首页

> 学术论文知识库

首页 学术论文知识库 问题

ssd目标检测论文翻译

发布时间:

ssd目标检测论文翻译

作为计算机视觉三大任务(图像分类、目标检测、图像分割)之一,目标检测任务在于从图像中定位并分类感兴趣的物体。传统视觉方案涉及霍夫变换、滑窗、特征提取、边界检测、模板匹配、哈尔特征、DPM、BoW、传统机器学习(如随机森林、AdaBoost)等技巧或方法。在卷积神经网络的加持下,目标检测任务在近些年里有了长足的发展。其应用十分广泛,比如在自动驾驶领域,目标检测用于无人车检测其他车辆、行人或者交通标志牌等物体。

目标检测的常用框架可以分为两类,一类是 two-stage/two-shot 的方法,其特点是将兴趣区域检测和分类分开进行,比较有代表性的是R-CNN,Fast R-CNN,Faster R-CNN;另一类是 one-stage/one-shot 的方法,用一个网络同时进行兴趣区域检测和分类,以YOLO(v1,v2,v3)和SSD为代表。

Two-stage的方式面世比较早,由于需要将兴趣区域检测和分类分开进行,虽然精度比较高,但实时性比较差,不适合自动驾驶无人车辆感知等应用场景。因而此次我们主要介绍一下SSD和YOLO系列框架。

SSD与2016年由W. Liu et al.在 SSD: Single Shot MultiBox Detector 一文中提出。虽然比同年提出的YOLO(v1)稍晚,但是运行速度更快,同时更加精确。

SSD的框架在一个基础CNN网络(作者使用VGG-16,但是也可以换成其他网络)之上,添加了一些额外的结构,从而使网络具有以下特性:

用多尺度特征图进行检测 作者在VGG-16后面添加了一些特征层,这些层的尺寸逐渐减小,允许我们在不同的尺度下进行预测。越是深层小的特征图,用来预测越大的物体。

用卷积网络进行预测 不同于YOLO的全连接层,对每个用于预测的 通道特征图,SSD的分类器全都使用了 卷积进行预测,其中 是每个单元放置的先验框的数量, 是预测的类别数。

设置先验框 对于每一个特征图上的单元格,我们都放置一系列先验框。随后对每一个特征图上的单元格对应的每一个先验框,我们预测先验框的 维偏移量和每一类的置信度。例如,对于一个 的特征图,若每一个特征图对应 个先验框,同时需要预测的类别有 类,那输出的大小为 。(具体体现在训练过程中) 其中,若用 表示先验框的中心位置和宽高, 表示预测框的中心位置和宽高,则实际预测的 维偏移量 是 分别是:

下图是SSD的一个框架,首先是一个VGG-16卷积前5层,随后级联了一系列卷积层,其中有6层分别通过了 卷积(或者最后一层的平均池化)用于预测,得到了一个 的输出,随后通过极大值抑制(NMS)获得最终的结果。

图中网络用于检测的特征图有 个,大小依次为 , , , , , ;这些特征图每个单元所对应的预置先验框分别有 , , , , , 个,所以网络共预测了 个边界框,(进行极大值抑制前)输出的维度为 。

未完待续

参考: chenxp2311的CSDN博客:论文阅读:SSD: Single Shot MultiBox Detector 小小将的知乎专栏:目标检测|SSD原理与实现 littleYii的CSDN博客:目标检测论文阅读:YOLOv1-YOLOv3(一)

作者的其他相关文章: 图像分割:全卷积神经网络(FCN)详解 PointNet:基于深度学习的3D点云分类和分割模型 详解 基于视觉的机器人室内定位

论文链接: tensorflow源码链接: SSD是YOLO之后又一个引人注目的目标检测结构,它沿用了YOLO中直接回归 bbox和分类概率的方法,同时又参考了Faster R-CNN,大量使用anchor来提升识别准确度。通过把这两种结构相结合,SSD保持了很高的识别速度,还能把mAP提升到较高的水平。 原作者给了两种SSD结构,SSD 300和SSD 512,用于不同输入尺寸的图像识别。本文中以SSD 300为例,图1上半部分就是SSD 300,下半部分是YOLO,可以对比来看。SSD 300中输入图像的大小是300x300,特征提取部分使用了VGG16的卷积层,并将VGG16的两个全连接层转换成了普通的卷积层(图中conv6和conv7),之后又接了多个卷积(conv8_1,conv8_2,conv9_1,conv9_2,conv10_1,conv10_2),最后用一个Global Average Pool来变成1x1的输出(conv11_2)。a、重新启用了Faster R-CNN中anchor的结构 在SSD中如果有多个ground truth,每个anchor(原文中称作default box,取名不同而已)会选择对应到IOU最大的那个ground truth。一个anchor只会对应一个ground truth,但一个ground truth都可以对应到大量anchor,这样无论两个ground truth靠的有多近,都不会出现YOLO中bbox冲突的情况。 b、同时使用多个层级上的anchor来进行回归 作者认为仅仅靠同一层上的多个anchor来回归,还远远不够。因为有很大可能这层上所有anchor的IOU都比较小,就是说所有anchor离ground truth都比较远,用这种anchor来训练误差会很大。例如图2中,左边较低的层级因为feature map尺寸比较大,anchor覆盖的范围就比较小,远小于ground truth的尺寸,所以这层上所有anchor对应的IOU都比较小;右边较高的层级因为feature map尺寸比较小,anchor覆盖的范围就比较大,远超过ground truth的尺寸,所以IOU也同样比较小;只有图2中间的anchor才有较大的IOU。通过同时对多个层级上的anchor计算IOU,就能找到与ground truth的尺寸、位置最接近(即IOU最大)的一批anchor,在训练时也就能达到最好的准确度。SSD的优点在前面章节已经说了:通过在不同层级选用不同尺寸、不同比例的anchor,能够找到与ground truth匹配最好的anchor来进行训练,从而使整个结构的精确度更高。 SSD的缺点是对小尺寸的目标识别仍比较差,还达不到Faster R-CNN的水准。这主要是因为小尺寸的目标多用较低层级的anchor来训练(因为小尺寸目标在较低层级IOU较大),较低层级的特征非线性程度不够,无法训练到足够的精确度。 下图是各种目标识别结构在mAP和训练速度上的比较,可以看到SSD在其中的位置:

经典目标检测论文rcnn翻译

Since we combine region proposals   with CNNs, we call our method R-CNN: Regions with CNN features. 下面先介绍R-CNN和Fast R-CNN中所用到的边框回归方法。 为什么要做Bounding-box regression? 如上图所示,绿色的框为飞机的Ground Truth,红色的框是提取的Region Proposal。那么即便红色的框被分类器识别为飞机,但是由于红色的框定位不准(IoU<),那么这张图相当于没有正确的检测出飞机。如果我们能对红色的框进行微调,使得经过微调后的窗口跟Ground Truth更接近,这样岂不是定位会更准确。确实,Bounding-box regression 就是用来微调这个窗口的。 那么经过何种变换才能从图11中的窗口P变为窗口呢?比较简单的思路就是: 注意:只有当Proposal和Ground Truth比较接近时(线性问题),我们才能将其作为训练样本训练我们的线性回归模型,否则会导致训练的回归模型不work(当Proposal跟GT离得较远,就是复杂的非线性问题了,此时用线性回归建模显然不合理)。这个也是G-CNN: an Iterative Grid Based Object Detector多次迭代实现目标准确定位的关键。 PASCAL VOC为图像识别和分类提供了一整套标准化的优秀的数据集,从2005年到2012年每年都会举行一场图像识别challenge。模型详解 RCNN全程就是Regions with CNN features,从名字也可以看出,RCNN的检测算法是基于传统方法来找出一些可能是物体的区域,再把该区域的尺寸归一化成卷积网络输入的尺寸,最后判断该区域到底是不是物体,是哪个物体,以及对是物体的区域进行进一步回归的微微调整(与深度学习里的finetune去分开,我想表达的就只是对框的位置进行微微调整)学习,使得框的更加准确。        正如上面所说的,RCNN的核心思想就是把图片区域内容送给深度网络,然后提取出深度网络某层的特征,并用这个特征来判断是什么物体(文章把背景也当成一种类别,故如果是判断是不是20个物体时,实际上在实现是判断21个类。),最后再对是物体的区域进行微微调整。实际上文章内容也说过用我之前所说的方法(先学习分类器,然后sliding windows),不过论文用了更直观的方式来说明这样的消耗非常大。它说一个深度网络(alexNet)在conv5上的感受野是195×195,按照我的理解,就是195×195的区域经过五层卷积后,才变成一个点,所以想在conv5上有一个区域性的大小(7×7)则需要原图为227×227,这样的滑窗每次都要对这么大尺度的内容进行计算,消耗可想而知,故论文得下结论,不能用sliding windows的方式去做检测(消耗一次用的不恰当,望各位看官能说个更加准确的词)。不过论文也没有提为什么作者会使用先找可能区域,再进行判断这种方式,只是说他们根据09年的另一篇论文[1],而做的。这也算是大神们与常人不同的积累量吧。中间的深度网络通过ILSVRC分类问题来进行训练,即利用训练图片和训练的分类监督信号,来学习出这个网络,再根据这个网络提取的特征,来训练21个分类器和其相应的回归器,不过分类器和回归器可以放在网络中学习,R-CNN 模型如果要拟人化比喻,那 R-CNN 肯定是 Faster R-CNN 的祖父了。换句话说,R-CNN 是一切的开端。 R-CNN,或称 Region-based Convolutional Neural Network,其工作包含了三个步骤: 1.借助一个可以生成约 2000 个 region proposal 的「选择性搜索」(Selective Search)算法,R-CNN 可以对输入图像进行扫描,来获取可能出现的目标。 2.在每个 region proposal 上都运行一个卷积神经网络(CNN)。 3.将每个 CNN 的输出都输入进:a)一个支持向量机(SVM),以对上述区域进行分类。b)一个线性回归器,以收缩目标周围的边界框,前提是这样的目标存在。 下图具体描绘了上述 3 个步骤:Abstract :                  R-CNN的两个贡献:卷积层的能力很强,可以遍历候选区域达到精确的定位。2.当有标签的数据很少的时候,我们可以事前进行有标签(别的数据集上?)的预训练作为辅助任务,然后对特定的区域进行微调。Introduction:                 这篇文章最开始是在PASCAL VOC上在图像分类和目标检测方面取得了很好的效果。                为了达到很好的效果,文章主要关注了两个问题:1.用深层网络进行目标的定位。2.如何用少量的带标签的检测数据来训练模型                 对于 对一个问题目标定位 ,通常有两个思路可以走:                      1.把定位看成回归问题。效果不是很好。                      2.建立划窗检测器。                 CNN一直采用建立划窗这个方式,但是也只是局限于人脸和行人的检测问题上。               本文使用了五个卷积层(感受野食195*195),在输入时移动步长是32*32。               除此之外,对于定位问题,我们采用区域识别的策略。                在测试阶段,本文的方法产生了大约2000个类别独立的候选区域作为cnn的输入。然           后得到一个修正后的特征向量。然后对于特定的类别用线性SVM分类器分类。我们用简             单的方法(放射图像变形)来将候选区域变成固定大小。                   对于第二个缺少标签数据的问题                     目前有一个思路就是无监督的预训练,然后再加入有监督的微调。                    作为本文最大的贡献之二:在ILSVRC数据集上,我们先进行有监督的预训练。然                  后我们在PASCAL这个小数据集上我们进行特定区域的微调。在我们的实验中,微调                  可以提升8%的mAP。                     本文的贡献;效率高                      仅仅是特别类别的计算是合乎情理的矩阵运算,和非极大值抑制算法。他们共享权                值,并且都是低维特征向量。相比于直接将区域向量作为输入,维数更低。                本文方法处理能实现目标检测,还以为实现语义分割。 2.用R-CNN进行目标检测:             有3个Model:            (1)产生独立的候选区域。            (2)CNN产生固定长度的特征向量。             (3)针对特别类别的一群svm分类器。 模块的设计 候选区域:                   之前有大量的文章都提过如果产生候选区域。本文采用SS(selective search )方法。参考文献【34】+【36】 特征抽取:                 对于每个候选区域,我们采用cnn之后得到4096维向量。 测试阶段的检测               在测试阶段,我们用选择性搜素的方式在测试图片上选取了2000个候选区域,如上图所示的步骤进行。 运行时间分析: 总之当时相比很快。 训练模型 有监督的预训练: 我们使用了大量的ILSVRC的数据集来进行预训练CNN,但是这个标签是图片层的。换句话说没有带边界这样的标签。 特定区域的微调: 我们调整VOC数据集的候选区域的大小,并且我们把ImageNet上午1000类,变成了21类(20个类别+1个背景)。我们把候选区域(和真实区域重叠的)大于的标记为正数,其他的标记为负数。然后用32个正窗口和96个负窗口组成128的mini-batch。 目标类别分类器:         对于区域紧紧的包括着目标的时候,这肯定就是正样本。对于区域里面全部都是背景的,这也十分好区分就是负样本。但是某个区域里面既有目标也有背景的时候,我们不知道如歌标记。本文为了解决这个,提出了一个阈值:IoU覆盖阈值,小于这个阈值,我们标记为负样本。大于这个阈值的我们标记为正样本。我们设置为。这个是一个超参数优化问题。我们使用验证集的方法来优化这个参数。然而这个参数对于我们的最后的性能有很大的帮助。         一旦,我们得到特征向量。因为训练数据太大了。我们采用standard hard negative mining method(标准难分样本的挖掘)。这个策略也是的收敛更快。 Results on PASCAL VOC 201012 . Visualization, ablation, and modes of error . Visualizing learned features      提出了一个非参数的方法,直接展现出我们的网络学习到了什么。这个想法是将一个特定的单元(特性)放在其中使用它,就好像它自己是一个对象检测器正确的。具体方法就是:我们在大量候选区域中,计算每个单元的激励函数。按从最高到最低排序激活输出,执行非最大值抑制,然后显示得分最高的区域。我们的方法让选定的单元“为自己说话”通过显示它所触发的输入。我们避免平均为了看到不同的视觉模式和获得洞察力为单位计算的不变性。我们可以看到来着第五个maxpooling返回的区域。第五层输出的每一个单元的接受野对应输出227*227的其中的195*195的像素区域。所以中心那个点单元有全局的视觉。. Ablation studies 实际上ablation study就是为了研究模型中所提出的一些结构是否有效而设计的实验。比如你提出了某某结构,但是要想确定这个结构是否有利于最终的效果,那就要将去掉该结构的网络与加上该结构的网络所得到的结果进行对比,这就是ablation study。 Performance layer-by-layer, without fine-tuning. 我们只观察了最后三层Performance layer-by-layer, with fine-tuning. 微调之后,fc6和fc7的性能要比pool5大得多。从ImageNet中学习的pool5特性是一般的,而且大部分的提升都是从在它们之上的特定领域的非线性分类器学习中获得的。Comparison to recent feature learning methods.              见上图 . Detection error analysis           CNN的特征比HOG更加有区分。. Bounding box regression 有了对错误的分析,我们加入了一种方法来减少我们的定位错误。我们训练了一个线性的回归模型HOG和SIFT很慢。但是我们可以由此得到启发,利用有顺序等级和多阶段的处理方式,来实现特征的计算。生物启发的等级和移不变性,本文采用。但是缺少有监督学习的算法。使得卷积训练变得有效率。第一层的卷积层可以可视化。 【23】本文采用这个模型,来得到特征向量  ImageNet Large Scale Visual Recognition Competition用了非线性的激励函数,以及dropout的方法。【34】直接将区域向量作为输入,维数较高。IoU覆盖阈值=,而本文设置为,能提高5个百分点。产生候选区域的方式:selective search 也是本文所采取的方式是结合【34】+【36】。【5】产生候选区域的方式为:限制参数最小割bounding box regression HOG-based DPM文章中的对比试验。缩略图概率。[18][26][28]文章中的对比试验。

论文名称:Rich feature hierarchies for accurate object detection and semantic segmentation 提出时间:2014年 论文地址: 针对问题: 从Alexnet提出后,作者等人思考如何利用卷积网络来完成检测任务,即输入一张图,实现图上目标的定位(目标在哪)和分类(目标是什么)两个目标,并最终完成了RCNN网络模型。 创新点: RCNN提出时,检测网络的执行思路还是脱胎于分类网络。也就是深度学习部分仅完成输入图像块的分类工作。那么对检测任务来说如何完成目标的定位呢,作者采用的是Selective Search候选区域提取算法,来获得当前输入图上可能包含目标的不同图像块,再将图像块裁剪到固定的尺寸输入CNN网络来进行当前图像块类别的判断。 参考博客: 。 论文题目:OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks 提出时间:2014年 论文地址: 针对问题: 该论文讨论了,CNN提取到的特征能够同时用于定位和分类两个任务。也就是在CNN提取到特征以后,在网络后端组织两组卷积或全连接层,一组用于实现定位,输出当前图像上目标的最小外接矩形框坐标,一组用于分类,输出当前图像上目标的类别信息。也是以此为起点,检测网络出现基础主干网络(backbone)+分类头或回归头(定位头)的网络设计模式雏形。 创新点: 在这篇论文中还有两个比较有意思的点,一是作者认为全连接层其实质实现的操作和1x1的卷积是类似的,而且用1x1的卷积核还可以避免FC对输入特征尺寸的限制,那用1x1卷积来替换FC层,是否可行呢?作者在测试时通过将全连接层替换为1x1卷积核证明是可行的;二是提出了offset max-pooling,也就是对池化层输入特征不能整除的情况,通过进行滑动池化并将不同的池化层传递给后续网络层来提高效果。另外作者在论文里提到他的用法是先基于主干网络+分类头训练,然后切换分类头为回归头,再训练回归头的参数,最终完成整个网络的训练。图像的输入作者采用的是直接在输入图上利用卷积核划窗。然后在指定的每个网络层上回归目标的尺度和空间位置。 参考博客: 论文题目:Scalable Object Detection using Deep Neural Networks 提出时间:2014年 论文地址: 针对问题: 既然CNN网络提取的特征可以直接用于检测任务(定位+分类),作者就尝试将目标框(可能包含目标的最小外包矩形框)提取任务放到CNN中进行。也就是直接通过网络完成输入图像上目标的定位工作。 创新点: 本文作者通过将物体检测问题定义为输出多个bounding box的回归问题. 同时每个bounding box会输出关于是否包含目标物体的置信度, 使得模型更加紧凑和高效。先通过聚类获得图像中可能有目标的位置聚类中心,(800个anchor box)然后学习预测不考虑目标类别的二分类网络,背景or前景。用到了多尺度下的检测。 参考博客: 论文题目:DeepBox: Learning Objectness with Convolutional Networks 提出时间:2015年ICCV 论文地址: 主要针对的问题: 本文完成的工作与第三篇类似,都是对目标框提取算法的优化方案,区别是本文首先采用自底而上的方案来提取图像上的疑似目标框,然后再利用CNN网络提取特征对目标框进行是否为前景区域的排序;而第三篇为直接利用CNN网络来回归图像上可能的目标位置。创新点: 本文作者想通过CNN学习输入图像的特征,从而实现对输入网络目标框是否为真实目标的情况进行计算,量化每个输入框的包含目标的可能性值。 参考博客: 论文题目:AttentionNet: AggregatingWeak Directions for Accurate Object Detection 提出时间:2015年ICCV 论文地址: 主要针对的问题: 对检测网络的实现方案进行思考,之前的执行策略是,先确定输入图像中可能包含目标位置的矩形框,再对每个矩形框进行分类和回归从而确定目标的准确位置,参考RCNN。那么能否直接利用回归的思路从图像的四个角点,逐渐得到目标的最小外接矩形框和类别呢? 创新点: 通过从图像的四个角点,逐步迭代的方式,每次计算一个缩小的方向,并缩小指定的距离来使得逐渐逼近目标。作者还提出了针对多目标情况的处理方式。 参考博客: 论文题目:Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition 提出时间:2014年 论文地址: 针对问题: 如RCNN会将输入的目标图像块处理到同一尺寸再输入进CNN网络,在处理过程中就造成了图像块信息的损失。在实际的场景中,输入网络的目标尺寸很难统一,而网络最后的全连接层又要求输入的特征信息为统一维度的向量。作者就尝试进行不同尺寸CNN网络提取到的特征维度进行统一。创新点: 作者提出的SPPnet中,通过使用特征金字塔池化来使得最后的卷积层输出结果可以统一到全连接层需要的尺寸,在训练的时候,池化的操作还是通过滑动窗口完成的,池化的核宽高及步长通过当前层的特征图的宽高计算得到。原论文中的特征金字塔池化操作图示如下。 参考博客 : 论文题目:Object detection via a multi-region & semantic segmentation-aware CNN model 提出时间:2015年 论文地址: 针对问题: 既然第三篇论文multibox算法提出了可以用CNN来实现输入图像中待检测目标的定位,本文作者就尝试增加一些训练时的方法技巧来提高CNN网络最终的定位精度。创新点: 作者通过对输入网络的region进行一定的处理(通过数据增强,使得网络利用目标周围的上下文信息得到更精准的目标框)来增加网络对目标回归框的精度。具体的处理方式包括:扩大输入目标的标签包围框、取输入目标的标签中包围框的一部分等并对不同区域分别回归位置,使得网络对目标的边界更加敏感。这种操作丰富了输入目标的多样性,从而提高了回归框的精度。 参考博客 : 论文题目:Fast-RCNN 提出时间:2015年 论文地址: 针对问题: RCNN中的CNN每输入一个图像块就要执行一次前向计算,这显然是非常耗时的,那么如何优化这部分呢? 创新点: 作者参考了SPPNet(第六篇论文),在网络中实现了ROIpooling来使得输入的图像块不用裁剪到统一尺寸,从而避免了输入的信息丢失。其次是将整张图输入网络得到特征图,再将原图上用Selective Search算法得到的目标框映射到特征图上,避免了特征的重复提取。 参考博客 : 论文题目:DeepProposal: Hunting Objects by Cascading Deep Convolutional Layers 提出时间:2015年 论文地址: 主要针对的问题: 本文的作者观察到CNN可以提取到很棒的对输入图像进行表征的论文,作者尝试通过实验来对CNN网络不同层所产生的特征的作用和情况进行讨论和解析。 创新点: 作者在不同的激活层上以滑动窗口的方式生成了假设,并表明最终的卷积层可以以较高的查全率找到感兴趣的对象,但是由于特征图的粗糙性,定位性很差。相反,网络的第一层可以更好地定位感兴趣的对象,但召回率降低。 论文题目:Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks 提出时间:2015年NIPS 论文地址: 主要针对的问题: 由multibox(第三篇)和DeepBox(第四篇)等论文,我们知道,用CNN可以生成目标待检测框,并判定当前框为目标的概率,那能否将该模型整合到目标检测的模型中,从而实现真正输入端为图像,输出为最终检测结果的,全部依赖CNN完成的检测系统呢? 创新点: 将当前输入图目标框提取整合到了检测网络中,依赖一个小的目标框提取网络RPN来替代Selective Search算法,从而实现真正的端到端检测算法。 参考博客 :

对于目标检测方向并不是特别熟悉,本文记录一下RCNN, fast-RCNN, faster-RCNN, mask-RCNN这4篇有关目标检测的论文笔记和学习心得。

R-CNN的意思就是Region based,主要思路就是根据一张图像,提取多个region,再将每个Region输入CNN来进行特征的提取。因此RCNN就可以分为 Region proposals , Feature extraction 两个主要部分,提取的特征就可以输入任意一个分类器来进行分类。 模型的流程图如下:

在训练的时候,首先使用的是已经训练好的CNN网络作为特征提取器,但是由于预训练是在分类数据集上,因此在应用到检测之前要做finetune。也就是说,为了将用ImageNet数据集训练的网络应用到新的任务(检测),新的数据集(region)上,作者将原来的CNN最后的1000类的fc层,更改为了 层, 代表待检测的物体的类别数。然后,对于所有的region,如果它和ground truth的重叠率大于,就认为是正类。 对于分类器的训练,作者发现选择多大的IoU来区分正类和负类非常关键。并且,对于每一类,都会训练一个分类器。

框的回归非常重要,在对每一个region proposal使用分类器进行打分评价之后,作者使用一个回归器来预测一个新的框作为结果。这个回归器使用的特征是从CNN中提取的特征。回归器的训练中,输入是 region proposal 的 和ground truth的 ,目标是学习一种变换,使得region proposal通过该变换能够接近ground truth。同时,希望这种变换拥有尺度不变性,也就是说尺度变化的话,变换不会改变。 如下图所示,每一个regressor会学习一组参数,特征输入是pool 5的特征输出,拟合的目标是 。

Fast-RCNN 主要解决的问题是在RCNN中对于每一个region proposal都进行特征提取,会产生非常多的冗余计算,因此可以先对一张图像进行特征提取,再根据region proposal在相应的特征上进行划分得到对应region的特征(映射关系)。 这样便可以实现共享计算提高速度,但是与SPPnets不同,SPPnets在一副图像得到对应的特征后,从这张图像的特征上proposal对应的部分,采用空间金字塔池化,如下图:

RoI pooling的方法很简单,类似于空间金字塔pooling,它将proposal部分对应卷积层输出的特征(称之为RoI,因为用于做pooling的特征是 region of interest,也就是我们感兴趣的区域)划分成 块,然后对每一块求最大值,最终得到了一个 的特征图。可以看出,它只是空间金字塔pooling的一部分。 但是SPP-nets的空间金字塔也是可以求导的,那么它到底不好在哪里呢?因为当每一个RoI都可能来源于不同的图像的时候(R-CNN和SPPnets的训练策略是从一个batch的不同图像中,分别挑选一个proposal region),SPPNets的训练非常地低效,这种低效来源于在SPPnets的训练中,每个RoI的感受野都非常地大,很可能对应了原图的整个图像,因此,得到的特征也几乎对应了整张图像,所以输入的图像也就很大。 为了提高效率,Fast-RCNN首先选取 个图像,再从每个图像上选择 个RoI,这样的效率就比从每个图像提取一个RoI提高了 倍。

为了将分类和框回归结合起来,作者采用了多任务的loss,来进行联合的训练。具体来说就是将分类的loss和框回归的loss结合起来。网络的设计上非常直接,就是将RoI得到的特征接几个FC层后,分别接不同的输出层。对应于分类部分,特征会接一个softmax输出,用于分类,对于框回归部分,会接一个输出4维特征的输出层,然后分别计算loss,用于反向传播。loss的公式如下:

回归的target可以参考前面的R-CNN部分。

notes

为什么比fast还fast呢?主要原因是在这篇论文中提出了一个新的层:RPN(region proposal networks)用于替代之前的selective search。这个层还可以在GPU上运算来提高速度。 RPN的目的:

为了能够进行region proposal,作者使用了一个小的网络,在基础的卷积层输出的特征上进行滑动,这个网络输入大小为 ,输入后会映射(用 的卷积)为一个固定长度的特征向量,然后接两个并联的fc层(用 的卷积层代替),这两个fc层,一个为box-regressoin,一个为box-classification。如下图:

在每一个滑动窗口(可以参考 ),为了考虑到尽可能多的框的情况,作者设计了anchors来作为region proposal。anchors就是对于每一个滑动窗口的中心位置,在该位置对应的原图位置的基础上,按照不同的尺度,长宽比例框出 个不同的区域。然后根据这些anchors对应的原始图像位置以及区域,和ground truth,就可以给每一个滑动窗口的每一个anchor进行标记,也就是赋予label,满足一定条件标记为正类(比如和ground truth重叠大于一个值),一定条件为负类。对于正类,就可以根据ground truth和该anchor对应的原图的区域之间的变换关系(参考前面的R-CNN的框回归),得到回归器中的目标,用于训练。也就是论文中的loss function部分:

自然地,也就要求RPN的两个并联的FC层一个输出2k个值用于表示这k个anchor对应的区域的正类,负类的概率,另一个输出4k个值,用于表示框回归的变换的预测值。

对于整个网络的训练,作者采用了一种叫做 4-step Alternating Training 的方法。具体可以参考论文。

与之前的检测任务稍有不同,mask r-cnn的任务是做instance segmentation。因此,它需要对每一个像素点进行分类。 与Faster R-CNN不同,Faster R-CNN对每一个候选框产生两个输出,一个是类别,一个是bounding box的offset。Mask R-CNN新增加了一个输出,作为物体的mask。这个mask类似于ps中的蒙版。

与Faster R-CNN类似的是,Mask R-CNN同样采用RPN来进行Region Proposal。但是在之后,对于每一个RoI,mask r-cnn还输出了一个二值化的mask。

不像类别,框回归,输出都可以是一个向量,mask必须保持一定的空间信息。因此,作者采用FCN来从每个RoI中预测一个 的mask。

由于属于像素级别的预测问题,就需要RoI能够在进行特征提取的时候保持住空间信息,至少在像素级别上能够对应起来。因此,传统的取最大值的方法就显得不合适。 RoI Pooling,经历了两个量化的过程: 第一个:从roi proposal到feature map的映射过程。 第二个:从feature map划分成7*7的bin,每个bin使用max pooling。

为此,作者使用了RoIAlign。如下图

为了避免上面提到的量化过程

可以参考

作者使用ResNet作为基础的特征提取的网络。 对于预测类别,回归框,mask的网络使用如下图结构:

整体看完这几篇大佬的论文,虽说没有弄清楚每一个实现细节,但是大体上了解了算法的思路。可以看出,出发点都源于深度神经网络在特征提取上的卓越能力,因此一众大神试图将这种能力应用在检测问题中。从R-CNN中简单地用于特征提取,到为了提高速度减少计算的Fast R-CNN,再到为了将region proposal集成进入整个模型中,并且利用GPU加速的RPN,也就是Faster R-CNN。再到为了应用于instance segmentation任务中,设计的RoIAlign和mask。包括bounding box regression,pooling层的设计,训练方法的选择,loss的设计等等细节,无一不体现了大师们的思考和创造力。 可能在我们这些“拿来”者的眼中,这些方法都显得“理所应当”和巧妙,好用,但是,它们背后隐藏的选择和这些选择的思考却更值得我们学习。 以及,对待每一个问题,如何设计出合理的解决方案,以及方案的效率,通用性,更是应该我们努力的方向。

域适应目标检测论文翻译

雷锋网 AI 科技评论按: 百度研究院、华中科技大学、悉尼科技大学联合新作——关于无监督领域自适应语义分割的论文《 Taking A Closer Look at Domain Shift: Category-level Adversaries for Semantics Consistent Domain Adaptation》被 CCF A 类学术会议 CVPR2019 收录为 Oral 论文 。该论文提出了一种从「虚拟域」泛化到「现实域」的无监督语义分割算法,旨在利用易获取的虚拟场景标注数据来完成对标注成本高昂的现实场景数据的语义分割,大大减少了人工标注成本。 本文是论文作者之一罗亚威为雷锋网 AI 科技评论提供的论文解读。 论文地址: 1.问题背景 基于深度学习的语义分割方法效果出众,但需要大量的人工标注进行监督训练。不同于图像分类等任务,语义分割需要像素级别的人工标注,费时费力,无法大规模实施。借助于计算机虚拟图像技术,如3D游戏,用户可以几乎无成本地获得无限量自动标注数据。然而虚拟图像和现实图像间存在严重的视觉差异(域偏移),如纹理、光照、视角差异等等,这些差异导致在虚拟图像上训练出的深度模型往往在真实图像数据集上的分割精度很低。 2. 传统方法 针对上述域偏移问题,一种广泛采用的方法是在网络中加入一个域判别器Discriminator (D),利用对抗训练的机制,减少源域Source (S)和目标域Target(T)之间不同分布的差异,以加强原始网络(G)在域间的泛化能力。方法具体包括两方面: (1)利用源域的有标签数据进行有监督学习,提取领域知识: 其中Xs,Ys为源域数据及其对应标签。 (2)通过对抗学习,降低域判别器(D)的精度,以对齐源域与目标域的特征分布: 其中XT为目标域数据,无标签。 3.我们针对传统方法的改进 以上基于对抗学习的传统域适应方法只能对齐全局特征分布(Marginal Distribution),而忽略了不同域之间,相同语义特征的语义一致性(Joint Distribution),在训练过程中容易造成负迁移,如图2(a)所示。举例来说,目标域中的车辆这一类,可能与源域中的车辆在视觉上是接近的。因此,在没有经过域适应算法之前,目标域车辆也能够被正确分割。然而,为了迎合传统方法的全局对齐,目标域中的车辆特征反而有可能会被映射到源域中的其他类别,如火车等,造成语义不一致。 针对这一问题,我们在今年CVPR的论文中,向对抗学习框架里加入了联合训练的思想,解决了传统域适应方法中的语义不一致性和负迁移等键问题。具体做法见图2(b),我们采用了两个互斥分类器对目标域特征进行分类。当两个分类器给出的预测很一致时,我们认为该特征已经能被很好的分类,语义一致性较高,所以应减少全局对齐策略对这些特征产生的负面影响。反之,当两个分类器给出的预测不一致,说明该目标域特征还未被很好地分类,依然需要用对抗损失进行与源域特征的对齐。所以应加大对齐力度,使其尽快和源域特征对应。 4.网络结构 为了实现上述语义级对抗目标,我们提出了Category-Level Adversarial Network (CLAN)。 遵循联合训练的思想,我们在生成网络中采用了互斥分类器的结构,以判断目标域的隐层特征是否已达到了局部语义对齐。在后续对抗训练时,  网络依据互斥分类器产生的两个预测向量之差(Discrepancy)来对判别网络所反馈的对抗损失进行加权。网络结构如下图3所示。  图3中,橙色的线条表示源域流,蓝色的线条表示目标域流,绿色的双箭头表示我们在训练中强迫两个分类器的参数正交,以达到互斥分类器的目的。源域流和传统的方法并无很大不同,唯一的区别是我们集成了互斥分类器产生的预测作为源域的集成预测。该预测一方面被标签监督,产生分割损失(Segmentation Loss),如式(3)所示: 另一方面,该预测进入判别器D,作为源域样本。 绿色的双箭头处,我们使用余弦距离作为损失,训练两个分类器产生不同的模型参数: 目标域流中,集成预测同样进入判别器D。不同的是,我们维持两个分类器预测的差值,作为局部对齐程度的依据 (local alignment score map)。该差值与D所反馈的损失相乘,生成语义级别的对抗损失: 该策略加大了语义不一致特征的对齐力度,而减弱了语义一致的特征受全局对齐的影响,从而加强了特征间的语义对齐,防止了负迁移的产生。 最后,根据以上三个损失,我们可以得出最终的总体损失函数: 基于以上损失函数,算法整体的优化目标为: 在训练中,我们交替优化G和D,直至损失收敛。 5. 特征空间分析 我们重点关注不常见类,如图4(a)中黄框内的柱子,交通标志。这些类经过传统方法的分布对齐,反而在分割结果中消失了。结合特征的t-SNE图,我们可以得出结论,有些类的特征在没有进行域迁移之前,就已经是对齐的。传统的全局域适应方法反而会破坏这种语义一致性,造成负迁移。而我们提出的语义级别对抗降低了全局对齐对这些已对齐类的影响,很好的解决了这一问题。 6. 实验结果  我们在两个域适应语义分割任务,即GTA5 -> Cityscapes 和 SYNTHIA -> Cityscapes 上进行了实验验证。我们采用最常见的Insertion over Union作为分割精度的衡量指标,实验结果如下。从表1和表2中可以看出,在不同网络结构(VGG16,ResNet101)中,我们的方法(CLAN)域适应效果都达到了 state-of-the-art的精度。特别的,在一些不常见类上(用蓝色表示),传统方法容易造成负迁移,而CLAN明显要优于其他方法。 表 1. 由虚拟数据集GTA5 迁移至真实数据集 Cityscapes 的域适应分割精度对比。  表 2. 由虚拟数据集SYNTHIA 迁移至真实数据集 Cityscapes 的域适应分割精度对比。 第二个实验中,我们了展示隐空间层面,源域和目标域间同语义特征簇的中心距离。该距离越小,说明两个域间的语义对齐越好。结果见图 5。 最后,我们给出分割结果的可视化效果。我们的算法大大提高了分割精度。 7. 总结 《Taking A Closer Look at Domain Shift: Category-level Adversaries for Semantics Consistent Domain Adaptation》引入了联合训练结合对抗学习的设计,在无监督域适应语义分割任务中取得了较好的实验结果。该算法能应用前景广泛,比如能够很好地应用到自动驾驶中,让车辆在不同的驾驶环境中也能保持鲁棒的街景识别率。 最后 CVPR 2019 Oral 论文精选汇总,值得一看的 CV 论文都在这里(持续更新中)CVPR 2019 即将于 6 月在美国长滩召开。今年有超过 5165 篇的大会论文投稿,最终录取 1299 篇,其中 Oral 论文近 300 篇。为了方便社区开发者和学术青年查找和阅读高价值论文,AI 研习社从入选的 Oral 论文中,按应用方向挑选了部分精华论文,贴在本文,打开链接即可查看~

出自《Cross-Domain Weakly-Supervised Object Detection through Progressive Domain Adaptation》        文章提出怎样在无标签的数据集中(卡通图像数据集)进行目标检测。        文章提出了一种利用已知标签数据集(如VOC)去迁移到训练无标签数据集(例如卡通数据集)的目标检测方法。策略1: 作者将真实图像转化为卡通图像风格的图像,并保留图像中语义结构信息。采用的方法是Cycle-GAN。文章试验证明了 Cycle-GAN在真实图像与卡通图像之间的转换非常成功。然后就有了instant-level的标签,并用于训练检测器。即将真实图像转化为目标域的风格来训练检测器。 策略2: 将策略1中训练好的检测器给真实图像打上伪标签,进一步以真实卡通图像去微调网络,最终得到一个在卡通图像上表现优异的检测器。1. GAN很好很强大,其中Cycle-GAN能很好的将两个风格的图像进行迁移,从而有效的帮助目标检测在两种图像中的迁移。 2.目标检测的性能还是对数据集很依赖。数据集多,质量好,并且有标注。好,直接训练就完了。

商标翻译的论文题目

学术堂精心整理了五十个新颖并好写的商务英语专业毕业论文题目,供大家参考:1、商务英语的特点及翻译技巧2、商务英语函电翻译技巧3、商务英语信函的语体分析4、浅谈商务信函的文体特征5、商务英语学习方法探究6、商务英语学习中跨文化交际能力的培养7、国际商务谈判中应注意的文化因素8、商务谈判中的跨文化冲突9、试论普通英语与商务英语的差异10、商务谈判中的语言艺术11、商标名称的翻译与策略12、广告英语的分类与分析13、试论文化因素对商务活动的作用14、商务英语听力策略研究15、商务英语写作问题研究16、商务英语考试技巧研究17、电子商务对国际贸易的影响及对策18、国际商务英语信函话语分析19、商务英语发展现状浅祈20、商务英语翻译技巧21、商务英语函电中的文化因素初探22、商务英语专业人才培养模式改革与实践23、试论文化导入在商务英语教学中的作用24、中英文广告标题的共同点25、中英文广告传播之语言特色及跨文化问题26、商品译文的品牌形象对商务英语翻译教学的启示27、商务英语翻译标准初探28、试论商务英语写作的简洁礼貌原则及写作技巧29、我国在国际贸易中实施反倾销的应对策略30、商务函电翻译的用词技巧31、商标名称的翻译与策略32、商务谈判中的语言艺术33、商务谈判的文化障碍34、商务英语课程设置的探讨35、商务谈判中英语的重要性36、商务英语学习中跨文化交际能力的培养37、商务谈判中的跨文化冲突38、商务英语写作中的错误与商务英语写作教学之间的关系39、英语口语或语法在商务领域中的运用40、浅谈英语告示语的语言特色与翻译41、商务英语专业毕业生就业岗位探讨42、浅谈高职学生英语听说技能的培养43、文化差异对商务汉英翻译的影响44、商务英语函电在对外贸易中的作用45、浅谈商务英语写作时避免修饰语错位的方法46、制单工作在国际结算中的地位47、国际商务单证的作用和种类48、浅析海运提单的风险及防范措施49、如何翻译好日常商务文书50、跨文化商务交际中的语言和非语言因素

1、论文化因素对英汉翻译的影响2、商务英语的特点及翻译技巧3、商务函电翻译的用词技巧4、商标名称的翻译与策略5、汉语中新词汇的翻译技巧6、商务谈判中的语言艺术7、商务谈判的文化障碍8、商务英语函电在对外贸易中的作用9、商务英语函电翻译技巧10、商务谈判中英语的重要性11、浅谈商务英语写作时避免修饰语错位的方法 12、礼仪在商务谈判中的作用13、浅谈涉外合同英语特色14、电子商务对国际贸易的影响及对策15、商务谈判的艺术性16、跨文化的商务谈判

题目是论文内容的高度概括,它对读者具有影响力,可使读者首先明确论文研究的主题。下面我给大家带来翻译方向论文题目选题参考2022,希望能帮助到大家!

↓↓↓点击获取更多"论文"相关内容↓↓↓

★ 优秀论文题目2022 ★

★ 毕业论文答辩发言稿 ★

★ 毕业论文答辩致谢词 ★

大学毕业论文评语 ★

翻译硕士论文题目选题参考

1、《中国古代 足球 》古汉语专名与古诗词的英译处理

2、英文合同汉译中规范性的实现策略

3、以目 标语 读者为导向的 广告 翻译策略研究

4、盐城旅游文本中特色词汇的翻译问题

5、从接受美学视角探究文学作品中模糊语言翻译

6、法律文献中专业术语英译的探讨

7、扬州旅游文本里 文化 因素的翻译

8、网络辅助下英语缩略语的翻译策略研究

9、有道词典在翻译中的应用

10、 英语 散文 120篇汉译项目 报告

11、徐州景点 导游词 翻译中文化负载词的处理

12、徐州特产食品 说明书 汉英翻译研究

13、从文本功能的角度探究报刊时政新闻的汉译

14、英语长句的英译汉翻译策略实证研究---以<基于语料库的英语教学>为例

15、《物华名胜》中复合式翻译 方法 的运用

16、《苏斯 儿童 绘本汉译过程中儿童语言的处理》

17、目的论指导下企业介绍的英译研究

18、新闻发布会口译项目报告

19、目的论视角下看中国高校宣传片的字幕翻译策略

20、《杨澜访谈录》同声传译项目报告

21、VOA经济报道口译过程中顺句驱动法运用的实践报告

22、预测在英语 财经 新闻口译活动中运用的实践报告

23、中国饮食文化词的口译技巧—《舌尖上的中国》口译实践报告

24、影响英汉交替传译中笔记有效信息筛选障碍的项目报告——以VOA时事新闻口译实践为例

25、视译停顿形成因素及解决方法报告

26、外事口译中译者主体性的把握

27、学生译员汉英交传训练中停顿现象研究

28、商务合同英汉互译技巧

29、英文品牌汉译

30、知识对于翻译的重要性

31、中英文化差异及其对英汉互译的消极影响

32、英语广告中修辞手法的应用及其翻译

33、<<红楼梦>>金陵判词两种译文的比较及评析

34、从红楼梦诗词翻译看翻译中的文化补偿

35、关于李后主“虞美人”的3种英译本的鉴赏

36、跨文化交际与商标翻译

37、中式菜肴的命名与翻译

38、浅谈英语电影片名的翻译

39、英文电影片名的翻译策略

40、英文化妆品广告之美学翻译

41、数字在中西文化中的内涵差异及数字习语翻译初探

42、浅析原语文本在目标语文本中文体的适应性

43、英语习用语翻译中的等效性研究

44、论语境在英汉翻译中的作用

45、浅析英语动画片翻译的基本原则

46、中英服饰广告的翻译

47、论英汉翻译中语篇连贯的重要性

48、论译者的风格与译风

49、经济英语中的隐喻及其翻译

50、从翻译的美学角度浅析旅游资料的中英译

51、翻译中的文化因素

52、影视字幕翻译的原则

53、影响长句翻译的因素

54、例析英译汉中形象语言的处理

英语专业 毕业 论文翻译方向题目

1、 图里规范理论视角下的《四洲志》翻译研究

2、 翻译伦理视域下杨曙辉和杨韵琴《喻世明言》英译本研究

3、 《围城》英译研究

4、 余华小说《兄弟》中的文化专有词英译研究

5、 汉语形容词重叠式及其基式英译对比研究

6、 英汉交流虚构运动事件中路径和方式表征的对比研究

7、 汉语情态动词“能”字结构的翻译

8、 英汉运动事件表征方式对比研究

9、 顺应论视角下视觉动词的汉英互译研究

10、 语用顺应论视阈下汉语听觉动词的英译研究

11、 基于交往能力理论的翻译主体间性实证研究

12、 目的论视角下的电气英语翻译

13、 从符号视角看翻译中视觉非语言符号的信息处理

14、 功能对等理论视角下政府公文英译策略研究

15、 女性主义视角下影视字幕翻译策略研究

16、 操纵论视角下政治文本的汉英翻译研究

17、 从功能对等原则看中国上古神话中神话意象的翻译

18、 从德国功能派翻译理论视角分析领导人演讲口译

19、 文化翻译理论指导下《黄帝内经》英译策略研究

20、 四字格中医术语动词的英译对比研究

21、 《红楼梦》服饰文化翻译研究探析

22、 英文传记汉译实践报告

23、 生态翻译视角下:《尘埃落定》英译本的研究

24、 奈达的功能对等理论在Harry Potter and The Chamber of Secrets两个译本中的体现

25、 描写性翻译理论框架下《西敏寺》译文的风格分析

26、 目的论视角下张爱玲《金锁记》自译本的比较研究

27、 从功能理论视角看戴译本《边城》中文化负载词的翻译策略与方法

28、 英译诗歌韵律的定量对比分析

29、 功能对等理论视角下鲁迅小说《药》《孔乙己》《风波》两个英译本的对比研究

30、 奈达功能对等视角下对《瓦尔登湖》两个中译本的对比研究

31、 语义翻译/交际翻译视角下文化特色语的翻译

32、 从关联理论看《了不起的盖茨比》的两个汉译本

33、 目的论视角下的《三体》英译研究

34、 性别与翻译:从女性主义翻译观对比分析《飘》的两译本

35、 目的论指导下的《舌尖上的中国》菜名英译策略

36、 功能对等理论视角下的美国情景喜剧字幕翻译

37、 功能对等理论视阈下的商标翻译研究

翻译理论与实践论文题目

1、德国功能翻译理论的宏观性及其对教学的启示

2、翻译美学的文化考量

3、解构视角下翻译中的二元对立分析

4、传教士翻译与晚清文化社会现代性

5、跨文化传播视域下的翻译功能研究

6、英语专业本科翻译教学主体交往体系建构研究

7、许渊冲唐诗英译研究

8、论英汉翻译写作学的建构

9、 文章 学视野下的林译研究

10、口译研究的生态学途径

11、郭建中翻译思想与实践研究

12、跨文化语用学视角下的外宣翻译策略研究

13、文学文本中的视觉翻译

14、外宣翻译研究体系建构探索

15、异化翻译思想探究

16、翻译的修辞学研究

17、新月派文学观念研究

18、文章学视野下的林纾翻译研究

19、翻译批评原则的诠释学研究

20、蒯因的翻译不确定性及其对英汉互译的启示

21、近代中国 留学 生 教育 翻泽研究(1895~1937)

22、叙事学视域下的外宣翻译研究

23、修辞劝说视角下的外宣翻译研究

24、中国传统翻译理论观照下的林少华文学翻译研究

25、易学“象”视角下的译学研究

26、对比语言学元语言系统的演变研究

27、俄语本科翻译教材研究

28、情境翻译与翻译情境

29、西班牙语委婉语的多元翻译

30、从《哥儿》林译本的 句子 结构调整看奈达功能对等翻译理论

31、功能对等理论与信达雅翻译论的比较研究

32、《翻译理论与实践》(第二章)翻译报告

33、从中国文化语境视角出发解读西方女性主义翻译

34、证券翻译理论与实践

35、叶维廉汉诗英译研究

翻译方向论文题目选题参考相关文章:

★ 翻译方向论文题目选题参考

★ 英汉翻译论文选题题目参考

★ 2021英语专业论文选题与题目参考

★ 翻译英语专业毕业论文选题

★ 英语专业毕业论文选题文化

★ 英语专业文化类方面毕业论文题目选题

★ 本科英语专业毕业论文题目选题

★ 优秀英语毕业论文题目参考

★ 英语专业论文开题报告范文精选5篇

★ 2021英语专业的硕士论文题目

论文翻译中文能检测出来

会查到,即使将英文文献翻译为中文,只要文献翻译部分在论文内容中,查重系统就会按照连续出现13个字符类似就会判为重复的标准计算文献重复率。

因为查重系统在识别引用参考文献时是根据文献内容是否和自己的数据库一致作为判断标准,如果将原文献进行翻译后,那么翻译后的内容和知网收录的文献内容不一致,因此查重系统不能判断这部分内容为引用文献部分,从而计算其重复率。

英文论文翻译成中文顺利通过论文查重方法?(拓展资料)

1、坚持原创性为原则。尽量多地参考外文文献,通过翻译的方式增加论文的“原创性”,另外在参考中文文献时,要注重对文章内容的理解,引用时用自己的语言表达出来。切记不要直接引用原文,那样查重会标红的。

另外,选择网络资源要慎重,知网查重系统也会进行网络搜索,特别是一些网络学术资料比较多的网站,在搜索资料时不要直接引用。

2、修改重合部分最好用的修改方法就是把内容转化成自己的语言表述出来。例如把关键词变换成同义词,长句变成短句,短句变成长句,改变下描述的方式,打乱抄袭的段落的顺序,多找些资料,

把英文翻译成中文,再翻译成英文,一定要英语专业性较好的才能用这个方法,语句不通顺就不好了。

3、修改时多加引号,尤其是真的要引用一些句子的时候一定要加citation,这样可以很好的帮你解决这一关句子被判为抄袭的好方法,所以记得要加citation。

4、关于引用,即使有时候做了正确的标注,也有可能计入重复率的,所以我们在引用的时候最好把引用部分转换成自己的语言去重新描述。

5、如果论文里的字数比学校的要求的字数多,那么可以适当的删除一些重复率过高的句子,这是直接降低重复率最好的方法。

将英文论文翻译成中文,理论上是可以通过论文查重的,但是要考虑的问题是如果同样一篇英文论文之前也被其他人翻译成中文论文,并且被知网数据库收录了,这样你翻译出的中文论文可能不能通过论文查重。另外,我也是在上学吧论文查重上看到的相关知识,你也可以去看看

相关百科

热门百科

首页
发表服务