 101G03Y 数字电子技术Digital Electronic Technology 59 42 17 √ 3 101G23A 数字电子技术实验 Experiments of Digital Electronic Technology 17 17 √ 3 101G12G 信息技术实践Application of Information Technology 3周 3周 √ 短2 小计 254+3周 152 17 17 68 3周 0 专业基础平台 101G08Y 数值计算与MATLAB语言Numerical Computation in MATLAB 59 25 17 17 √ 3 080J34A 大学物理C2 College Physics( C2) 3 51 51 √ 3 080J44A 大学物理实验C2Experiment of College Physics (C2) 17 17 √ 3 101G02A 模拟电子技术Analog Electronic Technology 59 59 √ 4 九、通信工程专业课程设置总表(续表一) 课程类别 课程编号 课程名称(中、英文) 学分数 总学时 学时分配 开课学期 建议修读学期 讲课 自主学习 实验 上机 实习 实训 秋季 春季 短学期 专业基础平台 101G22A 模拟电子技术实验 Experiment of Analog Electronic Technology 34 34 √ 4 101G06Y ●信号与系统 Signals and Systems 68 51 17 √ 4 101G09A ◆计算机网络B Computer Neork( )B 59 42 17 √ 4 102G05Y 单片机原理及应用The Principles and Applications of Single-chip Microputer 59 25 17 17 √ 4 103G04Y ◆数字信号处理Digital Signal Processing 68 34 17 17 √ 5 102G01Y ●通信原理Principles of Communication 76 42 17 17 √ 5 102T01Y ●通信电子电路Communication Circuits 68 34 17 17 √ 5 102T19A 通信专业英语English for Communication 17 17 √ 5 103M02A ◆信息论基础Fundamentals of Information Theory 34 34 √ 6 小计 669 397 102 119 34 0 17 无线通信模块 102D01Y 电磁场与电磁波Fields and Waves of Electromagi *** 51 34 17 √ 5 103G01C ◆DSP芯片技术及应用Technology and Applications of DSP 59 42 17 √ 6 103T14Y 现代通信网Modern Communication Neorks 51 34 17 √ 6 103T15A 射频电路设计 RF Circuit Technology 42 25 17 √ 6 103T16Y 微波技术与天线Microwave Technology and Antenna 42 25 17 √ 7 103T17Y 数字移动通信Digital Mobile Communication 51 17 17 17 √ 7 103T18Y 通信新技术概论 Introction to Modern Communication Technology 34 17 17 √ 7 103G05C 网络系统集成实践Practice in Neork System Integration 1周 1周 √ 短3 103G06C 单片机应用系统设计 Single Chip Microputer Application Design 2选1 2周 2周 √ 短3 103G07C DSP芯片应用系统设计Single Chip Application Design 2周 2周 √ 短3 108G01A 毕业实习 Graation Practice 4周 4周 √ 8 109G03A 毕业论文(含文献阅读)Graation Thesis 12周 12周 √ 8 小计 (必修:11+25=36学分) 330+ 19周 194 85 51 0 7周 12周 通信工程专业课程设置总表(续表二) 课程类别 课程编号 课程名称(中、英文) 学分数 总学时 学时分配 开课学期 建议修读学期 讲课 自主学习 实验 上机 实习 实训 秋季 春季 短学期 光通信模块 103T02Y 光电子技术Optic-Electronic Technology 68 34 17 17 √ 5 103T21Y 激光原理与技术Theory and Technology of Laser 51 34 17 √ 5 103G01C ◆DSP芯片技术及应用 Technology and Applications of DSP 59 42 17 √ 6 103T11B 现代交换原理Principle of Modern Exchange 51 34 17 √ 6 103T25Y 数据压缩进制 Data Compression 51 17 17 17 √ 6 103T23Y 光纤通信系统Optic Fiber Communication System 68 34 17 17 √ 7 103G05C 网络系统集成实践Practice in Neork System Integration 1周 1周 √ 短3 103G06C 单片机应用系统设计Single Chip Microputer Application Design 2选1 2周 2周 √ 短3 103G07C DSP芯片应用系统设计Single Chip Application Design 2周 2周 √ 短3 108G01A 毕业实习Graation Practice 4周 4周 8 109G03A 毕业论文(含文献阅读)Graation Thesis 12周 12周 8 小计 (必修:11+25=36学分) 348+ 19周 195 68 68 17 7周 12周 多媒体通信模块 103M04Y 多媒体技术与通信 Multimedia Technology and Communication 68 34 17 17 √ 5 103T11B 现代交换原理Principle of Modern Exchange 51 34 17 √ 6 103M05Y 数字语音信号处理Digital Audio Signal Processing 59 25 17 17 √ 6 103G02Y ◆数字图象处理Digital Image Signal Processing 68 34 17 17 √ 6 103T25Y 数据压缩 Data Compression 51 17 17 17 √ 6 103M09Y 流媒体技术Streaming Media Technology 59 25 17 17 √ 7 103G05C 网络系统集成实践Practice in Neork System Integration 1周 1周 √ 短3 103G06C 单片机应用系统设计Single Chip Microputer Application Design 2选1 2周 2周 √ 短3 103G08A 多媒体信息处理系统设计Multimedia Process System Design 2周 2周 √ 短3 108G01A 毕业实习 Graation Practice 4周 4周 √ 8 109G03A 毕业论文(含文献阅读)Graation Thesis 12周 12周 √ 8 小计 (必修:11+25=36学分) 356+19周 169 85 17 85 7周 12周 九、通信工程专业课程设置总表(续表三) 课程类别 课程编号 课程名称(中、英文) 学分数 总学时 学时分配 开课学期 建议修读学期 讲课 自主学习 实验 上机 实习 实训 秋季 春季 短学期 专业选修课 107J01B 面向对象程序设计Object-oriented Programming 68 34 34 √ 2 107K01A 电信博览与趣闻Anecdotes of Telemunication 34 34 √ 3 103M01Y 软件技术基础Fundamentals of Sofare Technology 68 34 17 17 √ 5 103D21Y 电子测量技术Electronic Measurement Technology 59 25 17 17 √ 5 103D41Y VLSI设计基础Fundamentals of VLSI Design 51 34 17 √ 5 103D03Y 在线可编程技术On-line Programming Technology 59 25 17 17 √ 5 107K07Y 嵌入式系统编程Programming in Embed Systems 59 25 17 17 √ 5 107K02A 通信EDA仿真Communication EDA Simulation 42 25 17 √ 6 107K05A 手机WAP网页编程WAP Programming 68 34 34 √ 6 103M03Y 信息安全技术Information Security Technology 59 25 17 17 √ 6 107K04A INTERNET技术Inter Technology 68 34 34 √ 6 107D01B 模式识别及应用Application of Pattern Recognization 59 42 17 √ 6 103D12C 传感器技术与应用Sensor Technology and Application 59 42 17 √ 6 107K10A MATLAB工程应用Engineering Application of MATLAB 68 34 34 √ 6 103D22Y ◆虚拟与智能仪器Virtual and Intelligent Instrumentation 68 34 17 17 √ 6 103D43Y 数字系统分析与设计Digital System Analysis and Design 68 34 17 17 √ 7 107K11A 随机信号分析基础Fundamentals of Random Signal Analysis 51 51 √ 7 107K12A 视频编辑及应用Applications of Video Making 68 34 34 √ 7 107K13A COM组件编程基础Fundamentals of COM Programming 68 34 34 √ 7 107K09A 小波分析及应用Analysis and Application of Wavelet 59 42 17 √ 7 107K06A 城市地理信息系统Fundamentals of City Geography Information 51 34 17 √ 7 107D03B 智能信号处理Intelligent Signal Processing 51 51 √ 7 九、通信工程专业课程设置总表(续表四) 课程类别 课程编号 课程名称(中、英文) 学分数 总学时 学时分配 开课学期 建议修读学期 讲课 自主学习 实验 上机 实习 实训 秋季 春季 短学期 专业选修课 103D09Y 计算机辅助电路设计Computer Assisted Circuit Design 59 25 17 17 √ 7 103X01Y 微电子技术概论Introctions to Microelectronics 42 25 17 √ 7 107J03D ◆Java语言与Inter程序设计Programming in JAVA Language 68 34 34 √ 7 每位学生必须修满以下22个任意选修学分:1、在文化素质类课程中选修6学分(其中包含“两课”延伸课程2学分);2、在通信工程专业各专业模块课程和专业选修课程中选修12学分;3、在公共任意选修课程和全校所有专业开出的课程中选修4学分。 十、集中性实践教学环节课程设置一览 课程编号 课程名称 学分数 总学时 学期安排 004C03A 军事理论 1 3周 短1 004C04A 军事技能训练 1 020L10A “两课”社会实践 2 2周 第二学年暑假 101G12G 信息技术实践 3 3周 短2 103G05C 网络系统集成实践 1 1周 短3 103G06C 单片机应用系统设计 2 2周 短3、模块1、2任选一门 103G07C DSP芯片应用系统设计 103G08A 多媒体信息处理系统设计 短3、模块3实习课 108G01A 毕业实习 4 4周 第8学期 109G03A 毕业设计(含文献阅读) 18 12周 第8学期 合计学分:32

公证处管翻译,还有盖章

小波变换论文需要的参考文献

摘要:简洁、具体的摘要要反映论文的实质性内容,展示论文内容足够的信息,体现论文的创新性,展现论文的重要梗概,一般由具体研究的对象、方法、结果、结论四要素组成。对象——是论文研究、研制、调查等所涉及的具体的主题范围,体现论文的研究内容、要解决的主要问题,是问题的提出,研究方向的确立与目标的定位。方法——是论文对研究对象进行研究的过程中所运用的原理、理论、条件、材料、工艺、结构、手段、程序,是完成研究对象的必要手段。结果——是作者运用研究方法对研究对象进行实验、研究所得到的结果、效果、数据,被确定的关系等,是进行科研所得的成果。结论——是作者对结果的分析、研究、比较、评价、应用、提出的问题等,是结果的总结,显示研究结果的可靠性、实用性、创新性,体现论文研究的价值与学术水平,是决定论文被检索的窗口。中文摘要的写作要求:1.摘要以主题概念不遗漏为原则,中文摘要字数为200-300字,英文摘要为100-150words2.用重要的事实开头,突出论文新的信息,即新立题、新方法、结论与结果的创新性等3.叙述要完整,清楚,简明扼要,逻辑性要强,结构完整,删去背景与过去的研究信息,不应包含作者将来的计划,杜绝文学性修饰与无用的叙述4.摘要中涉及他人的工作或研究成果的,尽量列出他们的名字5.不以数字开头,中英文必须对应举例:题目:声带振动功能模式识别摘要:应用小波变换估计传导语音的谐波噪声比(具体方法),研究了不同发声方式、发音及声带病变对传导语音谐波噪声比的影响,并与口腔语音的谐波噪声比进行了对比研究(具体对象),发现发不同元音时,传导语音谐波噪声比的变化范围是5bB,口腔语音谐波噪声比的变化范围为20dB;不同发声方式的传导语音谐波噪声比的变化范围可达18dB,口腔语音的变化范围为12dB(具体结果)。结果表明传导语音谐波噪声比能够更好地反映声带振动模式,是一种研究声带振动功能和模式及喉部疾病诊断的有效方法(具体结论)。关键词:口腔语音;传导语音;谐波噪声比;小波变换(2)英文摘要实例THEME:Identification of vocal cords vibration functions and modesAbstract: This paper studied the estimation of harmonic to noise ratio (HNR) in transmitted sound signals(具体对象)by wavelet transform(具体方法). When normal and laryngeal pathological subjects phonate sustained vowels in breathy, falsetto, leakage and pressed modes in normal loudness, these HNRs in transmitted sound signals were estimted and compared with the HNR in human voice(过去时态). It is pointed that for normal subjects in a variety of vowels, the 20 dB. For normal subject in a variety of phonation modes, the variation of HNR in transmitted sound signals exceeds 18 dB and in human voice signals in within 12 dB(具体结果). The results indicate that the NHR in transmitted sound signals could more accurately image vocal cords vibration characteristics and could be an effective measurement for studying vocal cords vibration and clinical laryngeal disease diagnosis(具体结论)(现在时态).Keywords: human voice; transmitted sound; harmonic to noise ratio; wavelet transform中文摘要 摘要是对论文内容的简短而全面的概括,能够让读者迅速总揽论文的内容。与题名一样,摘要也是各种数据库中常见的检索对象。摘要是整篇论文中最重要的组成部分。就作者而言,一旦论文刊登在期刊上,论文摘要就将作为印刷版或电子版的摘要总集的一部分,开始其活跃而又长久的“生涯”。就读者而言,与某篇心理学论文的第一次接触多是从阅读其摘要开始的。多数人通过计算机检索系统对所需的文献进行搜索,计算机屏幕上显示的只有摘要部分。在翻阅学术期刊时,大部分人也是首先阅读论文的摘要,然后再依据摘要来决定是否阅读整篇论文。因此,摘要既要具有高度的信息浓缩性,又要具有可读性,还要结构完整、篇幅简短以及独立成篇。一篇好的摘要应具备以下特点: 准确性。摘要应能准确反映论文的目的和内容,不应包含论文中没有出现的内容。如果该研究主要是在以前的某个研究的基础上进行的,是对以前研究的扩展,那么,就应该在摘要中注明以前研究的作者姓名和年份。将摘要与论文的层次标题进行对比是核实摘要精确性的有效方法。 独立性。摘要应自成一体,独立成篇,所以要对特殊的术语、所有的缩写(计量单位除外)、省略语做出说明,拼写出实验和药品的名称(药品采用通用名称)。新术语或尚无合适中文术语的,可用原文或译出后加括号注明原文。在引用其他出版物时要包括作者的姓名和出版日期(在论文的参考文献表中要充分说明文献资料的出处)。 简练而具体。摘要中的每一个句子都要能最大限度地提供信息,且尽可能地简练。摘要的长度一般不超过300字。摘要的开头要提出最重要的信息(但不要重复题名)。它可以是目的或论题,也可以是结果或结论。摘要里最多只需包括4个或5个最重要的观点、结果或含意。 节省摘要篇幅的方法:(1)不要把本学科领域中的常识性内容写入摘要,但也不要过于深奥,令一般读者难以明白;切忌把应在前言中出现的内容写入摘要;(2)一般也不得简单重复题名中已有的信息。比如一篇文章的题名是《婴儿问题解决行为的特点与发展》,摘要的开头就不要再写“对婴儿问题解决行为的特点与发展进行了研究。”(3)除实在无法变通外,一般不用数学公式,不出现插图、表格。(4)不用引文,除非该文献证实或否定了他人已出版的著作。(5)用第三人称。建议采用“对……进行了研究”、“报告了……的现状”、“进行了……调查”等记述方式,不必使用“本文”、“作者”等作为主语。非评价性。报告研究结果而不是对研究结果进行评价,不要在摘要中对论文内容做诠释和评论(尤其是自我评价)。 连贯性和可读性。采用条理清晰、措辞有力的形式写作。尽可能地使用第三人称来取代第一人称。避免使用缺乏实质信息的“万金油”语句(例如:“具有一定的理论意义和实践意义”或者“由此推断...”)。 一篇实验研究报告的摘要应该包括: 研究的问题,如果可能,用一句话表达; 被试,详细说明相关特性,例如数量、类型、年龄、性别、种类等; 实验方法,包括仪器,数据收集程序,完整的测验名称,使用的任何药剂的剂量和方法(特别是当使用的药剂是一种新药剂或者对研究很重要时); 结果,包括统计水平的显著性; 结论、含意或应用。 实验研究报告的摘要示例如下:研究了高频汉字识别中形音义激活的时间进程。被试为北京师范大学本科生120名。4种启动类型分别为形似启动、音同启动、义近启动和无关启动。启动字的呈现时间(SOA)分别为43,57,85,145ms。实验1中,要求被试判断目标字是否是动物名称,实验2要求被试判断目标字的读音是否为“yi”。用MANOVA分析了不同SOA条件下的启动效应,发现高频汉字形音义激活的时序为字形—字义—字音。这一结果说明了高频汉字的字义可直接由字形特征获得,语音是自动激活的。(资料来源:陈宝国,彭聃龄.汉字识别中形音义激活时间进程的研究(Ⅰ).心理学报,2001,33(1):1~6.有改动)一篇综述或者理论性论文的摘要应该包括: 主题,用一句话概括; 论文的意图、论题或组织结构和范围(全面的或有选择的); 资料来源(例如个人观察资料,已发表的文献); 结论。 综述类文章的摘要示例如下:对发展性阅读障碍的产生机制的探讨有利于寻找适当的治疗方法。文章在简要回顾阅读障碍的界定、研究内容和有关理论争论基础上,重点介绍了阅读障碍的神经基础和遗传机制。文章从大脑结构和功能单侧化、完成认知任务时大脑的激活模式、激活时间进程以及视觉巨细胞等方面介绍了发展性阅读障碍者与正常读者之间存在的差异。文章还指出许多双生子研究都发现同卵双生子的阅读障碍同现率高于异卵双生子,尤其是近期的遗传学研究鉴定出几个与阅读障碍有关的染色体,如6号和15号染色体与语音障碍和拼写障碍有关。这些研究结果说明发展性阅读障碍有一定的脑神经基础和遗传基础。(资料来源:孟祥芝,周晓林.发展性阅读障碍的生理基础.心理科学进展,2002,10(1):7~14.有改动)一篇方法学论文的摘要应该包括: 方法的类别; 方法的基本特征; 方法的应用范围; 该方法在不同情况下的表现,包括它的统计力及在违反各项假设下的稳定性。 一篇个案研究的摘要应该包括: 被试及其相关特征; 个案所能说明的问题或解决办法; 对今后研究或理论建设的启示。 一篇精确、简练、易懂和信息量丰富的摘要能够增加论文的读者数量和将来论文的可提取性,必须在此基础上认真考虑摘要的长度。例如,对于一些英文数据库而言,如果摘要长度超过960个字符的限制,摘要录用者可能会删减摘要的长度以满足数据库的要求。

摘要的写作1.摘要的概念和作用摘要又称概要,内容提要.摘要是以提供文献内容梗概为目的,不加评论和补充解释,简明,确切地记述文献重要内容的短文.其基本要素包括研究目的,方法,结果和结论.具体地讲就是研究工作的主要对象和范围,采用的手段和方法,得出的结果和重要的结论,有时也包括具有情报价值的其它重要的信息.摘要应具有独立性和自明性,并且拥有与文献同等量的主要信息,即不阅读全文,就能获得必要的信息.对一篇完整的论文都要求写随文摘要,摘要的主要功能有:1) 让读者尽快了解论文的主要内容,以补充题名的不足.现代科技文献信息浩如烟海,读者检索到论文题名后是否会阅读全文,主要就是通过阅读摘要来判断;所以,摘要担负着吸引读者和将文章的主要内容介绍给读者的任务.2) 为科技情报文献检索数据库的建设和维护提供方便.论文发表后,文摘杂志或各种数据库对摘要可以不作修改或稍作修改而直接利用,从而避免他人编写摘要可能产生的误解,欠缺甚至错误.随着电子计算机技术和Internet网的迅猛发展,网上查询,检索和下载专业数据已成为当前科技信息情报检索的重要手段,网上各类全文数据库,文摘数据库,越来越显示出现代社会信息交流的水平和发展趋势.同时论文摘要的索引是读者检索文献的重要工具.所以论文摘要的质量高低,直接影响着论文的被检索率和被引频次.2.摘要的分类按摘要的不同功能来划分,大致有如下3种类型. 报道性摘要报道性摘要是指明一次文献的主题范围及内容梗概的简明摘要,相当于简介.报道性摘要一般用来反映科技论文的目的,方法及主要结果与结论,在有限的字数内向读者提供尽可能多的定性或定量的信息,充分反映该研究的创新之处.科技论文如果没有创新内容,如果没有经得起检验的与众不同的方法或结论,是不会引起读者的阅读兴趣的;所以建议学术性期刊(或论文集)多选用报道性摘要,用比其他类摘要字数稍多的篇幅,向读者介绍论文的主要内容.以"摘录要点"的形式报道出作者的主要研究成果和比较完整的定量及定性的信息.篇幅以300字左右为宜. 指示性摘要指示性摘要是指明一次文献的论题及取得的成果的性质和水平的摘要,其目的是使读者对该研究的主要内容(即作者做了什么工作)有一个轮廓性的了解.创新内容较少的论文,其摘要可写成指示性摘要,一般适用于学术性期刊的简报,问题讨论等栏目以及技术性期刊等只概括地介绍论文的论题,使读者对论文的主要内容有大致的了解.篇幅以100字左右为宜. 报道-指示性摘要报道-指示性摘要是以报道性摘要的形式表述论文中价值最高的那部分内容,其余部分则以指示性摘要形式表达.篇幅以100~200字为宜.以上3种摘要分类形式都可供作者选用.一般地说,向学术性期刊投稿,应选用报道性摘要形式(江西电大会计本科毕业论文要求此种);只有创新内容较少的论文,其摘要可写成报道-指示性或指示性摘要.论文发表的最终目的是要被人利用.如果摘要写得不好,在当今信息激增的时代论文进入文摘杂志,检索数据库,被人阅读,引用的机会就会少得多,甚至丧失.一篇论文价值很高,创新内容很多,若写成指示性摘要,可能就会失去较多的读者.3.摘要的写作注意事项1) 摘要中应排除本学科领域已成为常识的内容;切忌把应在引言中出现的内容写入摘要;一般也不要对论文内容作诠释和评论(尤其是自我评价).

JPEG2000图像压缩标准及其关键算法周 宁 汤晓军 徐维朴(西安交通大学人工智能与机器人研究所西安710049)摘 要:JPEG2000是为适应不断发展的图像压缩应用而出现的新的静止图像压缩标准。阐述了JPEG2000图像编码系统的实现过程, 对其中采用的基本算法和关键技术进行了描述,介绍了这一新标准的特点及应用场合,并对其性能进行了分析。� 关键词:JPEG2000; 图像压缩;离散小波变换; 速率控制;感兴趣区域��1 引言� 随着多媒体应用领域的快速增长和网络的不断发展,传统的JPEG压缩技术已无法满足人们对数字化多媒体图像资料的要求,一种功能更强大、效率更卓越的静止图像压缩标准被提到制定日程上,这就是JPEG2000。� JPEG(Joint Photographic Experts Group)是在国际标准化组织(ISO)领导之下制定静态图像压缩标准的委员会,第一套国际静态图像压缩标准ISO 10918-1(JPEG)就是该委员会制定的。由于JPEG优良的品质,使他在短短几年内获得了极大的成功,被广泛应用于互联网和数码相机领域,网站上80%的图像都采用了JPEG压缩标准。然而,目前的JPEG静止图像压缩标准,具有中端和高端比特速率上的良好的速率畸变特性,但在低比特率范围内,将会出现很明显的方块效应,其质量变得不可接受。JPEG不能在单一码流中提供有损和无损压缩,并且不能支持大于64×64 K的图像压缩。同时,尽管当前的JPEG标准具有重新启动间隔的规定,但当碰到比特差错时图像质量将受到严重的损坏。� 针对这些问题,自1997年3月起,JPEG图像压缩标准委员会开始着手制定新一代的图像压缩标准以解决上述问题。2000年3月的东京会议,确定了彩色静态图像的新一代编码方式JPEG2000图像压缩标准的编码算法。� JPEG2000系统分为下列7个部分:� ①JPEG2000图像编码系统;� ②扩充(给①的核心定义添加更多的特征和完善度);� ③运动JPEG2000;� ④一致性;� ⑤参考软件(目前包含Java和C实现);� ⑥复合图像文件格式(用于文件扫描和传真应用程序);� ⑦对①的最小支持(技术报告)。� ①为完全被认可的ISO标准,定义了核心压缩技术和最小文件格式,②~⑥定义压缩和文件格式的扩充。其中,①已经制定完成,其余部分还在制定过程中。本文所讨论的JPEG2000标准就是基于第1部分的。2 JPEG2000系统的特点� JPEG2000以其特有的优点弥补了现行JPEG标准的不足。离散小波变换算法中,图像可以转换成一系列可更加有效存储像素模块的子带,因此,JPEG2000格式的图像压缩比可在现在的JPEG基础上再提高10%~30%,而且压缩后的图像显得更加细腻平滑。也就是说,在网上观看采用JPEG2000压缩的图像时,不仅下载速率比采用JPEG格式的快近30%,而且品质也将更好。对于目前的JPEG标准,在同一个压缩码流中不能同时提供有损和无损压缩,而在JPEG2000系统中,通过选择参数, 能够对图像进行有损和无损压缩,可满足图像质量要求很高的医学图像、图像库等方面的处理需要。现在网络上的JPEG图像下载时是按"块"传输的,因此只能逐行地显示,而采用JPEG2000格式的图像支持渐进传输(Progressive Transmission),这就允许图像按照所需的分辨率或像素精度进行重构,用户根据需要,对图像传输进行控制,在获得所需的图像分辨率或质量要求后,便可终止解码,而不必接收整个图像的压缩码流。由于JPEG2000采用小波技术,利用其局部分辨特性,在不解压的情况下,可随机获取某些感兴趣的图像区域(ROI)的压缩码流,对压缩的图像数据进行传输、滤波等操作。�3 JPEG2000图像编解码系统� 本节主要介绍JPEG2000图像编解码系统。其编码器和解码器的框图如图1所示。� 在编码器中,首先对源图像进行前期预处理,对处理的结果进行离散小波变换,得到小波系数。然后对小波系数进行量化和熵编码,最后组成标准的输出码流(位流)。解码器是编码器的反过程,首先对码流进行解包和熵解码,然后是反向量化和离散小波反变换,对反变换的结果进行后期处理合成,就得到重构的图像数据。尽管JPEG2000编解码过程与JPEG类似,但是对于每一步的具体实现两者却有非常大的差异。编码过程的一般步骤如下:� (1) 将有多个颜色分量组成的图像分解成单一颜色分量的图像。分量之间存在一定的相关性,通过分解相关的分量变换,可减少数据间的冗余度,提高压缩效率;� (2) 分量图像被分解成大小统一的矩形片——图像片。图像片是进行变换和编解码的基本单元;� (3) 每一个图像片进行小波变换。产生多级系数图像。这些不同级数的系数图像可以重构出不同分辨率的图像;� (4) 多级分解的结果是由小波系数组成的多个子带。他们表示图像片中局部区域(而不是整幅图像)的频率特性;� (5) 对系数子带进行量化,并且组成矩形数组的"码块";� (6) 对一个码块中的系数位平面(也就是一个码块中整个系数中具有同样权值的那些位)进行熵编码;� (7) 相对于图像的背景区域,可以对感兴趣区域进行更高质量的编码;� (8) 通过在位流中加入掩码来增加抗干扰性;� (9) 在每一个码流的最前部都有一个头结构,他描述的是源图像的属性,各种分解情况和编码风格。这个头结构可以用来进行定位、抽取、译码和重构图像,得到的图像可以具有所期望的分辨率、重现精度、感兴趣的区域或是其他特性。� 编码过程主要分为以下几个过程:预处理、核心处理和位流组织。预处理部分包括对图像分片、直流电平(DC)位移和分量变换。核心处理部分由离散小波变换、量化和熵编码组成。位流组织部分则包括区域划分、码块、层和包的组织。� 预处理� (1)图像分片� 分片指的是把源图像分割成相互不重叠的矩形块——图像片,每一个图像片作为一个独立的图像进行压缩编码。编码中的所有操作都是针对图像片进行的。图像片是进行变换和编解码的基本单元。图像的分片降低了对存储空间的要求,并且由于他们重构时也是独立进行的,所以可以用来对图像的特定区域而不是整幅图像进行解码。当然,图像分片会影响图像质量。比较小的图像片会比大图像片产生更大的失真。图像分片在低比特率表示图像的时候所造成的图像失真会更加严重。 (2)DC电平位移� 在对每一图像片进行正向离散小波变换之前,都要进行直流电平位移。目的是在解码时,能够从有符号的数值中正确恢复重构的无符号样本值。直流电平位移是对仅有无符号数组成的图像片的像素进行的。电平位移并不影响图像的质量。在解码端,在离散小波反变换之后,对重构的图像进行反向直流电平位移。� (3)分量变换� JPEG2000支持多分量图像。不同的分量不需要有相同的比特深度,也不需要都是无符号或有符号数。对于可恢复(无损)系统,唯一的要求就是每一个输出分量图像的比特深度必须跟相应输入分量图像的比特深度保持一致。� 核心处理� (1)小波变换� 不同于传统的DCT变换,小波变换具有对信号进行多分辨率分析和反映信号局部特征的特点。通过对图像片进行离散小波变换,得到小波系数图像,而分解的级数视具体情况而定。小波系数图像由几种子带系数图像组成。这些子带系数图像描述的是图像片水平和垂直方向的空间频率特性。不同子带的小波系数反映图像片不同空间分辨率的特性。通过多级小波分解,小波系数既能表示图像片中局部区域的高频信息(如图像边缘),也能表示图像片中的低频信息(如图像背景)。这样,即使在低比特律的情况下,我们也能保持较多的图像细节(如边缘)。另外,下一级分解得到的系数所表示图像在水平和垂直方向的分辨率只有上一级小波系数所表示的图像的一半。所以,通过对系数图像的不同级数进行解码,就可以得到具有不同空间分辨率(或清晰,或模糊)的图像。� 小波变换因其具有的这种优点被JPEG2000标准所采用。在编码系统中,对每个图像片进行Mallat塔式小波分解。经过大量的测试,JPEG2000选用两种小波滤波器:LeGall 5/3滤波器和Daubechies 9/7滤波器。前者可用于有损或无损图像压缩,后者只能用于有损压缩。� 在JPEG2000标准中,小波滤波器可以有2种实现模式:基于卷积的和基于提升机制的。而具体实现时,对图像边缘都要进行周期对称延伸,这样可以防止滤波器对图像边缘操作时产生失真。另外,为了减小变换时所需空间的开销,标准中还应用了基于行的小波变换技术。� (2)量化� 由于人类视觉系统对图像的分辨率要求有一定的局限,通过适当的量化减小变换系数的精度,可在不影响图像主观质量的前提下,达到图像压缩的目的。量化的关键是根据变换后图像的特征、重构图像质量要求等因素设计合理的量化步长。量化操作是有损的,会产生量化误差。不过一种情况除外,那就是量化步长是1,并且小波系数都是整数,利用可恢复整数5/3拍小波滤波器进行小波变换得到的结果就符合这种情况。� 在JPEG2000标准中,对每一个子带可以有不同的量化步长。但是在一个子带中只有一个量化步长。量化以后,每一个小波系数有2部分来表示:符号和幅值。对量化后的小波系数进行编码。对于无损压缩,量化步长必须是1。� (3)熵编码� 图像经过变换、量化后,在一定程度上减少了空域和频域上的冗余度,但是这些数据在统计意义上还存在一定的相关性,为此采用熵编码来消除数据间的统计相关。将量化后的子带系数划分成小的矩形单元——码块(code block)。 如图2所示,采用两层编码策略,首先使用基于上下文的算术编码器,每个码块进行独立的嵌入式码块编码,得到码块的嵌入式压缩位流。然后,根据率失真优化原则,采用PCRD(Post Compression Rate Distortion)优化算法思想,将所有码块的压缩位流适当截取,组织成具有不同质量级的压缩位流层。每一层上的压缩位流连同其前面的所有层的压缩位流,可重构出一定质量的图像。在分层组织压缩位流时,须对每个码块在每一层上的贡献信息进行编码,即对码块位流在该层的截断点信息等编码。由于图像采用小波变换,整个图像压缩码流具有分辨率可分级性,从而,压缩码流可同时具有质量上和分辨率上的可分级性。由于对码块进行独立编码,因此,可根据需要,随机获取并解码相应的码块压缩位流,重构出所需的图像区域。 ①第一层编码算法� 与传统的依次对每个系数进行算术熵编码不同,JPEG2000编码系统把码块中的量化系数组织成若干个位平面,从最高有效位平面(MSB)开始,依次对每个位平面上的小波系数位进行算术编码。� 第一层编码可以看作2部分:上下文的生成(CF)和算术编码器(AE)。在上下文的生成中,以一定的顺序扫描码块中的所有位。在码块的每个位平面上,从左上角系数开始,从左到右,从上到下进行扫描,并为每一位生成一个上下文。算术编码器根据生成的上下文,对每一位进行编码。 在量化后,小波系数被转换为符号-振幅模式。在从MSB到LSB编码时,当遇到第一个为1的比特时,这个像素被称作是显著的,否则,为不显著的。所有比特的上下文都是由他们的邻域通过以下的4种方法产生:� 零编码(zero coding,ZC)用来编码非显著像素在当前的位平面中是否将变得显著;� 游程编码(run-length coding, RLC)用来编码位于同一列中的4个非显著性像素,如果他们的邻域都是非显著的;� 符号编码(sign coding, SC)当该位变得显著后,编码他的符号位; 幅度编码(Magnitude Refinement, MR)用来编码显著位。� 每个位平面都在3个编码通道中进行编码。通道1是重要性传播通道(Significance Propagation Pass),至少有一个重要性邻域的像素,在此通道进行编码,使用ZC和SC。通道2是幅度细化通道(Magnitude Refinement Pass),所有的重要位在此通道进行编码,使用MR。通道3是清除通道(Cleanup Pass),所有没有在上两个通道中进行编码的像素,在此通道中进行编码,使用ZC,LRC和SC。位平面中的每一位在3个通道中进行检查来确定是否应当被编码。 由编码通道得到的上下文和与其对应的数据一起,送至算术编码器进行编码。在这里,采用了自适应二进制算术编码〔1〕,主要是考虑到计算的复杂度以及实现的方便性。在进行算术编码后,对每一个码块,得到一个独立的嵌入式码块压缩位流。� ②第二层编码算法� 在第二层编码算法中,采用PCRD率失真优化算法思想〔1,2〕,对所有码块的嵌入式压缩位流进行适当的截取,分层组织,形成整个图像的具有质量可分级的压缩码流。第二层编码算法也可以看作两部分:速率控制和分层组织压缩位流。速率控制是指通过一定的编解码措施,获得给定压缩码率下的最佳重构图像质量。分层组织压缩位流根据编码参数所规定的分层层数以及每一层的编码速率,估算每一层的率失真门限,然后根据每一层估计出的率失真门限,按照码块率失真算法,找到每个码块嵌入式压缩位流在该层上的截断点,将截断的码块压缩位流进行打包,按照规定的格式存储,形成图像压缩码流。将码流分层组织,每一层含有一定的质量信息,在前面层的基础上改善图像质量。这样用户可以根据自己的需要,控制图像的传输,在取得满意的图像效果后,中止传输,在某种程度上缓解当前网络带宽有限而图像数据量大而造成的瓶颈问题。 位流组织� 为了适合图像交换,更好地应用JPEG2000压缩码流的功能,JPEG2000标准规定了存放压缩位流和解码所需参数的格式,把压缩码流以包为单元进行组织,形成最终的码流。4 JPEG2000中的关键技术� 在这一节中,对JPEG2000中所使用的关键技术加以说明。� 离散小波变换� JPEG2000与传统JPEG最大的不同在于他放弃了JPEG所采用的以离散余弦变换(DCT)为主的区块编码方式,转而采用以小波变换(DWT)为主的多解析编码方式。 � 余弦变换是经典的谱分析工具,他考察的是整个时域过程的频域特征或整个频域过程的时域特征,因此对于平稳过程,他有很好的效果,但对于非平稳过程,他却有诸多不足。在JPEG中,离散余弦变换将图像压缩为8×8 的小块,然后依次放入文件中,这种算法靠丢弃频率信息实现压缩,因而图像的压缩率越高,频率信息被丢弃的越多。在极端情况下,JPEG图像只保留了反映图像外貌的基本信息,精细的图像细节都损失了。小波变换是现代谱分析工具,他既能考察局部时域过程的频域特征,又能考察局部频域过程的时域特征,因此即使对于非平稳过程,处理起来也得心应手。他能将图像变换为一系列小波系数,这些系数可以被高效压缩和存储,此外,小波的粗略边缘可以更好地表现图像,因为他消除了DCT压缩普遍具有的方块效应。 速率控制算法� JPEG2000通过采用速率控制方法来计算码流的理想截断点,从而获得给定压缩码率下的最佳重构图像质量。速率控制使用了PCRD率失真优化算法。率失真优化,即给定整个压缩码流的最大编码速率,找出每个码块压缩位流的适当截断点,在满足的条件下,使重构图像失真最小。从而使得嵌入式码块编码具有如下特点:生成的压缩位流可根据需要,被截断成不同长度的位流子集;将所有码块的截断位流组织起来,可重构出一定质量的图像。� 渐进传输特性� 现在网络上的JPEG图像下载时是按"块"传输的,因此只能逐行显示,而采用JPEG2000格式的图像支持渐进传输。JPEG2000中的渐进传输有2种,按照分辨率的渐进传输和按照质量的渐进传输。按照质量的渐进传输就是先传输图像轮廓数据,然后再逐步传输细节数据来不断提高图像质量,而按照分辨率的渐进传输则先传输分辨率较低的图像,后一幅图像在前一幅图像的基础上提高其分辨率。图像的渐进传输使得用户不需要像以前那样等图像全部下载后才决定是否需要,有助于快速地浏览和选择大量图片,从而有效的解决了网络传输的瓶颈问题。� 感兴趣区域压缩� JPEG2000一个极其重要的优点就是ROI(Region of Interest,感兴趣区域)。用户可以任意指定图片上感兴趣的区域,然后在压缩时对这些区域指定压缩质量,或在恢复时指定某些区域的解压缩要求。这是因为子波在空间和频率域上具有局域性,要完全恢复图像中的某个局部,并不需要所有编码都被精确保留,只要对应他的一部分编码没有误差就可以了。在实际应用中,我们就可以对一幅图像中感兴趣的部分采用低压缩比以获取较好的图像效果,而对其他部分采用高压缩比以节省存储空间。这样就能在保证不丢失重要信息的同时又有效地压缩了数据量,实现了真正的"交互式"压缩。�5 JPEG2000标准的应用� 随着科技的发展,网络已经渗透到每个人的生活之中。然而,受到网络带宽的限制,高质量的图像由于数据量很大,在网络上的传输延迟很大。因此,对于使用PC机、笔记本、掌上电脑或PDA,通过Modem接入因特网访问图像数据的用户来说,允许根据需要选择恰当的图像分辨率进行浏览和传输是非常必要的。� 在军事侦察和气象预报中,由卫星遥感得到的图像必须通过远距离无线信道传输,传输误码的出现不可避免。JPEG2000编码器特有的码流组织形式是输出码流具有有效抑制误码的能力。这样,码流通过无线卫星通讯信道发还给地面接收站后,地面接收站在解码过程中可以利用JPEG2000内部的码流组织形式来避免由于传输误码而造成的错误解码。� 此外,在安全确认、身份认证及医学领域,JPEG2000都有着其广泛的应用。可以预测,在不久的将来,JPEG2000将在以下领域得到广泛的应用:因特网、移动和便携设备、印刷、扫描(出版物预览)、数码相机、遥感、传真(包括彩色传真和因特网传真)、医学应用、数字图书馆和电子商务等。6 结论� JPEG2000旨在创建一个新的图像编码系统,该压缩编码系统的率失真和主观图像质量优于现有的JPEG标准,能够提供对图像的低码率的压缩,并且对压缩码流可进行灵活的处理,如随机获取部分压缩码流、图像的渐进传输、感兴趣区域的实现以及压缩码流较强的容错性能等,该标准将与现行JPEG标准兼容。JPEG2000图像压缩标准以其优秀的性能,必将在数码相机、遥感、传真、医疗以及电子商务等多个领域得到广泛的应用,成为21世纪的主流静态图像压缩标准。参考文献〔1〕JPEG 2000 Image Coding 2000 Final Committee Draft Version , 2000,16(3)�〔2〕Taubman D. High Performance Scable Image Compression with Trans� Image Processing,1994,3(9):572~578�〔3〕张晓娣,等.新一代的静止图像压缩标准 JPEG2000.电信科学,2001(5)�〔4〕李冬梅.发展中的静止图像压缩标准JPEG2000.电视技术,2001(6)�〔5〕王瑞轩.面向JPEG2000的二维DWT的VLSI设计与仿真,2002wisher_lxy | 已被浏览119次 0 评论 | 引用(0) | 加入博采中心 最新发表 再别康桥做人最重要的是积极!无言xml四种解析器及性能比较(转载)JPEG2000综述 [转]为什么人总是这么复杂?从来不懂得放弃是种美丽!我要一个人自由自在!我要一个人自由自在!生命如此之轻最新回复 嘿嘿,复杂就复杂吧Powered by

相关百科

热门百科

首页
发表服务