首页

> 学术论文知识库

首页 学术论文知识库 问题

巨噬细胞的研究进展的论文

发布时间:

巨噬细胞的研究进展的论文

还有嚒??!我也需要啊~ 可以发多一份给我嚒? 谢谢你们啦~~

给出电子邮件 我发给你

在中药学 毕业 论文中,题目是 文章 的眼睛,既要概括反映文章的主要内容,又要简炼,有吸引力。下面是我带来的关于中药学毕业论文题目的内容,欢迎阅读参考! 中药学毕业论文题目(一) 1. 中药治疗急性痛风性关节炎疗效及安全性分析 2. TRIPs协议的药品专利制度与中药专利保护 3. 中药熏洗结合运动手法、针灸理疗对颈肩腰腿痛治疗的临床体会 4. 从ADR 报告 谈中药注射剂的问题及对策 5. 用《组合中药学》的理论开发新型中药(英文) 6. 中医医院开展中药临床药学工作的研究探讨 7. 复方中药滴眼液治疗单纯疱疹性角膜炎临床观察 8. 处方分析在中药调剂中的作用研究 9. 中药治疗硬皮病文献分析 10. 中药产业化的关键问题及其对策 11. 中药外敷治疗静脉炎的疗效观察与护理 12. 中药电泳指纹图谱的构建与应用研究 13. 加入WTO条件下中药行业发展对策研究 14. 中药电导入对关节影响的实验研究 15. 中药安全性问题探悉 16. 论中药的专利保护 17. 论中药的双向调节 中药学毕业论文题目(二) 1. 中药注射剂不良反应分析 2. 中药注射剂不良反应的常见原因分析 3. 中药治疗下肢骨折术后肿胀118例临床疗效探讨 4. 中药企业创新路径选择——以香港维特健灵和培力为借鉴 5. 浅谈中药制剂标准化与质量控制科学化 6. 面向新版GMP的中药饮片生产质量管理研究 7. 薄层扫描色谱在中药质量评价中应用的研究 8. 中药鉴定技术的研究进展 9. 补肾中药对体外培养成骨细胞增殖和功能的影响 10. 中药公司投资价值分析 11. 中药外敷及口服扶他林联合微波治疗膝骨性关节炎的护理 12. 2007~2008年国内期刊中药注射剂不良反应回顾性研究 13. 我院中药注射剂的应用和不良反应的分析 14. 中药骨康对破骨细胞活性及凋亡的影响 15. 中药对LPS诱导单核巨噬细胞增殖的抑制作用及其差异蛋白质分析 16. 中药四性的研究(Ⅰ) 17. 中药饮片在临床应用中存在的问题及对策 18. 中药饮片在临床应用中存在的问题及对策 19. 中药对细胞色素P450影响的研究进展 中药学毕业论文题目(三) 1. 中药来源的醛糖还原酶抑制剂的筛选 2. 直肠滴入疗法与中药外敷治疗溃疡性结肠炎50例分析 3. 中药炮制和用法对药物作用的影响研究 4. 中药灌肠配合微波治疗盆腔炎临床研究 5. 中药注射剂在我院的使用情况及不良反应预防 6. 手法配合中药治疗腰椎间盘突出症128例 7. 中药调剂与临床疗效的关系 8. 关注中药注射剂的不良反应 9. 中药专利保护制度研究 10. 研究中药注射液临床效果的 方法 11. 中药资源开发利用与可持续发展研究 12. 一种基于全电性离子色谱的中药药性蛋白质分子标记研究的新方法 13. 抗肿瘤中药有效部位及化学成分研究进展 14. 推拿配合中药治疗神经根型颈椎病急性发作30例观察 15. 不同性味中药复方对实验性2型糖尿病大鼠代谢及病理变化的影响 16. 当前我国中药产业的发展战略研究 17. 扫描电镜应用于 植物类 中药鉴定的研究进展 猜你喜欢: 1. 药学毕业论文选题 2. 药学毕业论文题目 3. 药学论文题目大全 4. 中药学毕业论文范文 5. 中药学本科毕业论文

中国知网 你上去输入关键词“海洋生物的药用”,搜索一下就有了 1. 海洋生物多糖的药用功能 徐旭,于冰,汤立达 文献来自: 天津药学 2004年 第06期 CAJ下载 PDF下载 人们对海洋生物多糖产生了极大的兴趣 ,发现了许多具有生物活性的多糖类物质。本文就海洋生物多糖的药用功能综述如下。1 免疫调节作用大量的实验研究表明 ,海藻多糖、海带多糖、珠蚌多糖等具有免疫调节作用或免疫增强作用。海带 ... 海洋生物多糖;;药用功能1 薛静波,刘希英,张鸿芬.海带多糖对小鼠腹腔巨噬细胞的激活作用 ... 被引用次数: 4 文献引用-相似文献-同类文献 2. 海洋生物多糖药用功能的新进展 王琪琳,王海仁 文献来自: 生物学通报 2002年 第07期 CAJ下载 PDF下载 较重要的药用资源 ,同时经过化学修饰 (如硫酸化、乙酰化 ) ,将开发出更多的高效低毒的新型多糖药物海洋生物多糖药用功能的新进展@王琪琳$山东大学生命科学院 ... 被引用次数: 8 文献引用-相似文献-同类文献 3. 药用海洋生物功能基因组研究 涂洪斌,卫剑文,彭立胜,钟肖芬,杨文利,吴文言,徐安龙 文献来自: 世界科学技术 2001年 第04期 CAJ下载 PDF下载 为海洋生物药用活性物质的产业化铺平道路。综上所述,开展以药用海洋生物为切入点的药用海洋生物功能基因组研究,既是我国在功能基因组研究领域的突破口,同时也为促进我国中医药的现代化和海洋生物肽类活性物质的研究提供了一个 ... 被引用次数: 3 文献引用-相似文献-同类文献 4. 名优海洋生物的药用 刘学谦 文献来自: 家庭医学 2001年 第07期 CAJ下载 PDF下载 其鱼鳍加名优海洋生物的药用@刘学谦!研究员<正> 茫茫海洋栖息着种类繁多的名优海洋水产生物,男女老少皆宜,容易消化吸收,有效的增进人体健康。现将几种名优海洋水产生物的药用分述如?... 被引用次数: 0 文献引用-相似文献-同类文献 5. 可供药用的海洋生物 秦思昌 文献来自: 解放军健康 2005年 第05期 CAJ下载 PDF下载 发掘和利用海洋生物防治疾病是造福人类的伟业。下面介绍一些可供药用的海洋生物。海藻类海洋中生长着1万多种海藻,海藻中含有藻胶、氨基酸、维生素、甘露醇、无机盐等重要的医药成分?... 可供药用的海洋生物@秦思昌 ... 被引用次数: 0 文献引用-相似文献-同类文献 6. 略述海洋生物多糖的药用价值 王琪琳 文献来自: 聊城师院学报(自然科学版) 2002年 第03期 CAJ下载 PDF下载 2海洋生物多糖药用功能 具有整肠和解毒作用 人们通过对多种乳酸菌细胞壁中多糖组分抗溃疡作用的研究表明,它们能诱导胃组织中表皮生长因子EGF和碱性成纤维细胞生长因子bFGF’的合成水平 ... 略述海洋生物多糖的药用价值@王琪琳$聊城大学生物系!山东 聊城 252059海洋生物;;多糖; ... 被引用次数: 0 文献引用-相似文献-同类文献 7. 海洋生物的结构多样性及其药用前途 林文翰 文献来自: 中国海洋学会2005年学术年会论文汇编 2005年 CAJ下载 借鉴药用海洋生物功能基因组研究成果,从 药用海洋生物中筛选克隆得到活性物质的相关功能基因并阐明药用的分子生物学机理,运用基因工程技 术对认为确切有效地药用基因进行大规模生产,从而克服传统生化提取方法的产品产量小、纯 ... 海洋生物的结构多样性及其药用前途@林文翰$北京大学天然药物及仿生药物国家重点实验室 ... 被引用次数: 0 文献引用-相似文献-同类文献 8. 甘露醇的药用研究进展 詹天荣,宋金明 文献来自: 中国海洋药物 2003年 第03期 CAJ下载 PDF下载 药用;;生物活性甘露醇是一种重要的海洋生物活性物质,既可用作原料药配制甘露醇注射液 ... 被引用次数: 11 文献引用-相似文献-同类文献 9. 海洋生物活性物质研究进展 司玫,展翔天 文献来自: 中国海洋药物 2003年 第06期 CAJ下载 PDF下载 海洋生物由于其独特的代谢方式,产生的活性物质化学结构丰富多样,分子结构独特新颖具有极大的药用潜力,从海洋中寻找生物活性物质并开发研究新的药物前景广阔。现简述2 1世纪海洋生物活性物质研究进展。[1] 翁心华 ... 被引用次数: 6 文献引用-相似文献-同类文献 10. 我国的海洋生物多样性及其保护 马程琳,邹记兴 文献来自: 海洋湖沼通报 2003年 第02期 CAJ下载 PDF下载 此外许多海洋生物还具有重要的药用及工业价值。因此 ,海洋生物多样性是人类生存与可持续发展的重要物质基础和实现条件之一 ,?... 保护海洋生物多样性就是保护海洋生物资源和人类的生存环境 (王斌 ,1996 )。中国海域辽阔 ,海岸线漫长 ,其海洋生物多样性在世界上占有重要地位 (陈清潮 ,1996 )。1 中国海洋生物多样性现状1 ... 被引用次数: 8 文献引用-相似文献-同类文献 搜海洋生物 的学术趋势 翻译 海洋生物的药用

细胞分化与干细胞的研究进展论文

近期的科学研究新进展,科学家们已经十分接近量产血球细胞了!这个新进展将能解决血液供给不足,以及骨髓疾病患者的问题,将彻底改变需要频繁输血的疾病治疗模式。

近年来,干细胞的相关研究逐渐扩展,除了生物科学的研究外,更尝试应用于人类医学治疗上。干细胞与体内一般细胞不同,他具有特殊的编程,可以透过自然或诱导的方式,分化成为其他细胞。主要可分为两种,一为胚胎干细胞,具有较强的分化能力,可分化成为多种不同的细胞。另一种为成体干细胞,分化能力较为受限,仅能分化成特定几种细胞,用于修复组织或是汰换掉旧的细胞。2006年时,科学家首次将小鼠的细胞,经过诱导后转变成为iPS多能性干细胞。自此之后开启干细胞领域的大量研究。而从此时开始,科学家就不断尝试利用干细胞来生产新的血液细胞,然而,这是首次这么接近将干细胞分化成为完整功能的血球细胞。

利用干细胞生产血液细胞的目标,是希望可以透过提取患者自身的细胞,将其转变为iPS多能性干细胞后,利用此干细胞不断分化产生新的血液细胞,这样患者就可以自己生产无限供给的血球,不需要倚靠其他健康人们的捐赠。另外,这样的作法也能应用在一般的血液捐赠上,可以使用一般健康捐血者的细胞并将其转变为iPS多能性干细胞,这样将能大幅增加血液供给,提供需要输血的病患使用。来自波士顿儿童医院的Rio Sugimura研究员表示,遗传性的血液疾病患者,甚至可以利用基因编辑的方式,修复遗传缺陷,并成功制造出健康的血球细胞。

第一个发表相关研究的论文中,研究人员使用了iPS和胚胎干细胞,给予他们特殊的化学信号,使干细胞转化为血球前驱细胞,接着再给细胞转录因子,使其成为真正具功能的血球细胞。研究人员发现需要五种转录因子,分别为RUNX1、ERG、LCOR、HOXA5和HOXA9,来强制细胞进入正确的分化程序。波士顿儿童医院的研究负责人Gee Daley表示:「我们非常接近能够产生真正的人类血球细胞,这项工作是20多年努力的结果。」

第二篇研究的作法略有不同,来自纽约威尔康奈尔医学中心(Weill Cornell Medicine)的一个小组不再使用iPS多能性干细胞或胚胎干细胞,而是使用从小鼠肺壁获取的成体干细胞,培养于含有四种转录因子Fo *** 、Gfi1、Runx1和Spi1,且模拟人类血管内环境的培养皿中,此方法能够将成体干细胞直接分化为血球细胞,无需经过iPS的过程。带领团队完成研究的Shahin Rafii表示,他们的实验方法有如直航班机,可以挑过中间的复杂程序。而Daley团队的技术则是转机后才到达目的地。虽说如此,但目前结果仅止于动物实验,哪一种方法在人体中会有更好的效果暂时还不得而知。不过可以期待的是,未来人类或许可以透过简单的方式,自给自足需要的血液供给,在医疗上不再需要仰赖他人捐赠,并且可以修复遗传性的血液或骨髓疾病。

1999年12月,Science杂志公布了当今世界科学发展的评定结果,干细胞的研究成果名列十大科学进展榜首。胚胎干细胞研究的科学价值在于其诱人的应用前景。如果最终能够成功诱导和调控胚胎干细胞的分化与增殖,将对胚胎干细胞的基础研究和临床应用带来积极的影响,使之有可能在以下领域发挥重要作用。 1.揭示人及动物的发育机制及影响因素 生命最大的奥秘便是人是如何从一个细胞发展为复杂得不可思议的生物体的。人胚胎细胞系的建立及人胚胎干细胞研究,可以帮助我们理解人类发育过程中的复杂事件,使人深刻认识数十年来困扰着胚胎学家的一些基本问题,促进对人胚胎发育细节的基础研究。人胚胎干细胞的体外可操作性,可以一种伦理上可接受的方式,提供在细胞和分子水平上研究人体发育过程中极早期事件的方法。这种研究不会引起与胎儿实验相关联的伦理问题,因为仅靠自身胚胎干细胞是无法形成胚胎的。 2. 药学研究方面 胚胎干细胞系可分化为多种细胞类型,又是能在培养基中不断自我更新的细胞来源。它发展为胚体后的生物系统,可模拟体内细胞与组织间复杂的相互作用,这在药物研究领域具有广泛的用途。胚胎干细胞有望在短期内就能体现的优势在于药物筛选中。目前用于药物筛选的细胞都来源于动物或癌细胞这样非正常的人体细胞,而胚胎干细胞可以经体外定向诱导,为人类提供各种组织类型的人体细胞,这使得更多类型的细胞实验成为可能。虽不会完全取代在整个动物和人体上的实验,但会使药品研制的过程更为有效。当细胞系实验表明药品是安全的且效果良好,才有资格在实验室进行动物和人体的进一步实验。 在候选药物对各种细胞的药理作用和毒性试验中,胚胎干细胞提供了对新药的药理、药效、毒理及药代等研究的细胞水平的研究手段,大大减少了药物检测所需动物的数量,降低了成本。另外,由于胚胎干细胞类似于早期胚胎的细胞,它们有可能用来揭示哪些药物干扰胎儿发育和引起出生缺陷。人胚胎干细胞还可以用于其它用途。由于这类细胞本质上可以无限量地产生人体细胞,它们对于旨在发现稀有人蛋白的研究计划理应有用。国际上许多制药公司、学者都瞄准了这一重要的研究领域。 3. 细胞替代治疗和基因治疗的载体 胚胎干细胞最诱人的前景和用途是生产组织和细胞,用于“细胞疗法”,为细胞移植提供无免疫原性的材料。任何涉及丧失正常细胞的疾病,都可以通过移植由胚胎干细胞分化而来的特异组织细胞来治疗。如用神经细胞治疗神经退行性疾病(帕金森病、亨廷顿舞蹈症、阿尔茨海默病等),用胰岛细胞治疗糖尿病,用心肌细胞修复坏死的心肌等。 胚胎干细胞还是基因治疗最理想的靶细胞。这里的基因治疗是指用遗传改造过的人体细胞直接移植或输入病人体内,达到控制和治愈疾病的目的。这种遗传改造包括纠正病人体内存在的基因突变,或使所需基因信息传递到某些特定类型细胞。 当然,干细胞技术的最理想阶段是希望在体外进行“器官克隆”以供病人移植。如果这一设想能够实现,将是人类医学中一项划时代的成就,它将使器官培养工业化,解决供体器官来源不足的问题;使器官供应专一化,提供病人特异性器官。人体中的任何器官和组织一旦出现问题,可像更换损坏的零件一样随意更换和修理。

研究的目的要说明问题是如何发现的,即该研究的研究背景是什么,是根据什么、受什么启发而搞这项研究。也要说明该选题在理论上的创新性,来突出自己选题与各个主流观点的差异。而研究的意义,要对所研究问题的实际用处有所了解从生活实际出发进行解读。

你看看这是不是你需要的类型论文,不过我还是建议只是参考,自己写最好了。 干细胞作为一种既有自我更新能力、又有多分化潜能的细胞,具有非常重要的理论研究意义和临床应用价值。近几年来,干细胞的研究取得了重大突破, 1999和2000年,世界最权威的美国《Science》杂志连续2年将干细胞和人类基因组计划列为当年的10大科学突破之首。美国《时代》周刊认为干细胞和人类基因组计划将同时成为新世纪最具有发展和应用前景的领域。为抢占这一科技制高点,世界各国纷纷投入大量的人力、物力和财力加紧研究开发,并已取得应用性成果:2005年10月,美国食品和药物管理局(FDA)也已批准将神经干细胞移植入人体大脑;2005年11月,美国心脏协会报道了干细胞治疗心肌梗塞的204例临床病例的研究报告,其结论是干细胞对心脏功能的改善效果,是没有任何现有临床药物能达到的;日本在2000年启动的“千年世纪工程”中,将干细胞工程作为四大重点之一,于第一年度就投入了108亿日元的巨额资金;瑞典、巴西也于2005年通过立法继续支持干细胞研究,并于2005年进行一项多中心1200病例的用干细胞治疗心脏病的临床应用研究。干细胞技术作为生物技术领域最具有发展前景和后劲的前沿技术,将可能导致一场医学和生物学革命,给无数疑难病症治疗带来了新的希望。 按照科学家描绘的美妙蓝图,通过干细胞技术的有效应用,今后更换人体器官就像给汽车换零件一样简单,血细胞、脑细胞、骨骼和内脏都将可以更换,即使患上绝症也能绝处逢生。其实,干细胞技术不仅在疾病治疗方面有着极其诱人的前景,而且其对动物克隆、植物转基因生产、发育生物学、新药物的开发与药效、毒性评估等领域也将产生极其重要的影响。干细胞技术是世纪之交最为引人注目的科技成果,被认为是人类生命科学研究的重要里程碑,预示着生命科学研究将进入快速发展时期。 参考资料:

细胞质膜的研究进展论文

细胞生物是指所有具有细胞结构的生物。这是我为大家整理的关于细胞生物学术论文,仅供参考!

细胞因子的生物学活性

关键字: 细胞因子

细胞因子具有非常广泛的生物学活性,包括促进靶细胞的增殖和分化,增强抗感染和细胞杀伤效应,促进或抑制其它细胞因子和膜表面分子的表达,促进炎症过程,影响细胞代谢等。

一、免疫细胞的调节剂

免疫细胞之间存在错综复杂的调节关系,细胞因子是传递这种调节信号必不可少的信息分子。例如在T-B细胞之间,T细胞产生IL-2、4、5、6、10、13,干扰素γ等细胞因子刺激B细胞的分化、增殖和抗体产生;而B细胞又可产生IL-12调节TH1细胞活性和TC细胞活性。在单核巨噬细胞与淋巴细胞之间,前者产生IL-1、6、8、10,干扰素α,TNF-α等细胞因子促进或抑制T、B、NK细胞功能;而淋巴细胞又产生IL-2、6、10,干扰素γ,GM-CSF,巨噬细胞移动抑制因子(MIF)等细胞因子调节单核巨噬细胞的功能。许多免疫细胞还可通过分泌细胞因子产生自身调节单核巨噬细胞的功能。许多免疫细胞还可通过分泌细胞因子产生自身调节作用。例如T细胞产生的IL-2可刺激T细胞的IL-2受体表达和进一步的IL-2分泌,TH1细胞通过产生干扰素γ抑TH2细胞的细胞因子产生。而TH2细胞又通过IL-10、IL-4和IL-13抑制TH1细胞的细胞因子产生。通过研究细胞因子的免疫 网络调节,可以更好地理解完整的免疫系统调节机制,并且有助于指导细胞因子做为生物应答调节剂(biologicalresponsemodifier’BRM)应用于临床 治疗免疫性疾病。图4-1 细胞因子与TH1、TH2的相互关系(略)

二、免疫效应分子

在免疫细胞针对抗原(特别是细胞性抗原)行使免疫效应功能时,细胞因子是其中重要效应分子之一。例如TNFα和TNFβ可直接造成肿瘤细胞的凋零(apoptosis)’使瘤细胞DNA断裂’细胞萎缩死亡;干扰素α、β、γ可干扰各种病毒在细胞内的复制,从而防止病毒扩散;LIF可直接作用于某些髓性白血病细胞,使其分化为单核细胞,丧失恶性增殖特性。另有一些细胞因子通过激活效应细胞而发挥其功能,如IL-2和IL-12刺激NK细胞与TC细胞的杀肿瘤细胞活性。与抗体和补体等其它免疫效应分子相比,细胞因子的免疫效应功能,因而在抗肿瘤、抗细胞内寄生感染、移植排斥等功能中起重要作用。

三、造血细胞刺激剂

从多能造血干细胞到成熟免疫细胞的分化发育漫长道路中,几乎每一阶段都需要有细胞因子的参与。最初研究造血干细胞是从软琼脂的半固体培养基开始的,在这种培养基中,造血干细胞分化增殖产生的大量子代细胞由于不能扩散而形成细胞簇,称之为集落,而一些刺激造血干细胞的细胞因子可明显刺激这些集落的数量和大小因而命名为集落刺激因子(CSF)。根据它们刺激的造血细胞种类不同有不同的命名,如GM-CSF、G-CSF、M-CSF、multi-CSF(IL-3)等。目前的研究表明,CSF和IL-3是作用于粒细胞系造血细胞,M-CSF作用于单核系造血细胞,此外Epo作用于红系造血细胞,IL-7作用于淋巴系造血细胞,IL-6、IL-11作用于巨核造血细胞等等。由此构成了细胞因子对造血系统的庞大控制 网络。某种细胞因子缺陷就可能导致相应细胞的缺陷,如肾性贫血病人的发病就是肾产生Epo的缺陷所致,正因如此,应用Epo 治疗这一疾病收到非常好的效果。目前多种刺激造血的细胞因子已成功地用于临床血液病,有非常好的 发展前景。

四、炎症反应的促进剂

炎症是机体对外来刺激产生的一种病理反应过程,症状表现为局部的红肿热痛,病理检查可发现有大量炎症细胞如粒细胞、巨噬细胞的局部浸润和组织坏死,在这一过程中,一些细胞因子起到重要的促进作用,如IL-1、IL-6、IL-8、TNFα等可促进炎症细胞的聚集、活化和炎症介质的释放’可直接刺激发热中枢引起全身发烧’IL-8同时还可趋化中性粒细胞到炎症部位’加重炎症症状.在许多炎症性疾病中都可检测到上述细胞因子的水平升高.用某些细胞因子给动物注射’可直接诱导某些炎症现象’这些实验充分证明细胞因子在炎症过程中的重要作用.基于上述理论研究结果’目前已开始利用细胞因子抑制剂治疗炎症性疾病’例如利用IL-1的受体拮抗剂(IL-1receptor antagonist’IL-lra)和抗TNFα抗体治疗败血性休克、类风湿关节炎等,已收到初步疗效。

五、其它

许多细胞因子除参与免疫系统的调节效应功能外,还参与非免疫系统的一些功能。例如IL-8具有促进新生血管形成的作用;M-CSF可降低血胆固醇IL-1刺激破骨细胞、软骨细胞的生长;IL-6促进肝细胞产生急性期蛋白等。这些作用为免疫系统与其它系统之间的相互调节提供了新的证据。

细胞衰老的分子生物学机制

摘要:细胞衰老(cellular aging)是细胞在其生命过程中发育到成熟后,随着时间的增加所发生的在形态结果和功能方面出现的一系列慢性进行性、退化性的变化。细胞衰老是基因与环境共同作用的结果,是细胞生命活动过程的客观规律。为研究细胞衰老分子生物学机制,本文就此展开研究。

关键词:细胞衰老;分子生物学;机制研究

细胞的衰老和死亡与个体的衰老和死亡是两个不同的概念,个体的衰老并不等于所有细胞的衰老,但是细胞的衰老又是同个体的衰老紧密相关的。细胞衰老是个体衰老的基础,个体衰老是细胞普遍衰老的过程和结果。

细胞衰老是正常环境条件下发生的功能减退,逐渐趋向死亡的现象。衰老是生界的普遍规律,细胞作为生物有机体的基本单位,也在不断地新生和衰老死亡。生物体内的绝大多数细胞,都要经过增殖、分化、衰老、死亡等几个阶段。可见细胞的衰老和死亡也是一种正常的生命现象。我们知道,生物体内每时每刻都有细胞在衰老、死亡,同时又有新增殖的细胞来代替它们。

衰老是一个过程,这一过程的长短即细胞的寿命,它随组织种类而不同,同时也受环境条件的影响。高等动物体细胞都有最大增殖能力(分裂)次数,细胞分裂一旦达到这一次数就要死亡。各种动物的细胞最大裂次数各不相同,人体细胞为50~60次。一般说来,细胞最大分裂次数与动物的平均寿命成正比。通过细胞衰老的研究可了解衰老的某些规律,对认识衰老和最终找到延缓或推迟衰老的方法都有重要意义。细胞衰老问题不仅是一个重大的生物学问题,而且是一个重大的社会问题。随着科学发展而不断阐明衰老过程,人类的平均寿命也将不断延长。但也会出现相应的社会老龄化问题以及呼吸系统疾病、心血管系统疾病、脑血管病、癌症、关节炎等老年性疾病发病率上升的问题。因此衰老问题的研究是今后生命科学研究中的一个重要课题。

1 细胞衰老的特征

科学研究表明,衰老细胞的细胞核、细胞质和细胞膜等均有明显的变化:①细胞内水分减少,体积变小,新陈代谢速度减慢;②细胞内酶的活性降低;③细胞内的色素会积累;④细胞内呼吸速度减慢,细胞核体积增大,核膜内折,染色质收缩,颜色加深。线粒体数量减少,体积增大;⑤细胞膜通透性功能改变,使物质运输功能降低。形态变化总体来说老化细胞的各种结构呈退行性变化。

衰老细胞的形态变化表现有:①核:增大、染色深、核内有包含物;②染色质:凝聚、固缩、碎裂、溶解;③质膜:粘度增加、流动性降低;④细胞质:色素积聚、空泡形成;⑤线粒体:数目减少、体积增大;⑥高尔基体:碎裂;⑦尼氏体:消失;⑧包含物:糖原减少、脂肪积聚;⑨核膜:内陷。

2 分子水平的变化

①从总体上DNA复制与转录在细胞衰老时均受抑制,但也有个别基因会异常激活,端粒DNA丢失,线粒体DNA特异性缺失,DNA氧化、断裂、缺失和交联,甲基化程度降低;②mRNA和tRNA含量降低;③蛋白质含成下降,细胞内蛋白质发生糖基化、氨甲酰化、脱氨基等修饰反应,导致蛋白质稳定性、抗原性,可消化性下降,自由基使蛋白质肽断裂,交联而变性。氨基酸由左旋变为右旋;④酶分子活性中心被氧化,金属离子Ca2+、Zn2+、Mg2+、Fe2+等丢失,酶分子的二级结构,溶解度,等电点发生改变,总的效应是酶失活;⑤不饱和脂肪酸被氧化,引起膜脂之间或与脂蛋白之间交联,膜的流动性降低。

3 细胞衰老原因

迄今为止,细胞衰老的本质尚未完全阐明,难以给明确的定义,只能根据现有的认识,从不同的角度概括细胞衰老的内涵。细胞衰老是各种细胞成分在受到内外环境的损伤作用后,因缺乏完善的修复,使“差错”积累,导致细胞衰老。根据对导致“差错”的主要因子和主导因子的认识不同,可分为不同的学说,这些学说各有其理论基础和实验证据[1]。

差错学派 有以下七种学说,有代谢废物积累学说、大分子交联学说、自由基学说、体细胞突变学说、DNA损伤修复学说、端粒学说、生物分子自然交联说等。其中最主要的自由基学说和端粒学说。

自由基学说 自由基是一类瞬时形成的含不成对电子的原子或功能基团,普遍存在于生物系统。其种类多、数量大,是活性极高的过渡态中间产物。正常细胞内存在清除自由基的防御系统,包括酶系统和非酶系统。前者如:超氧化物歧化酶(SOD),过氧化氢酶(CAT),谷胱甘肽过氧化物酶(GSH-PX),非酶系统有维生素E,醌类物质等电子受体。机体通过生物氧化反应为组织细胞生命活动提供能量,同时在此过程中也会产生大量活性自由基。自由基的化学性质活泼,可攻击生物体内的DNA、蛋白质和脂类等大分子物质,造成损伤,如DNA的断裂、交联、碱基羟基化。实验表明DNA中OH8dG(8-羟基-2‘-脱氧鸟苷)随着年龄的增加而增加。OH8dG完全失去碱基配对特异性,不仅OH8dG被错读,与之相邻的胞嘧啶也被错误复制。大量实验证明实,超氧化物岐化酶与抗氧化酶的活性升高能延缓机体的衰老。Sohal等(1994、1995),将超氧化物岐化酶与过氧化氢酶基因导入果蝇,使转基因株比野生型这两种酶基因多一个拷贝,结果转基因株中酶活性显著升高,平均年龄和最高寿限有所延长。

英国学者提出的自由基理论认为自由基攻击生命大分子造成组织细胞损伤,是引起机体衰老的根本原因,也是诱发肿瘤等恶性疾病的重要起因。自由基就是一些具有不配对电子的氧分子,它们在机体内漫游,损伤任何于其接触的细胞和组织,直到遇到如维生素C、维生素E、β-胡萝卜素、OPC(原花青素)之类的生物黄酮等抗氧化剂将其中和掉或被机体产生的一些酶(如SOD)将其捕获。自由基可破坏胶原蛋白及其它结缔组织,干扰重要的生理过程,引起细胞的DNA突变。此外还可引起器官组织细胞的破坏与减少[2]。例如神经元细胞数量的明显减少,是引起老年人感觉与记忆力下降、动作迟钝及智力障碍的又一重要原因。器官组织细胞破坏或减少主要是由于自由基因突变改变了遗传信息的传递,导致蛋白质与酶的合成错误以及酶活性的降低。这些的积累,造成了器官组织细胞的老化与死亡。

生物膜上的不饱和脂肪酸易受自由基的侵袭发生过氧化反应,氧化作用对衰老有重要的影响,自由基通过对脂质的侵袭加速了细胞的衰老进程[3]。 自由基作用于免疫系统,或作用于淋巴细胞使其受损,引起老年人细胞免疫与体液免疫功能减弱,并使免疫识别力下降出现自身免疫性疾病。

端粒学说 染色体两端有端粒,细胞分裂次数多,端粒向内延伸,正常DNA受损。

遗传学派 认为衰老是遗传决定的自然演进过程,一切细胞均有内在的预定程序决定其寿命,而细胞寿命又决定种属寿命的差异,而外部因素只能使细胞寿命在限定范围内变动。

参考文献:

[1]郭齐,李玉森,陈强,等.脱氧核苷酸钠抗人肾脏细胞衰老的分子机制[J].中国老年学杂志,2013,33(15):3688-3690.

[2]胡玉萍,吴建平.细胞衰老与相关基因的关系[J].中外健康文摘,2012,09(14):35-37.

[3]孔德松,魏东华,张峰,等.肝纤维化进程中细胞衰老的作用及相关机制的研究进展[J].中国药理学与毒理学杂志,2012,26(05):688-691.

细胞结构解读绝大多数的真核生物细胞都有核、质、膜三个部分,膜是生命系统的边界,是控制物质交换的门户;质是新陈代谢的主要中心,质中的细胞器在系统内分工合作;核是遗传物质贮存和复制的主要场所,也是遗传性状和新陈代谢的控制中心,是生命系统的控制中心;各有其重要性,又有其特殊性,相互独立,又相互联系,构成一个和谐统一的、有机的、复杂的生命系统。1.1 细胞膜的结构和功能细胞生活在液体环境中,膜是与外界环境相隔的界线,是保证细胞内化学反应顺利进行的天然屏障,这与结构有关。(1)主要的分子组成由磷脂双分子层构成基本骨架,这种结构的存在就必然有与之相对应的功能存在,脂溶性物质能够以自由扩散的方式优先通过细胞膜;在磷脂双分子层中镶嵌有蛋白质分子,这一结构的存在,也必然有与之相对应的功能存在,蛋白质分子可作为物质运输载体,从而使膜具有主动运输的功能。(2)结构特点与功能特性组成细胞膜的磷脂分子和蛋白质分子大都可以运动,因而决定了细胞膜的结构特点是具有一定的流动性,细胞膜的功能特性是具有选择透过性,这是两个不同而又有联系的概念,膜的流动性存在,既可以使膜中的各种成分需要调整其组合分布而有利于控制物质出入细胞,又能使细胞经受一定的变形而不致破裂(如:人体的自细胞能变形穿过毛细血管壁),具有保护的作用,从而保证了活细胞完成各种生理功能。细胞膜的流动性是选择透过性的基础,而活细胞的细胞膜具有选择透过性,是细胞生命活动的体现,这样就保证细胞按生命活动的需要吸收和排出物质,而物质透过细胞膜等各项生理功能的实施,又需要细胞膜的流动性这一结构特点来保障,这就是结构特点和功能特性的统一。流动性是细胞膜结构固有的属性,无论细胞是否与外界发生物质交换关系,流动性总是存在的,而选择透过性是对细胞膜生理特性的描述,这一特性只有在流动性基础上,完成物质交换功能方面体现出来。总结如下:(图附在后面)1.2 细胞质的结构和功能细胞质是细胞结构中的重要组成部分,是活细胞内新陈代谢的主要场所,也是同化作用和异化作用发生的主要场所。活细胞中的生命活动,绝大多数物质的合成和分解,就是发生在细胞质中,是细胞生命活动最活跃的部位,活细胞中的细胞质处在流动状态。在亚显微结构下,把细胞质作为一个整体来研究,实际上细胞质主要包括细胞质基质和细胞器。本部分内容上连接第一章“生命的物质基础”(细胞质也是由化学元素和化学元素组成的化合物而形成的结构),尤其是细胞质中的水分、无机盐、核苷酸、氨基酸等,进一步体现了生命系统的物质性。该内容下连接第三章“生物的新陈代谢”中细胞呼吸和光合作用的重点知识,本部分具有承上启下的作用。线粒体与细胞呼吸正相关,叶绿体与光合作用正相关。其余多种细胞器教学中,限于教材,侧重介绍其分布,结构和功能作简要介绍。最后归类总结出双层膜的、单层膜的、非膜结构的、生成水的、生成ATP的、含有DNA的细胞器、“四个场所”。但应凸现出一个重要的教学理念:物质组成结构,结构决定功能;结构和功能和谐统一的学科思想。1.3 细胞核的结构和功能该内容介绍细胞核的组成及原核细胞的基本结构,前者主要由三个部分核模、核仁、染色质组成,核膜使核内与质中的化学反应分开,既相互联系,又相互独立,核膜同样具有选择透过性,控制细胞质与细胞核之间的物质交换,对细胞核内物质具有保护作用,膜上的核孔有利于核、质问进行频繁的、大量的大分子的物质交流,是大分子交换的理想通道[2];核仁的折光系统强,是真核生物细胞最明显的标志;染色质与染色体的关系既是重点又是难点,具有抽象性,是难消化的知识点;都含有DNA分子,是生物的遗传物质,同样也体现了结构和功能和谐统一。1.4 细胞质流动的实验指导学生正确使用高倍显微镜观察黑藻细胞质的流动,观察中为什么只看到叶绿体,而看不到其他细胞器的原因(叶绿体大,有色素),为什么只看到叶绿体黑藻细胞边缘流动(成熟的植物细胞大部分的空间被液泡占有),这都是在实验中遇到的实际问题。

从痛苦难忍的烙铁止血法,到可以精准操作的手术机器人....两百年来,作为医学之花的外科学创造出了一个个生命的奇迹。注:本视频根据2019新人教版教材制作。更多知识点视频,微信关注公众号生物大师

细胞是生物体结构和功能的基本单位,人们对许多生命现象的探索都要深入到细胞中寻求解答.细胞生物学的发展十分迅速,特别是20世纪后半叶,在生物膜、细胞骨架、细胞增殖、细胞分化、细胞凋亡与衰老、染色体结构和功能、细胞信号转导、细胞工程等研究领域取得了许多振奋人心的成就.本章选择生物膜系统和细胞工程作为代表,简要介绍细胞生物学在理论研究和应用方面的重要进展. 细胞的生物膜系统 细胞就像一台复杂而精巧的生命机器,各个部件虽然作用不同,但是衔接得非常巧妙,因而整台机器能够灵活运转.细胞膜、核膜以及内质网、高尔基体、线粒体等细胞器,就是这台“机器”中一些功能相关的“部件”,它们都由膜构成,这些膜的化学组成相似,基本结构大致相同,统称为生物膜. 各种生物膜在结构上的联系 细胞内的各种生物膜在结构上存在着直接或间接的联系.内质网膜与外层核膜相连,内质网腔与内、外两层核膜之间的腔相通,外层核膜上附着有大量的核糖体(如图).内质网与核膜的连通,使细胞质和核内物质的联系更为紧密.在有的细胞中,还可以看到内质网膜与细胞膜相连.内质网膜与线粒体膜之间也存在一定的联系.线粒体是内质网执行功能时所需能量的直接“供应站”,在合成旺盛的细胞里,内质网总是与线粒体紧密相依,有的细胞的内质网膜甚至与线粒体的外膜相连. 虽然高尔基体与内质网在结构上没有直接相通,但是当附着有核糖体颗粒的内质网膜连接到高尔基体膜上时,内质网膜常常失去核糖体,变成光滑的、无颗粒的膜,与高尔基体的膜极为相似.许多科学家认为,在细胞进化的过程中,高尔基体是由内质网转变而来的. 高尔基体膜在厚度和化学组成上介于内质网膜和细胞膜之间.在活细胞中,这三种膜是可以互相转变的.内质网膜通过“出芽”的形式,形成具有膜的小泡,小泡离开内质网,移动到高尔基体,与高尔基体膜融合,小泡膜成为高尔基体膜的一部分.高尔基体膜又可以突起,形成小泡,小泡离开高尔基体,移动到细胞膜,与细胞膜融合,成为细胞膜的一部分.细胞膜也可以内陷形成小泡,小泡离开细胞膜,回到细胞质中.由此可以看出,细胞内的生物膜在结构上具有一定的连续性. 生物膜的化学组成 细胞内的各种生物膜不仅在结构上相互联系,它们的化学组成也大致相同.与细胞膜类似,其他生物膜也主要由蛋白质、脂类和少量的糖类组成.但是在不同的生物膜中,这三种物质的含量是有差别的(如下表). 生物膜 人红细胞膜 大鼠肝细胞核膜 内质网膜 蛋白质 49 59 67 脂类 43 35 33 糖类 8 含量很少 (质量分数 /%) 生物膜 线粒体外膜 线粒体内膜 蛋白质 52 76 脂类 48 24 糖类 含量很少 含量很少各种生物膜在功能上的联系 科学家在研究分泌蛋白的合成和分泌时,曾经做过这样一个实验:他们在豚鼠的胰脏腺泡细胞中注射3H标记的亮氨酸,3min后,被标记的氨基酸出现在附着有核糖体的内质网中,17min后,出现在高尔基体中,117min后,出现在靠近细胞膜内侧的运输蛋白质的小泡中,以及释放到细胞外的分泌物中(如图).这个实验说明分泌蛋白在附着于内质网上的核糖体中合成之后,是按照内质网→高尔基体→ 细胞膜的方向运输的. 在核糖体上合成的分泌蛋白,为什么要经过内质网和高尔基体,而不是直接运输到细胞膜呢?进一步的研究表明,在核糖体上翻译出的蛋白质,进入内质网腔后,还要经过一些加工,如折叠、组装、加上一些糖基团等,才能成为比较成熟的蛋白质.然后,由内质网腔膨大、出芽形成具膜的小泡,包裹着蛋白质转移到高尔基体,把蛋白质输送到高尔基体腔内,做进一步的加工.接着,高尔基体边缘突起形成小泡,把蛋白质包裹在小泡里,运输到细胞膜,小泡与细胞膜融合,把蛋白质释放到细胞外(如图).在分泌蛋白的合成、加工和运输的过程中,需要大量的能量,这些能量的供给,来自于细胞内的“动力站”——线粒体,线粒体内膜上含有大量的与有氧呼吸有关的酶.由此可见,细胞内的各种生物膜不仅在结构上有一定的联系,在功能上也是既有明确的分工,又有紧密的联系.各种生物膜相互配合,协同工作,才使得细胞这台高度精密的生命机器能够持续、高效地运转. 生物膜系统的概念 通过前面的介绍,我们可以看出,细胞膜、核膜以及内质网、高尔基体、线粒体等由膜围绕而成的细胞器,在结构和功能上都是紧密联系的统一整体,它们形成的结构体系,叫做细胞的生物膜系统. 物质通过细胞膜的运输方式有哪几种?参考答案 细胞的生物膜系统在细胞的生命活动中起着极其重要的作用.首先,细胞膜不仅使细胞具有一个相对稳定的内环境,同时在细胞与环境之间进行物质运输、能量交换和信息传递的过程中也起着决定性的作用.第二,细胞的许多重要的化学反应都在生物膜内或者膜表面进行.细胞内的广阔的膜面积为酶提供了大量的附着位点,为各种化学反应的顺利进行创造了有利条件.第三,细胞内的生物膜把细胞分隔成一个个小的区室,如各种细胞器,这样就使得细胞内能够同时进行多种化学反应,而不会相互干扰,保证了细胞的生命活动高效、有序地进行.

细胞自噬的研究方法论文批注

1、 自噬的定义: 细胞自噬是真核生物中进化保守的对细胞内物质进行周转的重要过程。该过程中一些损坏的蛋白或细胞器被双层膜结构的自噬小泡包裹后,送入溶酶体(动物)或液泡(酵母和植物)中进行降解并得以循环利用。2、 自噬的过程: 从一张图片开始: 步骤1:细胞接受自噬诱导信号后,在胞浆的某处形成一个小的类似“脂质体”样的膜结构,然后不断扩张,但它并不呈球形,而是扁平的,就像一个由2层脂双层组成的碗,可在电镜下观察到,被称为Phagophore,是自噬发生的铁证之一。 步骤2:Phagophore不断延伸,将胞浆中的任何成分,包括细胞器,全部揽入“碗”中,然后“收口”,成为密闭的球状的autophagosome,我把它翻译为“自噬体”。电镜下观察到自噬体是自噬发生的铁证之二。有2个特征:一是双层膜,二是内含胞浆成分,如线粒体、内质网碎片等。 步骤3:自噬体形成后,可与细胞内吞的吞噬泡、吞饮泡和内体融合(加了个“可”字,意思是这种情况不是必然要发生的)。 步骤4:自噬体与溶酶体融合形成autolysosome,期间自噬体的内膜被溶酶体酶降解,2者的内容物合为一体,自噬体中的“货物”也被降解,产物(氨基酸、脂肪酸等)被输送到胞浆中,供细胞重新利用,而残渣或被排出细胞外或滞留在胞浆中。3 、自噬的特性: 1)自噬是细胞消化掉自身的一部分,即self-eating,初一看似乎对细胞不利。事实上,细胞正常情况下很少发生自噬,除非有诱发因素的存在。这些诱发因素很多,也是研究的热门。既有来自于细胞外的(如外界中的营养成分、缺血缺氧、生长因子的浓度等),也有细胞内的(代谢压力、衰老或破损的细胞器、折叠错误或聚集的蛋白质等)。由于这些因素的经常性存在,因此,细胞保持了一种很低的、基础的自噬活性以维持自稳。 2)自噬过程很快,被诱导后8min即可观察到自噬体(autophagosome)形成,2h后自噬溶酶体(autolysosome)基本降解消失。这有利于细胞快速适应恶劣环境。 3)自噬的可诱导特性:表现在2个方面,第一是自噬相关蛋白的快速合成,这是准备阶段。第二是自噬体的快速大量形成,这是执行阶段。 4)批量降解:这是与蛋白酶体降解途径的显著区别 5)“捕获”胞浆成分的非特异性:由于自噬的速度要快、量要大,因此特异性不是首先考虑的,这与自噬的应急特性是相适应的。 6)自噬的保守性:由于自噬有利于细胞的存活,因此无论是物种间、还是各细胞类型之间(包括肿瘤细胞),自噬都普遍被保留下来(谁不喜欢留一手呢?)。4 、自噬过程的调控: 从上面总结的自噬特点中可以看出,自噬这一过程一旦启动,必须在度过危机后适时停止,否则,其非特异性捕获胞浆成分的特性将导致细胞发生不可逆的损伤。这也提醒我们在研究自噬时一定要动态观察,任何横断面的研究结果都不足以评价自噬的活性。目前,已经报告了很多因素能诱导细胞发生自噬,如饥饿、生长因子缺乏、微生物感染、细胞器损伤、蛋白质折叠错误或聚集、DNA损伤、放疗、化疗等等,这么多刺激信号如何传递的、哪些自噬蛋白接受信号、又有哪些自噬蛋白去执行等很多问题都还在等待进一步解答中。 关于传递自噬信号的通路目前比较肯定的有: 抑制类 1)Class I PI3K pathway(PI-phosphatidylinositol,磷脂酰肌醇)与IRS (Insulin receptor substrate)结合,接受胰岛素受体传来的信号(血糖水平高抑制自噬) 2)mTOR pathway(mammalian target of rapamycin) mTOR在人类中的同源基因是FRAP1(FK506 binding protein 12-rapamycin associated protein 1),是一个丝/苏氨酸蛋白激酶。能接受多种上游信号,如Class I PI3K、IGF-1/2、MAPK,能感受营养和能量的变化,rapamycin是最典型最常用的自噬激动剂. 激活类 1)Class III PI3K 结构上类似于Class I PI3K,但作用相反。3-MA是Class III PI3K的抑制剂,因此3-MA可以作为自噬的抑制剂. 5 、自噬的研究方法: 正常培养的细胞自噬活性很低,不适于观察,因此,必须对自噬进行人工干预和调节,经报道的工具药有: (一)自噬诱导剂    1)Bredeldin A /Thapsigargin / Tunicamycin :  模拟内质网应激 2 )Carbamazepine/L-690,330/ LithiumChloride(氯化锂): IMPase  抑制剂 (即Inositolmonophosphatase,肌醇单磷酸酶) 3 )Earle's平衡盐溶液:  制造饥饿 4 )N-Acetyl-D-sphingosine(C2-ceramide):Class I PI3KPathway抑制剂 5 )Rapamycin:mTOR抑制剂 6 )Xestospongin B/C:IP3R阻滞剂 (二)自噬抑制剂 1 )3-Methyladenine(3-MA):(Class III PI3K) hVps34 抑制剂 2 )Bafilomycin A1:质子泵抑制剂 3 )Hydroxychloroquine(羟氯喹):Lysosomal lumenalkalizer(溶酶体腔碱化剂)除了选用上述工具药外,一般还需结合遗传学技术对自噬相关基因进行干预:包括反义RNA干扰技术(Knockdown)、突变株筛选、外源基因导入等。 细胞经诱导或抑制后,需对自噬过程进行观察和检测,常用的策略和技术有: 1)观察自噬体的形成 由于自噬体属于亚细胞结构,普通光镜下看不到,因此,直接观察自噬体需在透射电镜下。Phagophore的特征为:新月状或杯状,双层或多层膜,有包绕胞浆成分的趋势。自噬体(AV1)的特征为:双层或多层膜的液泡状结构,内含胞浆成分,如线粒体、内质网、核糖体等。自噬溶酶体(AV2)的特征为:单层膜,胞浆成分已降解。(autophagic vacuole,AV) 2)在荧光显微镜下采用GFP-LC3等融合蛋白来示踪自噬形成:(常用) GFP-LC3单荧光指示体系:由于电镜耗时长,不利于监测(Monitoring)自噬形成。我们利用LC3在自噬形成过程中发生聚集的现象开发出了GFP-LC3指示技术:无自噬时,GFP-LC3融合蛋白弥散在胞浆中;自噬形成时,GFP-LC3融合蛋白转位至自噬体膜,在荧光显微镜下形成多个明亮的绿色荧光斑点,一个斑点相当于一个自噬体,可以通过计数来评价自噬活性的高低。双荧光指示体系:汉恒生物科技(上海)有限公司已开发出用于表达mRFP-GFP-LC3融合蛋白的病毒产品。mRFP用于标记及追踪LC3,GFP的减弱可指示溶酶体与自噬小体的融合形成自噬溶酶体,即由于GFP荧光蛋白对酸性敏感,当自噬体与溶酶体融合后GFP荧光发生淬灭,此时只能检测到红色荧光。 3)利用Western Blot检测LC3-II/I比值的变化以评价自噬形成。 自噬形成时,胞浆型LC3(即LC3-I)会酶解掉一小段多肽,转变为(自噬体)膜型(即LC3-II),因此,LC3-II/I比值的大小可估计自噬水平的高低。 (Note:LC3抗体对LC3-II有更高的亲和力,会造成假阳性。方法2和3需结合使用,同时需考虑溶酶体活性的影响) 4) 利用Western Blot检测p62蛋白来评价自噬以及自噬流的强弱:起初自噬所降解的底物被认为是随机的,但是后来的研究表明有些蛋白是选择性降解的,在这些蛋白之中研究的最为透彻的是p62蛋白,p62蛋白水平的多少与自噬流的强弱有着反比例关系。 5)MDC或者Cyto-ID染色:包括自噬体,所有酸性液泡都被染色,故属于非特异性的。 6)Cell Tracker TM Green染色:主要用于双染色,但其能染所有的液泡,故也属于非特异性的。 6、自噬体的发生: 目前认为,自噬体的膜不是直接来源于高尔基体或内质网,而是在胞浆中重新生成的,但具体的机制尚不清楚。当beclin-1被活化后,胞浆中先形成很多个membrane source(自噬体膜发生中心),在它们不断扩展的过程中(phagophore到autolysosome),VMP1蛋白由内质网和高尔基体转位到自噬体膜上(VMP1又叫TMEM49,已知唯一与自噬有关的  跨膜 蛋白),同时,MAP1-LC3由胞浆型(即LC3-I)转位到自噬体膜(即LC3-II),LC3这一转变过程可被Western Blot和荧光显微镜检测到,现已成为监测自噬体形成的推荐方法。7、自噬与细胞死亡的关系:       有必要说明一下的是,细胞死亡是一个非常复杂的过程,为了研究方便,需进行分类,但我们思考时不要局限于这些 人为的分类,而应注重于现象本身来研究其背后的机制。       一直以来人们从不同角度、用不同方法来观察细胞的死亡,并把细胞的死亡方式分为2类:坏死和凋亡,因为两者有着明显的区别,其中最主要的区别之一就是细胞膜的通透性——坏死细胞的细胞膜丧失了完整性,内容物被释放出来,染料可自由进入细胞,而凋亡细胞保持完整,无内容物释放,染料也被排斥。很多实验亦根据这一原理来设计以区分坏死和凋亡,这将在后面一一介绍,如同刚刚说明的那样,这些实验只能说明细胞膜的通透性(必要条件,不是充分必要条件),而不能用来证实坏死细胞或凋亡细胞。一般认为坏死是被动的,不可控的,而凋亡是主动的,可控的。为了强调这一点,凋亡被定义为程序性细胞死亡(program celldeath,PCD)。但无论是坏死还是凋亡,都是一个过程,是需要时间的(尤其是凋亡,从启动到完成,细胞要执行很多反应),而且细胞死亡后都有“尸体”。在研究自噬与凋亡的关系时,人们发现细胞死亡前胞浆中存在大量的自噬体或自噬溶酶体,但这样的细胞缺乏凋亡的典型特点,如核固缩(pyknosis), 核破裂(karyorhexis)、细胞皱缩(shrinkage)、没有凋亡小体的形成等,被称为自噬样细胞死亡(autophagic celldeath,ACD),它是一种新的细胞程序性死亡,为了与凋亡区别,被命名为Type II cell death,相应的,凋亡为Type I cell death,坏死为Type III cell death。尽管这样,但对于自噬是否是细胞死亡的直接原因目前还存在很大的争议。到底是Cell death  by  autophagy(自噬引起死亡)还是Cell death  with  autophagy(死亡时有自噬发生,但不是直接原因)?对此,自噬研究领域“大牛”级专家Levine Beth在一篇nature的Review中表达了自己的观点。由于在形态学上2者无明显区别,但通过阻断自噬,观察细胞的结局可区分开来:Cell death  by  autophagy细胞存活,而Cell death  with  autophagy细胞死亡。8、自噬与肿瘤的关系:       与凋亡(在肿瘤细胞中一般都存在缺限)不同,自噬是被优先保留的。无论是肿瘤细胞还是正常细胞,保持一种基础、低水平的自噬活性是至关重要的。因为细胞中随时产生的“垃圾”(破损或衰老的细胞器、长寿命蛋白质、错误合成或折叠错误的蛋白质等等)都需要及时清除,而这主要靠自噬来完成,因此,  自噬具有维持细胞自稳的功能 ;如果将自噬相关基因突变失活,如神经元会发生大量聚集蛋白,并出现神经元退化。同时,自噬的产物,如氨基酸、脂肪酸等小分子物质又可为细胞提供一定的能量和合成底物,可以说,  自噬就是一个 “ 备用仓库 ” 。如Atg-5缺陷的小鼠在出生后喝上第一口奶之前就会饿死。更重要的是,自噬活性可在代谢应激(饥饿、生长因子缺乏、射线、化疗等)时大大增强,表现为胞浆中迅速涌现大量自噬体,这一现象被称为“自噬潮”(autophagic flux),广泛用于自噬形成的监测。自噬潮为细胞度过危机提供了紧急的营养和能量支持,有利于细胞的存活。 鉴于自噬的上述作用,自噬可为肿瘤细胞带来几大好处: 1 )肿瘤细胞本身就具有高代谢的特点,对营养和能量的需求比正常细胞更高,但肿瘤微环境往往不能如意,如肿瘤发生初始期到血管发生之前、肿瘤长大发生血管崩塌时、肿瘤细胞脱离原发灶游走时等都会出现营养不足或供应中断,而此时提高自噬活性可以有助于度过这一危机。 2)当化疗、放疗后,肿瘤细胞会产生大量的破损细胞器、损坏的蛋白质等有害成分,而此时提高自噬活性可及时清除这些有害物质,并提供应急的底物和能量为修复受损DNA赢得时间和条件。由于自噬减少了肿瘤细胞在代谢应激时发生坏死的机会,而对于肿瘤细胞群体而言,需要一部分细胞发生坏死,以引发适度的炎症(有利于血管的长入、吸引免疫细胞分泌生长因子等)。研究发现,很多类型的肿瘤在代谢应激时会“组成性”活化PI3K信号以抑制自噬(由于凋亡通路已受阻,抑制自噬会促进坏死),但具体机制尚不清楚。自噬与肿瘤的关系可能是双重的。①对不同的细胞,自噬的作用可能不同。②相同的细胞在不同的外部因素作用时,自噬的作用可能不同。③在肿瘤发生发展的不同阶段,自噬的作用可能不同。肿瘤生长的早期阶段自噬增强,是由于此时肿瘤的血管化作用不足,癌细胞的营养供给有限,需要通过自噬为自身提供营养。肿瘤进入发展阶段后基因变异积累,使包括 Beclin 1在内的众多抑癌基因失活,自噬活力降低。④对单个细胞和对整个肿瘤阻滞的作用可能不同。自噬功能不全的细胞易于坏死,但是坏死组织产生的细胞因子(包括部分生长因子)反而会促进肿瘤的生长。上述各种假设均有待证实。肿瘤为细胞分化障碍性的疾病已得到肯定,但自噬在肿瘤细胞的分化抑制过程中起着什么样的作用,自噬水平提高是抑制分化甚至导致去分化还是促进分化等问题尚未解决。 9、在研究自噬相关蛋白时,需对其进行定位。由于自噬体与溶酶体、线粒体、内质网、高尔基体关系密切,为了区别,常用到一些示踪蛋白在荧光显微镜下来共定位: Lamp-2:溶酶体膜蛋白,可用于监测自噬体与溶酶体融合。 LysoTrackerTM探针:有红或蓝色可选,显示所有酸性液泡。 pDsRed2-mito:载体,转染后表达一个融合蛋白(红色荧光蛋白+线粒体基质定位信号),可用来检测线粒体被自噬掉的程度(Mitophagy)。 MitoTracker探针:特异性显示活的线粒体,荧光在经过固定后还能保留。 Hsp60:定位与线粒体基质,细胞死亡时不会被释放。 Calreticulin(钙网织蛋白):内质网腔   Note:这些蛋白均为胞浆蛋白,爬片或胰酶消化的细胞在做免疫荧光前需先透膜(permeabilize),可采用处理 自噬与细胞死亡经常需一起考虑,下面介绍一些检测细胞死亡的方法: 1)△ψmdissipation(线粒体跨膜电位的消失):TMRM发红色荧光,DiOC6(3)发绿色荧光。 2)Phosphatidylserine Externalization(磷脂酰丝氨酸外翻):Annexin V-FITC(绿色)染细胞膜。 3)检测线粒体产生的ROS:无荧光的HE(hydroethidine,氢化乙啶)可被ROS氧化为EthBr(ethidium bromide,溴乙啡啶),发红色荧光。NAO(nonylacridine orange,烷化吖啶橙,可发荧光)能与非氧化的cardiolipin(心磷脂,可被ROS氧化)反应而失去荧光。 4)线粒体IMS蛋白的释放:AIF,细胞色素c,分别用荧光二抗染色。 5)Capase 3a 染色:用荧光二抗染色,胞浆弥散分布。 6)细胞膜完整性检测:DAPI(蓝色)、Hoechst 33342或PI(红色)染核。胞膜完整的细胞(活细胞和早中期凋亡细胞)排斥,可联用annexin V。 10、如何用实验区分Cell death by autophagy和Cell death with autophagy? 第一步:利用上述方法证实细胞死亡 第二步:证实细胞死亡前发生了自噬 第三步:在形态学上区别开“自噬样死亡”与凋亡 第四步:利用遗传学手段(反义RNA干扰Knockdown掉Atg基因或hVps34)或工具药抑制自噬 第五步:细胞存活则为Cell death by autophagy,反之,细胞死亡则为Cell death with autophagy。 自噬的抑制根据自噬形成的过程,自噬的抑制也分为不同的阶段,包括自噬的起始阶段,自噬泡和溶酶体融合阶段,以及溶酶体内的降解阶段。目前常用的一些抑制药物如下:     1)对自噬体形成的抑制:主要是PI3K通路的抑制剂(如3-MA, Wortmannin,LY294002等),这些药物均可干扰或阻断自噬体形成。3-甲基腺嘌呤(3-Methyladenine,3-MA)是磷脂酰肌醇3激酶的抑制剂,可特异性阻断Autophagy中自噬体的形成,被广泛用作Autophagy的抑制剂。另外,渥曼青霉素(Wortmannin)、LY294002 也可用作Autophagy的抑制剂。            2)对自噬体与溶酶体融合的抑制:对自噬体与溶酶体融合过程进行阻断也能起着抑制自噬的作用,这些药物有巴伐洛霉素A1、长春碱、诺考达唑等。巴伐洛霉素A1(Bafilomycin A1)是一种来源于灰色链霉菌的大环内酯类抗生素,分子式C35H58O9,是空泡型H+-ATP酶的特异性抑制剂,具有抗菌、抗真菌、抗肿瘤等作用。当突触小泡经历胞外分泌时,巴伐洛霉素A1可以避免小泡重新酸化。有研究表明,在已发生自噬的肿瘤细胞中加入巴伐洛霉素A1,可使蛋白降解被抑制,自噬体增多而自噬溶酶体数目减少,并且自噬体中的酸性磷酸酶的活性也明显降低,从而证明其阻断了自噬体与溶酶体的融合过程。这种阻断是可逆的,在去除了药物作用后,自噬体仍可以与溶酶体融合形成自噬溶酶体,继续自噬进程。     3)对溶酶体降解的抑制:自噬体与溶酶体融合后最终被溶酶体中的水解酶水解,它首先经过囊泡酸化,达到所需的PH值后经多种蛋白酶作用使囊内容物降解,降解产物在细胞内再循环利用。对溶酶体的降解进行抑制,使得被降解的囊泡内容物大量蓄积于溶酶体内,而不能释放出来进入细胞内再循环利用,这也同样起着抑制自噬的作用。因此,蛋白酶抑制剂,如E64d、Pepstatin A等,在抑制溶酶体降解的过程中发挥着自噬抑制剂的作用。E64d和Pepstatin A均属于蛋白酶抑制剂,二者以1:1的比例联用可以抑制自噬。有研究表明,在结肠癌细胞系中联用E64d及Pepstatin A,可明显抑制溶酶体的降解从而阻断自噬的进展,而自噬体的形成并没有受到明显影响。11 、自噬领域的大牛们:    1)YoshinoriOhsumi博士。日本科学家,克隆了第一个酵母自噬基因Atg1以及LC3,主要成果在酵母模型下自噬研究; 2 )Daniel J. Klionsky博士。美国科学家,主要成果在酵母模型的自噬研究。最早在《Science》上发表综述介绍自噬,2005年创办了第一本自噬杂志《Autophagy》;2007年举办了第一次自噬国际会议,为自噬的宣传做了大量工作。 3 )Noboru Mizushima博士。日本科学家,2001年主要报道了Atg5的功能,被认为是哺乳动物分子机制研究的第一环,以及参与克隆自噬标志物LC3,而且制备了一些ATG基因敲除老鼠以及LC3转基因老鼠; 4 )Beth Levine博士。美国科学家,首先克隆了第一个哺乳动物自噬基因Beclin 1; 5 )Guido Kroemer博士。法国科学家,是细胞凋亡和死亡领域中引用率第一的科学家。在细胞凋亡研究中作出了卓越贡献而且涉猎及其广泛。目前也从事自噬研究,例如p53,Bcl2家族与细胞自噬。 6 )Tamotsu Yoshimori博士。日本科学家,2000年克隆了目前广泛使用的自噬标志物LC3文章的通讯作者,而且也参与了2010年ATG5机制研究,是通讯作者之一。在方法学上也有关键贡献。目前主要研究ATG14和ATG16。值得注意的是,上述三位日本科学家合作紧密,克隆了目前大部分的ATG基因,经常共享文章通讯作者。 7 )Patrice Codogno博士。法国科学家,2000年首先证实了PI3K信号通路在自噬的作用,I型抗自噬,III型促自噬,是自噬信号通路的开拓者。 8 )Ana Maria Cuervo博士。美国科学家,是分子伴侣自噬的开拓者。 9 )David Rubinsztein博士。英国科学家,2004年首次报道了mTOR与自噬的关系,抑制mTOR促进自噬。目前利用rapamycin诱导自噬成为经典模型之一。2010年Nature的报道首次证实了自噬对mTOR的负反馈调节。 12 、自噬信号通路:    1 ) KEGG    2 ) Abcam    3 ) CST    4) Enzo 13、我在做自噬课题中的一些心得: 自噬小体的增多有两种可能:一是形成增加即自噬被诱导;另外一种是自噬体成熟受抑即自噬体不能和溶酶体结合。该怎么来判断呢?自噬体增多,也就是“自噬潮”出现的原因一是形成增多,二是与溶酶体融合受阻(如使用了氢化氯喹或氯喹,另外,溶酶体的酶抑制剂和质子泵抑制剂的使用亦有可能影响溶酶体与自噬体或异噬泡的融合),使自噬体不能降解而积聚,这种积聚造成的自噬体增多的效应要大于自噬体诱导剂效应的数倍之多。鉴于这样的原因,单纯的GFP-LC3荧光斑点增多不足以作为自噬激活的证据,可联用多个方法来判断:   1 )加用自噬体与溶酶体融合的抑制剂,如氯喹,观察自噬潮的变化。   2 )或加用LC3和溶酶体示踪物在荧光显微镜下观察共定位情况。   3 )或Knockdown掉LAMP-2基因(溶酶体膜蛋白)。   4 )检测胞浆长寿蛋白的降解。  WesternBlot 检测LC3时除了上述的原因外,还有几个需考虑到的地方: 1 )抗体的亲和力:有报道认为LC3抗体对II型LC3的亲和力较高 2 )结合于自噬体内层膜的LC3-II在与溶酶体结合后被降解。 3 )自噬过程很快,一个自噬体从产生到降解仅需2~3个小时或更短,其中自噬体形成阶段更迅速,数分钟即可完成,而溶酶体降解阶段耗时相对较长。因此,设置多个检测时间点(time frame)是非常重要的。

正常培养的细胞自噬活性很低,不适于观察,因此,必须对自噬进行人工干预和调节,经报道的工具药有:(一)自噬诱导剂1)Bredeldin A / Thapsigargin / Tunicamycin :模拟内质网应激2)Carbamazepine/ L-690,330/ Lithium Chloride(氯化锂):IMPase 抑制剂(即Inositol monophosphatase,肌醇单磷酸酶)3)Earle's平衡盐溶液:制造饥饿4)N-Acetyl-D-sphingosine(C2-ceramide):Class I PI3K Pathway抑制剂5)Rapamycin:mTOR抑制剂 (最常用)6)Xestospongin B/C:IP3R阻滞剂(二)自噬抑制剂1)3-Methyladenine(3-MA):(Class III PI3K) hVps34 抑制剂2)Bafilomycin A1:质子泵抑制剂3)Hydroxychloroquine(羟氯喹)除了选用上述工具药外,一般还需结合遗传学技术对自噬相关基因进行干预:包括反义RNA干扰技术(Knockdown)、突变株筛选、外源基因导入等。(三)自噬检测方法:细胞经诱导或抑制后,需对自噬过程进行观察和检测,常用的策略和技术有:1)Western Blot检测LC3的切割利用Western Blot检测LC3-II/I比值的变化以评价自噬形成。自噬形成时,胞浆型LC3会酶解掉一小段多肽形成LC3-I,LC3-I跟PE结合转变为(自噬体)膜型(即LC3-II),因此,LC3-II/I比值的大小可估计自噬水平的高低。2)在荧光显微镜下采用GFP-LC3单荧光体系/mRFP-GFP-LC3双荧光体系等融合蛋白来示踪自噬形成:GFP-LC3 单荧光自噬指示体系:利用LC3在自噬形成过程中发生聚集的原理,开发出GFP-LC3指示技术:无自噬时,GFP-LC3融合蛋白弥散在胞浆中;自噬形成时,GFP-LC3融合蛋白转位至自噬体膜,在荧光显微镜下形成多个明亮的绿色荧光斑点,一个斑点相当于一个自噬体,可以通过计数来评价自噬活性的高低。但是绿色斑点增多并不一定代表自噬活性增强,也有可能是自噬溶酶体降解途径受阻,可以通过western blot 检测游离的GFP、p62来验证。另一种方法是利用mRFP-GFP-LC3 。mRFP-GFP-LC3 双荧光自噬指示体系:由于分子生物学的发展,现在已经诞生了mRFP-GFP-LC3 双荧光自噬指示体系,用于标记及追踪LC3以及自噬流的变化。其中GFP是酸敏感型GFP蛋白,而mRFP是稳定的荧光表达基团,不受外界影响。由于自噬小体进入第二阶段后,与溶酶体进行融合,形成自噬溶酶体。自噬溶酶体由于溶酶体内部的酸性环境,可以导致PH下降,GFP淬灭,因此,GFP的减弱可指示自噬溶酶体形成的顺利程度,GFP越少,则从自噬小体到自噬溶酶体阶段流通得越顺畅。反之,自噬小体和溶酶体融合被抑制,自噬溶酶体进程受阻。mRFP是一直稳定表达的,因而可以通过GFP与mRFP的亮点比例来评价自噬流进程。mRFP-GFP-LC3 双荧光自噬指示体系的出现,把自噬研究带入了一个新的阶段,自噬不再只是指标,而是一种机制,自噬流的顺畅与否,对于细胞生理功能的稳定非常关键。3)透射电镜下观察自噬体的形成:自噬经历了:吞噬泡(phagophore)--自噬小体(autophagosome)--自噬溶酶体(autolysosome)透射电镜下吞噬泡(phagophore)的特征为:新月状或杯状,双层或多层膜,有包绕胞浆成分的趋势。自噬小体(autophagosome)的特征为:双层或多层膜的液泡状结构,内含胞浆成分,如线粒体、内质网、核糖体等。自噬溶酶体(autolysosome)的特征为:单层膜,胞浆成分已降解。

干细胞技术的研究进展论文

你看看这是不是你需要的类型论文,不过我还是建议只是参考,自己写最好了。 干细胞作为一种既有自我更新能力、又有多分化潜能的细胞,具有非常重要的理论研究意义和临床应用价值。近几年来,干细胞的研究取得了重大突破, 1999和2000年,世界最权威的美国《Science》杂志连续2年将干细胞和人类基因组计划列为当年的10大科学突破之首。美国《时代》周刊认为干细胞和人类基因组计划将同时成为新世纪最具有发展和应用前景的领域。为抢占这一科技制高点,世界各国纷纷投入大量的人力、物力和财力加紧研究开发,并已取得应用性成果:2005年10月,美国食品和药物管理局(FDA)也已批准将神经干细胞移植入人体大脑;2005年11月,美国心脏协会报道了干细胞治疗心肌梗塞的204例临床病例的研究报告,其结论是干细胞对心脏功能的改善效果,是没有任何现有临床药物能达到的;日本在2000年启动的“千年世纪工程”中,将干细胞工程作为四大重点之一,于第一年度就投入了108亿日元的巨额资金;瑞典、巴西也于2005年通过立法继续支持干细胞研究,并于2005年进行一项多中心1200病例的用干细胞治疗心脏病的临床应用研究。干细胞技术作为生物技术领域最具有发展前景和后劲的前沿技术,将可能导致一场医学和生物学革命,给无数疑难病症治疗带来了新的希望。 按照科学家描绘的美妙蓝图,通过干细胞技术的有效应用,今后更换人体器官就像给汽车换零件一样简单,血细胞、脑细胞、骨骼和内脏都将可以更换,即使患上绝症也能绝处逢生。其实,干细胞技术不仅在疾病治疗方面有着极其诱人的前景,而且其对动物克隆、植物转基因生产、发育生物学、新药物的开发与药效、毒性评估等领域也将产生极其重要的影响。干细胞技术是世纪之交最为引人注目的科技成果,被认为是人类生命科学研究的重要里程碑,预示着生命科学研究将进入快速发展时期。 参考资料:

SCI论文[1] Zhao H, Wei R, Wang L, Tian Q, Tao M, Ke J, Liu Y, Hou W, Zhang L, Yang J, Hong T(通讯作者). Activation of glucagon-like peptide-1 receptor inhibits growth and promotes apoptosis of human pancreatic cancer cells in a cAMP-dependent manner. Am J Physiol Endocrinol Metab. 2014, 306: E1431-1441.[2] Wang L, Liu Y, Yang J, Zhao H, Ke J, Tian Q, Zhang L, Wen J, Wei R, Hong T(共同通讯作者). Liraglutide upregulates PC1-mediated proinsulin processing in pancreatic β cells via a PKA-dependent pathway. Endocrinology. 2014, doi: .[3] Liu Y, Wei R, Hong T(通讯作者). Potential roles and mechanisms of glucagon-like peptide-1 in non-alcoholic fatty liver disease. World J Gastroenterol. 2014, 20(27): 9090-9097.[4] Zhao H, Wang L, Wei R, Xiu D, Tao M, Ke J, Liu Y, Yang J, Hong T(通讯作者). Activation of glucagon-like peptide-1 receptor inhibits tumourigenicity and metastasis of human pancreatic cancer cells via PI3K/Akt pathway. Diabetes Obes Metab. 2014. doi: [5] Liu Y, Hong T (通讯作者). Combination therapy of dipeptidyl peptidase-4 inhibitors and metformin in type 2 diabetes: Rationale and evidence. Diabetes Obes Metab2014,16:111-117.[6] Chen Y, Feng R, Wang H, Wei R, Yang J, Wang L, Wang H, Zhang L, Hong T (共同通讯作者), Wen J. High-fat diet induces early-onset diabetes in heterozygous Pax6 mutant mice. Diabetes Metab Res Rev. 2014. doi: .[7] Gao M, Yang J, Wei R, Liu G, Zhang L, Wang H, Wang G, Gao H, Chen G, Hong T (通讯作者). Ghrelin induces cardiac lineage differentiation of human embryonic stem cells through ERK1/2 pathway. Int J Cardiol. 2013, 167(6):2724-2733.[8] Wei R, Yang J, Hou W, Liu G, Gao M, Zhang L, Wang H, Mao G, Gao H, Chen G, Hong T (通讯作者). Comparation of insulin-producing cells derived from human embryonic stem cells based on the definitve endoderm and the nestin positive progenitors. Plos One 2013, 8(8):e72513.[9] Wei R, Yang J, Liu GQ, Gao MJ, Hou WF, Zhang L, Gao HW, Liu Y, Chen GA, Hong TP (通讯作者). Dynamic expression of microRNAs during the differentiation of human embryonic stem cells into insulin-producing cells. Gene 2013, 518(2):246-255.[10] Xiao WH, Wang YR, Hou WF, Xie C, Wang HN, Hong T, Gao H. The effects of pioglitazone on biochemical markers of bone turnover in the patients with type 2 diabetes. Int J Endocrinol 2013, 2013:290734.[11] Wang G, He L, Liu J, Yu J, Feng X, Li F, Hao Y, Mao J, Hong T, Chen AF, Wang X. Coronary flow velocity reserve is improved by PPAR-α agonist fenofibrate in patients with hypertriglyceridemia. Cardiovasc Ther 2013, 31(3):161-167.[12] Gao M, Yang J, Liu G, Wei R, Zhang L, Wang H, Wang G, Gao H, Chen G, Hong T (通讯作者). Ghrelin promotes the differentiation of human embryonic stem cells in infarcted cardiac microenvironment. Peptides 2012, 34(2):373-379.[13] He QH, Zhang XY, Lu AL, Lan F, Hong TP (通讯作者), Shen L. Combination of PCR fragment sequencing and genotyping for the diagnosis of Kennedy’s disease. Chin J Biochem Mol Biol 2012, 28(3):283-288.[14] Wang HL, Fan DS, Hong TP. Is the C677T polymorphism in methylenetetrahydrofolate reductase gene or plasma homocysteine a risk factor for diabetic peripheral neuropathy in Chinese individuals? Neural Regen Res 2012, 7(30):2384-2391.[15] Zhu D,Chen L,Hong T. Position Statement of the Chinese Diabetes Society regarding stem cell therapy for diabetes. J Diabetes2012, 4(1):18-21.[16] Yang J, Liu GQ, Wei R, Hou WF, Gao MJ, Zhu MX, Wang HN, Chen GA, Hong TP (通讯作者). Ghrelin promotes the differentiation of human embryonic stem cells into cardiomyocytes. Acta Pharmacol Sin 2011, 32(10):1239-1245.[17] Liu J, Lu G, Li F, Wang H, He L, Hao Y, Chen AF, An H, Wang X, Hong T (共同通讯作者), Wang G. PPAR α agonist fenofibrate upregulates tetrahydrobiopterin level through increasing the expression of guanosine triphosphate cyclohydrolase-i in human umbilical vein endothelial cells. PPAR Res 2011, 2011:523520.[18] Wang G, He L, Hong T. Reply to letter to the editor: coronary flow velocity reserve was impaired in chronic hyperhomocysteinemic patients: why?. Am J Physiol Endocrinol Metab 2011, 300(6):E1177- E1178.[19] Liu Z, Wang H, Xiao W, Wang C, Liu G, Hong T (通讯作者). Thyrocyte interleukin-18 expression is up-regulated by interferon-g and may contribute to thyroid destruction in Hashimoto's thyroiditis. Int J Exp Pathol 2010, 91(5):420-425[20] He L, Zeng H, Li F, Feng J, Liu S, Liu J, Yu J, Mao J, Hong T, Chen AF, Wang X, Wang G. Homocysteine impairs coronary artery endothelial function by inhibiting tetrahydrobiopterin in patients with hyperhomocysteinemia. Am J Physiol Endocrinol Metab 2010, 299(6):E1061-1065.[21] Wen JH, Chen YY, Song SJ, Ding J, Gao Y, Hu QK, Feng RP, Liu YZ, Ren GC, Zhang CY, Hong TP (共同通讯作者), Gao X, Li LS. Paired box 6 (PAX6) regulates glucose metabolism via proinsulin processing mediated by prohormone convertase 1/3 (PC1/3). Diabetologia 2009, 52(3):504-513.[22] Gao H, Xiao W, Wang C, Zhang J, Yang Y, Yang J, Yang W, Hong T (通讯作者). The metabolic effects of once daily extended-release metformin in patients with type 2 diabetes: a multicentre study. Int J Clin Pract 2008, 62(5):695-700.[23] Wang HN, Wang YR, Liu GQ, Liu Z, Wu PX, Wei XL, Hong TP (通讯作者). Inhibition of hepatic interleukin-18 production by rosiglitazone in a rat model of nonalcoholic fatty liver disease. World J Gastroenterol 2008, 14(47):7240-7246.[24] Gao HW, Xie C, Wang HN, Lin YJ, Hong TP (通讯作者). Beneficial metabolic effects of nateglinide versus acarbose in patients with newly-diagnosed type 2 diabetes. Acta Pharmacol Sin 2007, 28(4):534-539.[25] Gao H, Wang C, Wang H, Yang X, Li J, Hong T (通讯作者). Lipomatosis of the penis and perineum in a 6-year-old boy. Eur J Pediatr 2005, 164(2):115-116.[26] Zhang L, Hong TP (通讯作者), Hu J, Liu YN, Wu YH, Li LS. Nestin-positive progenitor cells isolated from human fetal pancreas have phenotypic markers identical to mesenchymal stem cells. World J Gastroenterol 2005, 11(19):2906-2911.[27] Zhang L, Hu J, Hong TP (通讯作者), Liu YN, Wu YH, Li LS. Monoclonal side population progenitors isolated from human fetal pancreas. Biochem Biophys Res Commun 2005, 333(2):603-608.[28] Hong TP, Andersen NA, Nielsen K, Karlsen AE, Fantuzzi G, Eizirik DL, Dinarello CA, Mandrup-Poulsen T. Interleukin-18 mRNA, but not interleukin-18 receptor mRNA, is constitutively expressed in islet beta-cells and up-regulated by IFN-gamma. Eur Cytokine Netw 2000, 11(2):193-205.发表文章200余篇近5年来的主要论文:[1] 洪天配. 关注糖尿病治疗新方法的转化医学研究进展. 中国医学前沿杂志(电子版) , 2014, 6(1): 1-3.[2] 洪天配. 转化医学在地特胰岛素治疗2型糖尿病中的体现. 中国糖尿病杂志. 2014, 22(3):283-285.[3] 侯文芳, 洪天配 (通讯作者). 减肥手术治疗和预防 2 型糖尿病的研究进展. 中国医学前沿杂志(电子版) , 2014, 6(1): 14-18.[4] 王琛, 高洪伟, 洪天配 (通讯作者). 人工胰腺的研究新进展. 中国医学前沿杂志(电子版) , 2014, 6(1): 4-8.[5] 肖文华, 洪天配 (通讯作者). 基于胰高糖素样肽1药物的心血管安全性. 中国医学前沿杂志(电子版) , 2014, 6(1):19-23.[6] 谢超, 洪天配 (通讯作者). 基于胰高糖素样肽1药物的胰腺安全性. 中国医学前沿杂志(电子版) , 2014, 6(1):24-28.[7] 柯静, 魏蕊, 洪天配 (通讯作者), 刘烨, 杨进, 田勍, 张琳, 王广. 二甲双胍联合利拉鲁肽对棕榈酸诱导的内皮细胞氧化损伤具有协同保护作用. 中华糖尿病杂志. 2014, 6(5):312-316.[8] 李菊芬, 柯静, 杨进, 魏蕊, 洪天配 (通讯作者). 利拉鲁肽改善波动性高糖诱导的内皮细胞氧化损伤的研究. 中国糖尿病杂志. 2014, 22(5):455-458.[9] 魏蕊, 洪天配 (通讯作者). 干细胞技术在内分泌代谢病中的研究进展. 中华内分泌代谢杂志. 2014, 30(3):250-253.[10] 杨进, 魏蕊, 洪天配 (通讯作者). 2型糖尿病发病机制的新视角:胰岛β细胞去分化. 中华糖尿病杂志. 已接受.[11] 魏蕊, 杨进, 洪天配 (通讯作者), 高美娟, 侯文芳, 刘国强, 张琳, 王海宁, 高洪伟. Ghrelin以非经典受体依赖性方式促进人胚胎干细胞定向分化为心肌细胞. 中国糖尿病杂志. 已接收.[12] 刘国强, 魏蕊, 洪天配 (通讯作者). 干细胞移植治疗糖尿病的研究进展. 中国医学前沿杂志. 2014, 6(1): 9-13.[13] 高洪伟, 洪天配 (通讯作者). 基于胰高血糖素样肽 -1 药物在 2 型糖尿病治疗中的地位. 临床药物治疗杂志. 2014, 12(1): 4-17.[14] 马世凤, 洪天配 (通讯作者), 魏蕊, 刘烨, 杨进, 张琳, 王广. 艾塞那肽对同型半胱氨酸诱导的人脐静脉内皮细胞氧化损伤的保护作用及其潜在机制. 中国糖尿病杂志 2013, 21(4):137-141.[15] 安慧杰, 洪天配 (通讯作者), 王广, 魏蕊, 刘烨, 杨进, 张琳. 二甲双胍对波动性高糖诱导的内皮细胞功能障碍的逆转作用及其机制. 中华糖尿病杂志 2013, 5(4):231-234.[16] 魏蕊, 洪天配 (通讯作者). 血管内皮细胞对胰岛发育和功能的影响. 世界华人消化杂志2013, 21(25): 2493-2499.[17] 洪天配, 魏蕊. 关注肥胖与糖尿病相关性及其潜在机制的研究进展.中华医学杂志 2013, 93(36):2849-2850.[18] 安慧杰, 魏蕊, 洪天配 (通讯作者). 二甲双胍对2型糖尿病患者的心血管保护作用:证据及其潜在机制.中华内分泌代谢杂志 2013, 29(9):[19] 刘慧琳, 田勍, 洪天配 (通讯作者), 刘桂花, 潘欢, 王海宁, 高洪伟. 脓毒症患者中血清程序化细胞死亡因子5水平的変化. 北京大学学报(医学版)2013,45(2): 238-241.[20] 侯文芳, 田勍, 肖文华, 洪天配 (通讯作者). 表现为中枢性尿崩症和颈椎病变的朗格汉斯细胞组织细胞增生症的临诊应对.中华内分泌代谢杂志2013, 29(6): 531-533[21] 侯文芳, 肖文华, 洪天配 (通讯作者). 噻唑烷二酮类药物对2型糖尿病患者骨代谢的影响及其机制. 中国糖尿病杂志 2013, 22(7):666-668.[22] 刘烨, 方纬, 洪天配, 朱朝晖, 王海宁. 核素分子影像技术在胰岛β细胞显像中的研究进展. 中华核医学与分子影像杂志 2013, 33(1):74-78.[23] 刘烨, 洪天配 (通讯作者). 二肽基肽酶-4抑制剂与二甲双胍联合治疗的有效性与安全性. 中华糖尿病杂志 2013, 5(7):437-440[24] 洪天配. DPP-4抑制剂治疗2型糖尿病患者所具有的综合益处. 药品评价 2013, 10(11):40-43[25] 田勍, 洪天配 (通讯作者). 胰岛素分泌功能缺陷的病理生理学与治疗对策. 中国糖尿病杂志 2012, 20(11):872-874.[26] 田勍, 洪天配 (通讯作者). 基础胰岛素与胰高血糖素样肽-1受体激动剂联合治疗糖尿病的合理性. 中华糖尿病杂志 2012, 4(8):500-502.[27] 田勍, 高洪伟, 洪天配. 从临床视角谈糖化血红蛋白检测的重要性及其结果判读. 中华检验医学杂志 2012, 35(6):505-508.[28] 马世凤, 王琛, 洪天配 (通讯作者). 胰高血糖素样肽-1及其类似物对血管内皮功能的有益效应. 中华糖尿病杂志 2012, 4(9):564-568.[29] 刘烨, 洪天配 (通讯作者). DPP-4抑制剂与二甲双胍联合治疗的合理性及其研究证据. 中华内分泌代谢杂志 2012, 28(12):1033-1035.[30] 侯文芳, 王海宁, 洪天配(通讯作者). 白介素18与胰岛素抵抗. 中国糖尿病杂志 2012, 20(2):158-160.[31] 洪天配. 内分泌代谢病的转化医学研究. 中华内分泌代谢杂志 2012, 28(3):171-174.[32] 洪天配. 新型口服降糖药DPP-4抑制剂: 从胰岛α细胞看2型糖尿病治疗的新进展. 中国糖尿病杂志 2012, 20(7):558-560.[33] 赵荷珺, 魏蕊, 洪天配 (通讯作者). microRNA与胰腺发育以及干细胞分化的研究进展. 世界华人消化杂志 2012. 20(21): 1913-1918.[34] 王亮, 赵荷琚, 魏蕊, 洪天配 (通讯作者). 中华医学会首届内分泌代谢转化医学论坛纪要. 中华内分泌代谢杂志 2012. 28(3):252-254.[35] 魏蕊, 洪天配 (通讯作者). 干细胞技术治疗糖尿病的研究进展与应用前景. 世界华人消化杂志. 2011. 19(5): 441-450[36] 王晓霞, 马征, 洪天配, 徐援, 王琛, 孙小萌, 高洪伟, 王海宁. A1cNOW+TM糖化血红蛋白测试卡性能的评价. 中国糖尿病杂志 2011, 19(11):821-824.[37] 王琛, 王广, 何立芸, 郝燕婷, 洪天配 (通讯作者). 糖代谢异常对患者冠状动脉内皮功能影响的研究. 山东医药 2011, 51(36):7-8.[38] 田勍, 王海宁, 林稚雅, 洪天配 (通讯作者). Kallmann综合征的分子遗传学和临床研究进展. 中华医学杂志 2011, 91(30):2153-2155.[39] 刘烨, 张琳, 洪天配 (通讯作者). 2011年糖尿病学领域的研究进展和热点回顾. 中国医学前沿杂志 2011, 03(6):27-31.[40] 洪天配, 田勍. 基础胰岛素的药理学和药代动力学特点. 药品评价 2011, 08(15):18-21.[41] 洪天配. 德谷门冬双胰岛素制剂——积极应对胰岛素治疗障碍. 药品评价 2011, 08(21):60-63.[42] 洪天配. 人胰升血糖素样肽1类似物利拉鲁肽:对中国人2型糖尿病治疗的优势. 中国糖尿病杂志 2011, 19(3):238-240.[43] 魏蕊,刘国强,洪天配,杨进,侯文芳,高美娟,娄晋宁,陈贵安. 微小RNA在人胚胎干细胞向胰岛样细胞分化过程中表达的变化. 中国糖尿病杂志 2010, 18(9):654-659.[44] 谢超,侯文芳,洪天配 (通讯作者),肖文华,王艳荣,王海宁,高洪伟. 吡格列酮对2型糖尿病患者骨转换生化指标的影响. 中国糖尿病杂志 2010, 18(3):195-197.[45] 刘金波,王广,洪天配. 非诺贝特促进人内皮细胞内皮一氧化氮合酶复偶联的作用研究. 山东医药 2010, 50(52):1-3.[46] 高妍,郭晓蕙,段文若,罗涌,胡茂清,孙丽荣,王立,卜瑞芳,洪天配,徐焱成,张木勋,刘俊江,包玉倩. 双时相门冬胰岛素30联合二甲双胍治疗基础胰岛素控制不佳的2型糖尿病患者:疗效及安全性评价. 中华内分泌代谢杂志 2010, 26(12):1019-1022.[47] 高美娟,洪天配 (通讯作者),李凌松. 干细胞相关治疗技术的临床应用前景. 中国糖尿病杂志 2010, 18:641-644. (述评)[48] 魏蕊,洪天配 (通讯作者). 自体骨髓干细胞移植治疗糖尿病的研究现状. 中国糖尿病杂志 2010, 18(9):710-713.[49] 魏蕊,洪天配 (通讯作者). 干细胞治疗糖尿病的基础研究进展. 中华糖尿病杂志 2010, 2(6):474-478.[50] 林玉晶,王琛,洪天配. 胰升糖素样肽1及其类似物在胰岛移植中的应用前景. 中国糖尿病杂志 2010, 18(10):728-731. (述评)[51] 侯文芳,刘国强,洪天配 (通讯作者). 肠促胰岛素在减肥手术治疗肥胖2型糖尿病患者中的作用. 世界华人消化杂志 2010, 18(4):324-328. (述评)[52] 田勍,刘国强,洪天配 (通讯作者). 亚临床甲状腺功能异常与心血管疾病的关系. 国际内分泌代谢杂志 2010, 30(Suppl):15-18.[53] 田勍,洪天配 (通讯作者). 重症监护病房患者的血糖控制目标:越严格越好吗? 中华内分泌代谢杂志 2010, 26(6):440-443.[54] 朱大龙,陈丽,洪天配 (主要起草人). 中华医学会糖尿病学分会关于干细胞移植治疗糖尿病的立场声明. 中华糖尿病杂志 2010, 2(6):401-403.[55] 洪天配. 专家专题报告2:干细胞治疗糖尿病的基础研究进展. 中华内分泌代谢杂志 2010, 26(10):10a-2.[56] 洪天配,郭立新,高洪伟. 中国医师协会内分泌代谢科医师分会换届大会暨2010年会会议纪要. 中国糖尿病杂志 2010, 18(10):附录1-3.[57] 洪天配,田勍,杜颖. 2010糖尿病治疗领域的研究进展和热点回顾. 中国医学前沿杂志 2010, 2(4):29-33.[58] 陈园园,宋书娟,洪天配 (通讯作者),刘英芝,任国成,文锦华,李凌松. PAX6基因突变的无虹膜症患者中糖代谢异常的病理生理学特征. 中国糖尿病杂志 2009, 17(5):327-330.[59] 陈园园,洪天配 (通讯作者),文锦华,丁钧,高翔,李凌松. Pax6突变杂合子小鼠糖代谢异常的分子机制. 中国糖尿病杂志 2009, 17(5):335-339.[60] 张琳,杨进,洪天配 (通讯作者),刘国强,王琛,王海宁. Ghrelin在离体大鼠胰岛中抑制胰岛素分泌和上调表达. 中国糖尿病杂志 2009, 17(5):331-334.[61] 谢超,王海宁,林玉晶,高洪伟,洪天配 (通讯作者). 那格列奈与阿卡波糖对2型糖尿病患者餐后血清游离脂肪酸水平的影响. 中国糖尿病杂志 2009, 17(5):323-326.[62] 王海宁,陈丽,洪天配 (通讯作者). Medisafe快速血糖仪性能的评价. 中国糖尿病杂志 2009, 17(3):231-234.[63] 王海宁,方纬,刘辰,苏保满,高洪伟,洪天配,何作祥. 2型糖尿病患者氟-18标记脱氧葡萄糖心肌代谢显像图像质量与相关代谢因素的分析. 中华老年医学杂志 2009, 28(1):11-14.[64] 杨进,刘国强,洪天配 (通讯作者). 治疗性克隆与体细胞重编程:殊途同归. 生理科学进展 2009, 40(2):101-105.[65] 陈园园,洪天配 (通讯作者). 转录因子Pax6在胰岛发育和葡萄糖代谢调节中的作用. 国际内分泌代谢杂志 2009, 29(3):157-160.[66] 高洪伟,洪天配 (通讯作者). 血糖控制目标是否越接近正常越好. 中国实用内科杂志 2009, 29(3):205-208.[67] 洪天配. 关注胰岛素原/总胰岛素比值在胰岛β细胞功能评价中的意义. 中国糖尿病杂志 2009, 17(5):321-322. (述评)[68] 张琳,洪天配 (通讯作者). 内向整流钾通道与胰岛素分泌功能. 中国糖尿病杂志 2009, 17(5):344-347.[69] 魏蕊,刘国强,洪天配. 胰岛细胞再生研究的临床应用前景. 医学与哲学 2009, 30(12):13-16. (临床决策论坛)[70] 洪天配. 2型糖尿病患者胰岛β细胞凋亡及其干预对策. 中华糖尿病杂志 2009, 1(4):310-313.[71] 洪天配,包玉倩. 中华医学会糖尿病学分会青年委员会首届青年医师论坛会议纪要. 中华糖尿病杂志 2009, 1(6):470-471.[72] 田勍,杜颖,洪天配 (通讯作者). 2009年糖尿病领域研究进展和热点问题回顾. 中国医学前沿杂志 2009, 1(2):13-17.

1995年以来我国造血干细胞工程与相关的生物学领域的研究发展迅速。有关造血干/祖细胞基因表达的研究,上海国家人类基因组研究中心陈竺、陈赛娟等为正常和急性白血病人骨髓造血干祖细胞cDNA文库的基因表达建立了一套先进的工作体系。他们在许多白血病细胞系的干/祖细胞中发现了300个新的相关基因。中山大学医学院李树浓、黄绍良等从人的桑葚期胚胎干细胞成功地诱导出造血细胞等。北京输血研究所裴雪涛等从成人和胎儿的骨髓分离出成年源干细胞,又进一步诱导分化为骨、软骨、脂肪和神经原细胞等。他们成功地构建了胎儿和成人间充质干细胞cDNA扣除文库,获得了胎儿和成人间充质干细胞的差异表达基因及在胎儿特异表达基因。中国医学科学院天津血液学研究所、国家血液学重点实验室赵春华等证实从胚胎胰腺、骨髓和肝脏中都可以分离出人间充质干细胞,又证明G-CSF可以使输注的间充质干细胞在体内促造血重建。北京基础医学研究所毛宁等的实验不支持间充质干细胞可以“横向分化“。最近他们发现小鼠胚胎干细胞的体外分化重现了胚胎早期造血发生的生物学程序以及Smad5基因调控在胚胎造血发生中的必要性和多样性,又表明其上游配体TGF-beta家族分子在胚胎发生中的作用和特点。本文针对干细胞可塑性研究作了评论。国际上曾风靡一时的“横向分化“有关的实验都没有用完全纯化的胚层干细胞或组织干细胞来证实。然而,完全纯的胚层或组织定向的干细胞克隆是无法制备的。成年或胎儿全身各类组织中混有一些定向某胚层的或某组织的干细胞,甚至还混有桑葚胚干细胞。它们是胚胎发育过程的每个阶段中停止参与胚胎发育而残留下来的。它们在体内处于静止期,寿命长,长期存留在成人的各种组织中。各胚层和组织干细胞混杂在一起,它们都没有特异的形态、表型和功能,无法分离纯化,甚至和成人组织细胞也很难分开。它们在体外实验适当的条件诱导下可分化为各种组织细胞。在那些想证明组织干细胞“横向分化“的实验中,都无法排除上述可能。本专论指出,只有桑葚胚干细胞是全能的胚胎干细胞,具有向各个胚层分化的潜能,即具有全能分化的可塑 性。当它发育成为各个胚层的或各种组织的干细胞时,它的分化潜能只限于本胚层或本组织,不能向其它胚层其它组织分化。本专论又指出间充质干细胞的制备过程很长,经过许多次的换代。等到出现许多分化抗原标志时,已经是后代的各种不同的成熟间充质细胞了。当然,它们的存在可证实最初培养的是间充质干细胞。大量扩增后所获得的集落主要是各种成熟的间充质细胞,其中也包含一些未来参与分化的间充质干细胞和中胚层干细胞。间充质干细胞和造血干细胞都是来自中胚层。然而它们都是培养中的贴壁幼儿,无法区分也无法分离它们。因此在实验中无法排除所制备的间充质干细胞样品中,绝对没有中胚层或其它胚层干细胞的存在。至今,完全纯化的间充质干细胞是不可能制备的。所以,很可能从间充质干细胞体外诱导出各类不同的,甚至内、外胚层的组织细胞,切不可轻率地推率为“横向分化“。临床支持造血干/祖细胞移植的,主要是成熟而有调控功能的各种间充质细胞。总之,“横向分化“等的推论缺乏实验证据,在生物自然界和人类疾病史中都找不到佐证。想要推翻经无数科学家实践充分证明了的细胞遗传学的最基本原理,必须在生物自然界找到非常充足的科学证据唐佩弦 军事医学科学院基础医学研究所 我国造血干细胞基础研究的新进展兼论干细胞可塑性

相关百科

热门百科

首页
发表服务