首页

> 学术论文知识库

首页 学术论文知识库 问题

反对称矩阵的性质毕业论文

发布时间:

反对称矩阵的性质毕业论文

满足A^T=-A的实矩阵A就叫实反对称阵。

比如

0 1 2

-1 0 -3

-2 3 0

元素aij都是实数,并且aij=-aji(i,j=1,2,…),n的n阶矩阵A=(aij)。

它有以下性质:的特征值是零或纯虚数;2.|A|是一个非负实数的平方;的秩是偶数,奇数阶反对称矩阵的行列式等于零 。

扩展资料:

若矩阵A满足条件A=-AT,则称A为反对称矩阵。由定义知反对称矩阵一定是方阵,而且位于主对角线两侧对称位置上的元素必符号相反,即  ,其中i、j为任意不大于矩阵维数的实数。

实反对称矩阵有如下性质:

性质1:奇数阶反对称矩阵的行列式值为0。

性质2:当A为n阶实反对称矩阵时,对于  有XTAX =0。

性质3:实反对称矩阵的特征值是零或纯虚数。

性质4:若A为实反对称矩阵,A的特征值λ= bi(b≠0)所对应特征向量α+βi中实部与虚部对应的向量α、β相互正交 。

参考资料:百度百科——实反对称矩阵

反对称矩阵的性质如下:

设A为n维方阵,若有A'=-A,则称矩阵A为反对称矩阵。对于反对称矩阵,它的主对角线上的元素全为零,而位于主对角线两侧对称的元素反号。反对称矩阵具有很多良好的性质,如若A为反对称矩阵,则A',λA均为反对称矩阵;

若A,B均为反对称矩阵,则A±B也为反对称矩阵;设A为反对称矩阵,B为对称矩阵,则AB-BA为对称矩阵;奇数阶反对称矩阵的行列式必为0。反对称矩阵的特征值是0或纯虚数,并且对应于纯虚数的特征向量的实部和虚部形成的实向量等长且互相正交。

矩阵,数学术语。在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合 ,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。

矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。 在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。 矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。

反对称矩阵就是:其特征是主对角线上的元素是0,关于主对角线对称的元素互为相反数比如A=[0 1-1 0]是个二阶反对称矩阵

对称矩阵的性质研究价值论文

矩阵在线性代数和编码里面有重要作用。矩阵源于向量和方程组,其实是比向量元素更多的多变量,有些对象和信息通过矩阵的思想取计算和设计,比如说正多面体体积的计算,没有矩阵根本就不好算甚至不能算。研究应用的目的是为了解决生产和生活上的缺陷,这是研究理论的动力。理论本身是有其他因素推动才能发展。矩阵作为代数的概念,是数学里面的一块基石,有很多很多理论还要依靠它完善。对阵和反对称的一种规律,人们最喜欢通过规律去总结事物,这样就能抽象成为一种解决问题的能力和工具。

在线性代数中主要为研究二次型打基础。

同学我不太清楚你问这个问题的意义何在...因为考试要考,所以我们只能功利地学和用。

对称矩阵的性质是:

1、对于任何方形矩阵X,X+XT是对称矩阵。

2.、为方形矩阵是A为对称矩阵的必要条件。

3、对角矩阵都是对称矩阵。

4、两个对称矩阵的积是对称矩阵,当且仅当两者的乘法可交换。两个实对称矩阵乘法可交换当且仅当两者的特征空间相同。

5、用<,>表示RN上的内积。n×n的实矩阵A是对称的。

6、任何方形矩阵X,如果它的元素属于一个特征值不为2的域(例如实数),可以用刚好一种方法写成一个对称矩阵和一个斜对称矩阵之和。

实对称矩阵的性质是:

1、实对称矩阵A的不同特征值对应的特征向量是正交的(网易笔试题曾考过)。

2、实对称矩阵A的特征值都是实数,特征向量都是实向量。

3、n阶实对称矩阵A必可对角化,且相似对角阵上的元素即为矩阵本身特征值。

4、若λ0具有k重特征值必有k个线性无关的特征向量,或者说必有秩r(λ0E-A)=n-k,其中E为单位矩阵。

正定矩阵性质的毕业论文

雅可比行列式有哪些性质

相信正定矩阵的定义楼主很清楚。定义矩阵的正定性是根据二次型来的,这也就是说明正定矩阵的性质反映了一个二次表达式的性质,从另一个角度讲这也给我们提供了一个二次表达式的矩阵表示方法。在最初学函数的时候,我们学过配方法,其实化一个二次型为标准二次型的时候也是利用这个原理,只不过我们通过矩阵的手段来进行计算同时还用到了满值线性变换的一些知识。其实在数学理论中更愿意研究Hermite二次型的正定问题,因为Hermite矩阵(A=AH(表示共轭转置矩阵))更能和一些工程学科相结合。另外在数值计算科学中也经常会用到正定矩阵的知识。比如线性方程组的高斯-塞德尔迭代法就是在方程组的系数矩阵是正定的情况下对任意初始向量是收敛的。从工程学科来说,举一个控制系统为例,如果可以找到一个利亚普诺夫函数使得它的倒数是负定(也就是说倒数的相反数是正定的)那么这个系统就是渐进稳定的。

正定矩阵有以下性质:

1、正定矩阵的行列式恒为正;

2、实对称矩阵A正定当且仅当A与单位矩阵合同;

3、若A是正定矩阵,则A的逆矩阵也是正定矩阵;

4、两个正定矩阵的和是正定矩阵;

5、正实数与正定矩阵的乘积是正定矩阵。

判定的方法:

根据正定矩阵的定义及性质,判别对称矩阵A的正定性有两种方法:

1、求出A的所有特征值。若A的特征值均为正数,则A是正定的;若A的特征值均为负数,则A为负定的。

2、计算A的各阶主子式。若A的各阶主子式均大于零,则A是正定的;若A的各阶主子式中,奇数阶主子式为负,偶数阶为正,则A为负定的。

正定矩阵在合同变换下可化为标准型, 即对角矩阵。所有特征值大于零的对称矩阵(或厄米矩阵)也是正定矩阵。判定定理1:对称阵A为正定的充分必要条件是:A的特征值全为正。判定定理2:对称阵A为正定的充分必要条件是:A的各阶顺序主子式都为正。判定定理3:任意阵A为正定的充分必要条件是:A合同于单位阵。正定矩阵的性质:1.正定矩阵一定是非奇异的。奇异矩阵的定义:若n阶矩阵A为奇异阵,则其的行列式为零,即 |A|=0。2.正定矩阵的任一主子矩阵也是正定矩阵。3.若A为n阶对称正定矩阵,则存在唯一的主对角线元素都是正数的下三角阵L,使得A=L*L′,此分解式称为 正定矩阵的乔列斯基(Cholesky)分解。4.若A为n阶正定矩阵,则A为n阶可逆矩阵。

实对称正定矩阵毕业论文

好深奥吖~~明明就系同届同学···问d甘嘎高b嘢!!

正定矩阵是由于区分二元二次多项式的矩阵而引进的,而二元二次多项式的矩阵都是实对称矩阵,所以正定矩阵的定义上就要求其是实对称矩阵

在线性代数中,正定矩阵的性质类似复数中的正实数。与正定矩阵相对应的线性算子是对称正定双线性形式。

正定矩阵的行列式恒为正;实对称矩阵A正定当且仅当A与单位矩阵合同;若A是正定矩阵,则A的逆矩阵也是正定矩阵;两个正定矩阵的和是正定矩阵;正实数与正定矩阵的乘积是正定矩阵。

扩展资料:

对于n阶实对称矩阵A,下列条件是等价的:A是正定矩阵;A的一切顺序主子式均为正;A的一切主子式均为正;A的特征值均为正。

对于具体的实对称矩阵,常用矩阵的各阶顺序主子式是否大于零来判断其正定性;对于抽象的矩阵,由给定矩阵的正定性,利用标准型,特征值及充分必要条件来证相关矩阵的正定性。

我晕,这个证明是一篇论文里的结论.关于定型实对称矩阵的行列式的一个结论( 长江师范学院数学系, 重庆408100)杨世显下面的由于百度文字编辑的限制,可能看得有些困难.建议自己去找一下原版.实在不行给我留言我传给你摘要: 本文利用度量矩阵和分块矩阵的相关知识, 得到了定型实对称矩阵的行列式与它的主对角线元素的一个不等式。关键词: 实对称矩阵度量矩阵厄米特正交化分块矩阵行列式实对称矩阵是高等代数中一个重要的内容, 所谓定型实对称矩阵是指正定、负定、半正定和半负定矩阵, 我们首先回顾一下本文将用到的有关实对称矩阵的一些结论:性质1: 一个实对称矩阵A正定的充要条件是存在可逆方阵C, 使得A=C′C。性质2: 一个实对称矩阵A半正定的充要条件是它的所有主子式都大于等于零。性质3: 一个实对称矩阵A负定( 半负定) 的充要条件是- A为正定( 半正定) 。性质4: n维欧氏空间中, 一组基ε1,ε2, ⋯,εn的度量矩阵A=(aij), 其中aij=(εi,εj)为实对称矩阵, 而且矩阵A是正定的。性质5: n维欧氏空间中, 两组基ε1,ε2, ⋯,εn和η1 ,η2, ⋯,ηn的度量矩阵分别为A和B, 那么A和B是合同的, 即若(η1,η2 ,⋯,ηn ) =(ε1,ε2, ⋯,εn)C, 则有B=C′AC。本文要证明的主要定理为:定理1: A=(aij)为n阶正定矩阵, 则有detA≤nk=1∏akk为了证明定理1, 先证明一个引理:引理:ε1,ε2, ⋯,εn是n维欧氏空间的一组基,ε1,ε2, ⋯,εn经过厄米特正交化变为η1 ,η2 , ⋯,ηn, 记G(ε1,ε2, ⋯,εn)为ε1 ,ε2 ,⋯,εn的度量矩阵, 证明:detG(ε1,ε2, ⋯,εn)=detG(η1,η2 , ⋯,ηn)=|η1|2·|η2|2·⋯·|ηn|2证明: 假设A为从ε1,ε2, ⋯,εn到η1,η2, ⋯,ηn的过渡矩阵, 即:(η1 ,η2, ⋯,ηn)=(ε1 ,ε2, ⋯,εn)A则由上面性质5知G(η1,η2, ⋯,ηn)=A′G(ε1,ε2 , ⋯,εn)A ( 1)依题意η1,η2, ⋯,ηn是由ε1,ε2, ⋯,εn经过厄米特正交化得到, 所以有:η1=ε1;η2=ε2-(ε2 ,η1)(η1,η1)η1;⋯⋯⋯⋯⋯⋯⋯ηn=εn-(εn ,η1)(η1,η1)η1- ⋯-(εn,ηn- 1)(ηn- 1,ηn- 1)ηn- 1。于是可知A为上三角矩阵, 且主对角线上的元素都是1, 即A=1 * ⋯ *0 1 ⋯ *⋯ ⋯ # ⋯0 0 ⋯$%%&’(()1, 同时可知A′=1 0 ⋯ 0* 1 ⋯ 0⋯ ⋯ # ⋯* * ⋯$%%&’(()1, 所以detA′=detA=1。由(1)式有:detG(η1,η2 , ⋯,ηn)=det(A′G(ε1,ε2 , ⋯,εn)A)=detA′·detG(ε1,ε, ⋯,εn)·detA=detG(ε1,ε2 , ⋯,εn)因为η1,η2, ⋯,ηn是正交向量组, 所以G(η1,η2 , ⋯,ηn)为对角矩阵, 且:detG(η1,η2, ⋯,ηn)=|η1|2·|η2|2·⋯·|ηn|2即: detG(ε1 , ε2 , ⋯ , εn)=detG(η1 , η2 , ⋯ , ηn)=|η1| 2·|η2 | 2·⋯·|ηn|2, 证毕。定理1的证明: 依题意, A=( aij) 为n阶正定矩阵, 所以由性质1知存在可逆方阵C, 使得A=C′C。设矩阵C的n个列向量分别为α1,α2 , ⋯,αn, 利用分快矩阵的乘法有:A=C′C=α1′α2′’αn$%%%&’((()′(α1 ,α2, ⋯,αn)=α1′α1α1′α2 ⋯ α1′αnα2′α1α2′α2 ⋯ α2′αn⋯ ⋯ ⋯ ⋯αn′α1αn′α2⋯ αn′αn$%%%&’((()=(α1,α1) (α1,α2) ⋯ (α1,αn)(α2,α1) (α2,α2) ⋯ (α2,αn)⋯ ⋯ ⋯ ⋯(αn,α1) (αn,α2) ⋯ (αn,αn$%%%&’((())( 2)因为矩阵为可逆方阵, 所以α1,α2 , ⋯,αn为线性无关的向量组, 也就可以看作Rn的一组基, 那么矩阵A就是α1 ,α2, ⋯,αn的度量矩阵。假设将α1 ,α2, ⋯,αn进行厄米特正交化得到向量组β1,β2 , ⋯,βn, 则由引理的条件知道:det A=|β1|2·|β2|2·⋯·|βn|2因为β1 ,β2 , ⋯,βn是由α1 ,α2 , ⋯,αn经过厄米特正交化得来, 它们有如下关系:β1=α1 ;β2=α2-(α2,β1)(β1,β1)β1;⋯⋯⋯⋯⋯⋯⋯⋯βn=αn-(αn,β1)(β1,β1)β1- ⋯-(αn ,βn- 1)(βn- 1,βn- 1)βn- 1。用β1,β2, ⋯,βn表示α1,α2 , ⋯,αn有:α1=β1 ;α2=β2+(α2,β1)(β1,β1)β1;⋯⋯⋯⋯⋯⋯⋯⋯αn=βn+(αn,β1)(β1,β1)β1+⋯+(αn ,βn- 1)(βn- 1,βn- 1)βn- 1因为β1,β2, ⋯,βn两两正交, 所以有:|α1|=|β1|;|α2|= β2+(α2,β1)(β1,β1)β1=|β2|+(α2,β1)(β1,β1)β1≥|β2|;⋯⋯⋯⋯⋯⋯⋯⋯|αn|= βn+(αn,β1)(β1,β1)β1+⋯+(αn ,βn- 1)(βn- 1,βn- 1)βn- 1=|βn|+(αn ,β1)(β1 ,β1)β1+⋯+(αn,βn- 1)(βn- 1,βn- 1)βn- 1≥|βn|所以: det A=|β1|2·|β2|2·⋯·|βn|2≤|α1|2≤|α1|2·|α2|2·⋯·|αn|2,由(2)式容易知道|ak|2=akk,即: det A≤nk=1∏akk, 证毕。我们知道一个半正定矩阵A=( aij) 的行列式一定大于或等于零, 而且当det A>0时, A一定正定; 同时半正定矩阵A的主对角线上的元素akk(1≤k≤n)都是非负实数, 所以在det A=0时,不等式det A≤nk=1∏akk显然成立。综上所述以及定理1, 有:推论1: A=( aij) 为n阶半正定矩阵, 则有det A≤nk=1∏akk。对于半负定或负定矩阵A=( aij) , 我们知道- A为半正定或者正定的, 于是:推论2: A=(aij)为n阶半负定( 负定) 矩阵, 当n为偶数时, 有det A≤nk=1∏akk; 当n为奇数时, 有det A≥nk=1∏akk。证明: 若A=(aij)为半负定矩阵, 则- A=(- aij)为半正定矩阵,由推论1有:det (- A)≤nk=1∏(- akk)$(- 1)ndetA≤(- 1)nnk=1∏akk$det A≤nk=1∏akk, n为奇数,det A≥nk=1∏akk, n为偶数%’&’(,证毕。参考文献:[ 1] 北京大学数学力学系.高等代数( 第三版) [M] .北京:高等教育出版社, 2003.

可逆矩阵的性质研究论文

逆矩阵的性质:

1、可逆矩阵是方阵。

2、矩阵A是可逆的,其逆矩阵是唯一的。

3、A的逆矩阵的逆矩阵还是A。

4、可逆矩阵A的转置矩阵AT可逆,并且(AT)-1=(A-1)T 。

5、若矩阵A可逆,则矩阵A满足消去律。

6、两个可逆矩阵乘积依然是可逆的。

7、矩阵可逆仅当是满秩矩阵。

设A是数域上的一个n阶矩阵,若在相同数域上存在另一个n阶矩阵B,使得: AB=BA=E ,则我们称B是A的逆矩阵,而A则被称为可逆矩阵。注:E为单位矩阵。

扩展资料:

矩阵的应用:

1、图像处理

在图像处理中图像的仿射变换一般可以表示为一个仿射矩阵和一张原始图像相乘的形式。

2、线性变换及对称

线性变换及其所对应的对称,在现代物理学中有着重要的角色。例如,在量子场论中,基本粒子是由狭义相对论的洛伦兹群所表示,具体来说,即它们在旋量群下的表现。

3、量子态的线性组合

1925年海森堡提出第一个量子力学模型时,使用了无限维矩阵来表示理论中作用在量子态上的算子。这种做法在矩阵力学中也能见到。

4、简正模式

矩阵在物理学中的另一类泛应用是描述线性耦合调和系统。这类系统的运动方程可以用矩阵的形式来表示,即用一个质量矩阵乘以一个广义速度来给出运动项,用力矩阵乘以位移向量来刻画相互作用。

求逆矩阵的方法,进来学一下吧

性质:如果矩阵A可逆,则A的`转置矩阵AT也可逆,且(AT)–1=(A–1)T。

矩阵可逆当且仅当它是满秩矩阵。

定理: n阶矩阵A可逆的充分必要条件是|A|≠0,且当A可逆时, A–1= A* /|A|  ( A*为A伴随矩阵)

推论1:若A、B为同阶方阵,且AB=E,则A、B都可逆,且A–1=B,B–1=A。

推论2:n阶矩阵A可逆的充分必要条件是r(A)=n。

推论3:n阶矩阵A可逆的充分必要条件是A的行(列)向量组线性无关。

推论4:n阶矩阵A可逆的充分必要条件是A的n个特征值都不为0.

1、公式法:

其中,A^*为矩阵A的伴随矩阵。

2、初等变换法:对(A,E)作初等变换,将A化为单位阵E,单位矩阵E就化为A^-1。

设A是数域上的一个n阶矩阵,若在相同数域上存在另一个n阶矩阵B,使得: AB=BA=E ,则我们称B是A的逆矩阵,而A则被称为可逆矩阵。注:E为单位矩阵。

扩展资料:

可逆矩阵的性质:

1、可逆矩阵一定是方阵。

2、如果矩阵A是可逆的,其逆矩阵是唯一的。

3、A的逆矩阵的逆矩阵还是A。记作(A-1)-1=A。

4、可逆矩阵A的转置矩阵AT也可逆,并且(AT)-1=(A-1)T (转置的逆等于逆的转置)。

5、若矩阵A可逆,则矩阵A满足消去律。即AB=O(或BA=O),则B=O,AB=AC(或BA=CA),则B=C。

6、两个可逆矩阵的乘积依然可逆。

7、矩阵可逆当且仅当它是满秩矩阵。

相关百科

热门百科

首页
发表服务