首页

> 学术论文知识库

首页 学术论文知识库 问题

淬火温度对碳含量的影响研究论文

发布时间:

淬火温度对碳含量的影响研究论文

当碳含量在能完全溶在铁中的范围内,含碳量越高淬火后形成的马氏体越多,硬度越高,刚性越好。淬火时:温度必须比临界温度高出20-50C°才能发生组织变化。太高了过火,变脆!回火时:(温度从低到高)变化透切,组织均匀。(硬度更高,刚性更好)——马氏体开始兑变(变软,弹性增加)——(超过临界温度)马氏体消失,软,弹性也没了,切削性能好,——完全退火。全软,弹性也几付没了。 详细请看《金属热处理》。

摘要:研究证明,经淬火碳分配工艺处理后的钢可获得优异的强度和塑韧性等综合力学性能,其室温组织由贫碳的马氏体和富碳的残余奥氏体组成,马氏体组织保证了钢的强度,而残留奥氏体提高了钢的塑性。文章对近年来淬火-碳分配工艺的研究进展做了概述,并对该工艺未来的发展趋势做了展望。 关键词: 残余奥氏体 淬火 淬火碳分配工艺 热处理工艺 马氏体 1、概述马氏体钢传统的热处理工艺为淬火和回火。淬火组织主要为马氏体或是马氏体加残余奥氏体,其强度高;回火则消除淬火应力、同时马氏体析出碳化物、残余奥氏体分解。在1960年,Matas[1]等发现,在过冷奥氏体转变过程中,钢中的C原子可以由马氏体相向残余奥氏体中扩散。随后,Sarikaya[2]等通过实验证明,在淬火过程中,C会由马氏体相向残余奥氏体中进行分配,从而造成增C现象。虽然很早人们就知道C会从马氏体向残余奥氏体分配,但是由于传统的理论研究认为室温下存在的残余奥氏体对材料的强度、硬度和耐磨性有害,从而希望材料中的残余奥氏体越少越好。2003年,美国科罗拉多矿校Speer[3]提出一种新工艺,即淬火碳分配工艺(Q&P),该工艺通过提高钢中残余奥氏体的含量,使钢在室温下的微观组织由马氏体和残余奥氏体组成,从而保证钢在高强度下具有较高的塑韧性,获得综合性能优良的钢。淬火碳分配工艺(Q&P)与传统的淬火回火工艺的区别在于,Q&P工艺利用钢中的元素如Si、AL等来阻碍碳化物的析出,使C从马氏体向残余奥氏体中分配,残余奥氏体富C,从而获得稳定的奥氏体组织,使钢在保证高强度的情况下具有高的韧性。2、淬火碳分配工艺过程图1为淬火碳分配热处理工艺示意图[4]。QT表示初始淬火温度,PT表示碳分配温度。其中将QT=PT的处理称为一步法工艺,将QT PT的处理称为两步法工艺。图1淬火碳分配热处理工艺示意图3、淬火碳分配工艺的研究现状(1)在钢种方面,研究者们发现通过淬火碳分配处理后的钢能获得较好的强塑性结合,主要在于该工艺能够有效的增加残余奥氏体的体积分数及其含碳量,最终获得马氏体与残余奥氏体的复合组织。[5]等人将高碳含硅钢()进行淬火碳分配工艺处理,其硬度为HRC58,残余奥氏体含量为10%。而传统的Q-T工艺得到的残余奥氏体一般都在2%左右。唐荻[6]等对钢通过淬火碳分配处理后,其残余奥氏体体积分数高达,有较高的强塑积,其抗拉强度为1221MPa,伸长率为14%。较传统热处理工艺,综合性能提高很多。钟宁[7]对钢进行淬火碳分配处理后,显微组织由高位错密度的板条马氏体和残余奥氏体组成,其屈服强度达900MPa,抗拉强度达1100MPa,伸长率为21%,与其它先进结构钢(马氏体钢、TRIP钢、双相钢)相比,经淬火碳分配处理后的钢拥有较好的综合力学性能。(2)在工艺参数方面,研究者们主要在初始淬火温度、碳分配温度、碳分配保温时间、淬火介质等方面做了不同的研究。陈连生[8]等对进行淬火碳分配处理,研究碳配分温度对钢的组织性能以及残余奥氏体含量的影响,实验结果表明,当碳配分温度为400 时,其强塑积达到最大值22610MPa.%,此时残余奥氏体的含量(体积分数)达到最大值。蒯振[9]等人通过对进行淬火碳分配处理,发现在配分时间为300秒时,抗拉强度为1000MPa,伸长率为,强塑积达到最大为27300MPa.%。董辰[10]等对钢进行淬火碳分配处理,研究不同初始淬火温度对钢组织和力学性能的影响,发现在250 时获得较好的强塑积。Ludmila[11]等人对42SiCr进行研究,选取多种淬火介质,并以淬火冷却速度作为研究的对象,结果表明,不同的淬火冷却速度会影响钢的强度,但是对塑韧性的影响不大。盐浴炉中得到的钢的屈服强度最高,其值为1788MPa,抗拉强度为1920MPa;水淬得到的屈服强度不高,但是抗拉强度最大,其值为2008MPa。4、对淬火碳分配工艺发展的展望为了进一步提高钢的强度,节约能源和资源,徐祖耀[12]在淬火碳分配的基础上提出了淬火碳分配回火(Q-P-T)工艺,在设计的碳含量小于的钢中加入了碳化物形成元素,通过实验,初步获得钢的抗拉强度在2000MPa以上,而断后伸长率在10%以上。较淬火碳分配工艺,该工艺引入了碳化物沉淀机制,能获得更高的强度和塑性相结合的钢。辛沛森[13]基于淬火碳分配工艺的热冲压U形件的制备实验研究结果表明:基于淬火碳分配的热冲压件的强塑积比同等条件下的传统热冲压件的强塑积高。对高强度钢板的热冲压成形工艺在工业生产中的应用有一定的指导意义。5、结论采用淬火碳分配工艺,在不降低或者降低很少强度的情况下,能使钢的塑韧性大大提高,从而获得性能优良的钢。在淬火碳分配钢的基础上添加适量的碳化物形成元素,初步研究出含碳量小于的淬火-碳分配-回火钢也能显示良好的力学性能。基于淬火碳分配的热冲压件其性能也优于相同条件下的传统的热冲压件,对引导实际生产具有重要的意义。基于淬火碳分配工艺获得的钢制品在提高制件的强度,减轻制件重量,节能降耗方面有着重要的意义。

可以借助Fe-Fe3C相图来解决这个问题。因为碳含量和热处理温度对钢的性能不是呈线性的关系。

碳含量对硫的影响研究论文

(1)①该装置中C、S在A装置中被氧气反应生成二氧化碳、二氧化硫,还有部分氧气剩余,所以气体a的成分是SO2、CO2、O2,故答案为:SO2、CO2、O2;②若钢样中碳以FeS形式存在,FeS被氧气氧化,Fe元素化合价由+2价变为+3价,-2价的S被氧化为+4价,结合化学计量数知,生成物是二氧化硫和四氧化三铁,所以反应方程式为3FeS+5O2  高温 . Fe3O4+3SO2,故答案为:Fe3O4;SO2;(2)①双氧水具有强氧化性,二氧化硫具有还原性,二者发生氧化还原反应生成硫酸和水,反应方程式为 H2O2+SO2=H2SO4,故答案为:H2O2+SO2=H2SO4;②若消耗1mL NaOH溶液相当于硫的质量为y克,z mL NaOH溶液相当于硫的质量为yzg,硫的质量分数为yzgxg×100%=yzx,故答案为:yzx;(3)①测定二氧化碳的含量,需要将二氧化硫除去防止造成干扰,B装置可吸收二氧化硫,C装置可以验证二氧化硫是否除尽,所以装置B和C的作用是除去二氧化硫,故答案为:排除二氧化硫对二氧化碳测定的干扰;②计算钢样中碳的质量分数,需要测定吸收二氧化碳的质量,所以需要测定吸收二氧化碳前后吸收瓶的质量,故答案为:二氧化碳前后吸收瓶的质量.

碳含量增加,强度提高,塑性,韧性和疲劳强度下降,同时恶化可焊性和抗腐蚀性.硫使钢热脆,磷使钢冷脆.但磷也可提高钢材的强度和抗锈性.

化学元素对钢性能的影响:1、碳(C):钢中含碳量增加,屈服点和抗拉强度升高,但塑性和冲击性降低,当碳量超过时,钢的焊接性能变坏,因此用于焊接的低合金结构钢,含碳量一般不超过。碳量高还会降低钢的耐大气腐蚀能力,在露天料场的高碳钢就易锈蚀;此外,碳能增加钢的冷脆性和时效敏感性。2、硅(Si):在炼钢过程中加硅作为还原剂和脱氧剂,所以镇静钢含有-的硅。如果钢中含硅量超过,硅就算合金元素。硅能显著提高钢的弹性极限,屈服点和抗拉强度,故广泛用于作弹簧钢。在调质结构钢中加入-的硅,强度可提高15-20%。硅和钼、钨、铬等结合,有提高抗腐蚀性和抗氧化的作用,可制造耐热钢。含硅1-4%的低碳钢,具有极高的导磁率,用于电器工业做矽钢片。硅量增加,会降低钢的焊接性能..............

(1)气体a:CO2、SO2、O2; 3FeS + 5O2 = Fe3O4 + 3SO2;(2)H2O2 + SO2 = H2SO4;zy/x。(3)除去SO2;CO2吸收瓶的增重。

含氧量对养殖的影响研究论文

氧气浓度对锦鲤养殖的影响:(1)饲养锦鲤的鱼池,最严重的污染源是锦鲤排泄的粪尿及饲料残渣,这些残渣也是一些微生物的食物来源。这些微生物就是草履虫及轮虫的原生动物。微生物的活动也需要氧气,合适的氧气浓度能为清理污染物质的微生物提供充足的氧气。(2)微生物与锦鲤一样吸收水中氧气使用微生物吃掉水中污染物质清净水质的方法称为“生物过滤”.氧气与生物过滤之间有很大的关系:在生物过滤中不可或缺的微生物亦与锦鲤一样吸收氧气而生存。当水中的溶存氧气浓度降低,微生物就不能繁殖,数量骤减。因而生物过滤就不能正常发挥功能,水质即劣化。(3)在容易堵塞的滤材上,短时间内就会有鱼粪等污染物质附着,然后微生物就快速繁殖而吃掉污染物。可是微生物繁殖增多时氧气耗用量亦增加,如果不将氧气送入滤材中,则微生物发生缺氧而猝死。将氧气送入滤材之中,是指要在滤材中形成水流之意。容易堵塞的滤材,水之流通不能充分广被于滤材各部,所以微生物就发生缺氧,致微生物不能繁殖,过滤槽就发生异臭(污泥臭)。在养殖锦鲤的水缸里,要具有经常充分供给氧气功能的过滤系统,过滤槽内微生物才能继续繁殖,所以能以高效率清净用水,减少锦鲤饲养出现的缺氧问题。

草履虫很多时间生活在水的表层,说明氧气是影响动物分布的环境条件。大部分动物都进行有氧呼吸,所以氧气的含量多少就成为影响动物分布的重要环境条件。比如,随大气层的延伸,海拔越高的地方,空气越稀薄,动物的种类会越稀少。

莹姐,氧气溶解的效果的话,一般都是温度温度越高它的溶解效果就越差,所以一定要进行降温处理。

二是当鱼儿发病时只集中精力于用药或调水,没把溶氧当成头等大事或者在低溶氧状态下只会加重病情,用再多的药也无济于事。一、水中的溶氧量及影响因素二、养殖池塘水体中溶氧的变化规律三、低溶氧对鱼虾蟹的危害及其行为反应

含钴量对钨钢的影响研究论文

CO能增加和保持刀具本身的红硬性和抗弯能力,所以一般在比较难加工的场合加工不锈钢和较硬的材料时会用含CO的高速钢刀具也就是看中这些特性,但是CO含量不能超过一定分量,狭义上理解CO只是一种添加剂粘合剂,无论是合金刀具还是高速钢刀具还是以钨为基底的,添加剂粘合剂太多了整个材料的组织结构就很难紧密均匀了就会导致材料不具备使用性了。

呵呵,你用的工具还不够先进。最新的电子显微镜应该可以看到的。我估计你用的是esd,它的能量分辨率低,一般为129—155ev,以及si(li)晶体需在低温下使用(液氮冷却)等缺点。而碳属于超轻元素,能量很低,因此探测不出来。

钨钢抗压强度,表示钨钢在压缩负荷下直至破坏时的极限强度。中文名钨钢抗压强度定义钨钢在压缩负荷下直至破坏时的极限强度δbc=P(最大载荷)/F(试样截面积),单位为N/mm。钨钢的抗压强度测量值比较分散,一般取10个试样测量的平均值。图1:钨钢Co含量对WC-Co合金抗压强度的影响图有研究表明,如图1:钨钢Co含量对WC-Co合金抗压强度的影响图所示。各种晶粒度的合金钴含量在4~6%时,合金出现最大抗压强度,之后,随钴含量增加抗压强度降低(有研究认为不存在峰值,而是随钴含量抗压强度降低,如图2:钨钢抗压强度与钴含量的关系图所示)。相同钴含量的合金,WC晶粒度越小,抗压强度越高,添加少量的TaC、NbC使合金抗压强度略有提高,添加过多,抗压强度反而下降。图2:钨钢抗压强度与钴含量的关系图YG钨钢的抗压强度大于YT钨钢的抗压强度;含钴量相同,YT钨钢的挤压强度随TiC增加而降低。

钴[gǔ] [1] ,元素符号Co,银白色铁磁性金属,表面呈银白略带淡粉色,在周期表中位于第4周期、第Ⅷ族,原子序数27,原子量,密排六方晶体,常见化合价为+2、+3。 钴是具有光泽的钢灰色金属,比较硬而脆,有铁磁性,加热到1150℃时磁性消失。钴的化合价为+2价和+3价。在常温下不和水作用,在潮湿的空气中也很稳定。在空气中加热至300℃以上时氧化生成CoO,在白热时燃烧成Co3O4。氢还原法制成的细金属钴粉在空气中能自燃生成氧化钴。钴是生产耐热合金、硬质合金、防腐合金、磁性合金和各种钴盐的重要原料。钴是具有光泽的钢灰色金属,熔点1493℃、比重,比较硬而脆,钴是铁磁性的,在硬度、抗拉强度、机械加工性能、热力学性质、的电化学行为方面与铁和镍相类似。加热到1150℃时磁性消失。

温度对岩相分析的影响研究论文

这里的 “相” 指的是矿物、流体及熔体,相平衡即它们之间的化学平衡。变泥质岩相平衡主要是研究在变质条件下泥质岩系统中的化学反应,阐明变质矿物组合与全岩化学成分和变质作用物理化学条件之间的关系。由于泥质岩对变质条件变化的敏感性,在变质作用过程中矿物演变丰富多彩,其相平衡研究一直受到岩石学家的重视。20世纪80年代以来,Powell和Holland的开创性工作使变泥质岩相平衡研究进入了定量研究新阶段。

特别值得一提也令人欣慰的是,近年来我国变质岩石学家魏春景教授等(魏春景和周喜文,2008;Wei et al.,2004)用THERMOCAL 程序,计算了 KFMASH 和KMnFMASH系统中变泥质岩的岩石成因格子,压力范围为~,温度范围为450~900℃,包括石榴子石、白云母、硬绿泥石、黑云母、绿泥石、十字石、堇青石、尖晶石、斜方辉石、钾长石、铝硅酸盐(Al2SiO5)石英、水和熔体,受到国内外岩石学界广泛关注。图22-14是他们计算的KFMASH系统岩石成因格子,作为反映泥质岩变质作用的经典系统,很好地反映岩石中的变质反应(单变反应)关系。以P-T投影图为基础,很容易计算P-T假剖面图(pseudosection),反映某一全岩成分随着温压条件的变化所出现的变质矿物组合改变。

图22-14 KFMASH系统中的变质泥质岩的P-T投影图(据Wei et al.,2004)

沉积物沉积后至深埋藏过程中所发生的每一个成岩作用都称之为成岩事件。在渐进埋藏成岩环境,由同生成岩阶段直至晚成岩阶段的漫长成岩过程中,先后发生过若干次重要的成岩事件,它们对岩石原生孔隙的保存或破坏以及次生孔隙的形成与发育有很大的影响[7]。

碎屑岩的孔隙演化

(1)储集岩原始孔隙度的恢复

研究成岩过程中孔隙演化及孔隙度的变化,首先要恢复储层的原始孔隙度。根据比尔德和韦尔(1973)提出的原始孔隙度计算式可求出原始孔隙度(ϕ0):

ϕ0=()

式中:S0——根据筛析资料所作碎屑粒度累积曲线图求得的Trusk分选系数,将其代入上式即可求得原始孔隙度数值。

根据一些研究者的实测、模拟和理论计算,碎屑岩的原始孔隙度至少可达到35%~40%。

(2)压实作用使孔隙度减小

由压实作用使孔隙度减少的估计方法一般采用压实模拟的数学表达式,即

ϕ=ϕ0e-cp

式中:ϕ——随压力而变化的孔隙度,%;

ϕ0——原始孔隙度,%;

p——上覆地层的压力,MPa(×);

c——与压实速率和被压实物粒度等有关的常数。

其中c值的变化范围随砂中粘土含量增大而变小。粘土的c值最大,纯砂的c值较小。根据模拟试验,粘土的c值为×10-3;中粗纯砂为6×10-4;细粉纯砂则为×10-4;砂中含粘土大于50%时,c值为(~)×10-4。

压实损失的孔隙度也可以根据薄片鉴定来估计,即

油气储层地质学

式中:V粒——颗粒体积占岩石总体积的比例,%;

40——原始孔隙度,%。

(3)胶结作用损失的原始孔隙度

油气储层地质学

式中:V胶——残留胶结物体积占岩石总体积的比例,%;

40——原始孔隙度,%。

(4)溶解作用产生次生孔隙

虽然由于溶解作用产生次生孔隙从而可以增大孔隙度的形成机理已经有很多的研究,但是定量估计次生孔隙度的方法还很少。下面介绍两种估计次生孔隙的方法。

1)Ehrenberg模型——它是基于井的数据资料比较齐全的情况下,建立成岩作用控制次生孔隙的定量模型,其表达式为

dϕs=f(z)

式中:dϕs——次生孔隙增量;

f(z)——次生孔隙随深度的变化函数。

在具体实施时,要取得不同埋深的岩心,系统观察薄片,并进行岩心分析,取得深度、原生孔隙、次生孔隙和总孔隙的各项参数,然后建立原生孔隙、次生孔隙和总孔隙随深度的关系曲线(图),通过最佳拟合后,形成上述非线性次生孔隙增量的函数式。

图 孔隙度随深度的变化曲线

2)薄片鉴定方法求取次生孔隙度是常用的方法。在进行薄片鉴定时,读出总面孔率、原生孔隙面孔率和次生孔隙面孔率,亦即

油气储层地质学

或者可以表达为

ϕ次生=ϕ总-ϕ压-ϕ胶结

式中:ϕ总——沉积物的初始孔隙度,%;

ϕ压——由于压实作用损失的孔隙度,%;

ϕ胶结——由于胶结作用损失的孔隙度,%。

在经过成岩作用阶段划分以及孔隙测量等工作后,就可以归纳成图件。图是川西北凹陷上三叠统致密砂岩成岩作用模式图,图是东濮凹陷沙三段成岩和孔隙演化图。

图 川西北凹陷上三叠统致密砂岩成岩作用及孔隙演化史

图 东濮凹陷沙三段成岩阶段划分和孔隙演化[8]

Ch—绿泥石;I—伊利石;K—高岭石;S—蒙脱石;I/S—伊/蒙比

成岩相分析

油气储层所经历的成岩作用阶段,由于沉积环境及沉积物的差异表现出不同类型的岩石结构和孔隙演化,可以把处于同一成岩阶段相接近的岩石结构和孔隙演化的类型称为“成岩相”。赵澄林、刘孟慧[8]把成岩环境和成岩产物综合命名为成岩相,他们把东濮凹陷北部沙三—四段储层分为四种成岩相。

(1)碳酸盐胶结成岩相

这类成岩相主要分布于近源深沟道浊积岩中。其影响主要表现在使以颗粒流机制形成的块状砂岩,在中-深(3200m)埋藏成岩作用过程中孔渗急剧变低,形成低孔、低渗储层。这一成岩相的形成与活跃活动的水介质作用有关。

(2)石英次生加大成岩相

主要出现在石英净砂岩中。常出现于三角洲前缘席状砂岩及浅滩环境改造的净砂岩中,或在近漫滩微相及再搬运沉积体系中。这类储层孔渗性较低。

(3)粘土杂基支撑成岩相

这一成岩相属低结构成熟度的杂砂岩,砂岩呈杂基支撑结构及似斑状结构。在埋藏成岩作用过程中,所含粘土矿物转化产生的流体,在一定温度、压力和物化条件影响下促成溶解作用,形成各种微孔、微缝。这类储层普遍出现在湖底扇辫状沟道、深水重力流水道微相中,其特征是高孔隙度、低渗透率。

(4)不稳定碎屑溶蚀成岩相

不稳定组分主要指长石、不稳定岩屑、云母及碳酸盐颗粒。不稳定组分的溶蚀,导致各种次生孔隙的形成,这对于发育该区的良好储层是极为重要的。

上述四种成岩相主要受沉积相控制,前两者为强化学胶结成岩相,是在硬砂岩中形成的;后者是杂砂岩形成的成岩相类型。

在成岩相划分的基础上,可以编制成岩相剖面图和平面图(图和图)。

图 马厂地区沙三3-4亚段成岩相模式图 [8]

图 文留地区沙三3亚段成岩相分布图[8]

1—石英次生加大成岩相;2—不稳定组分溶蚀成岩相;3—粘土杂基支撑成岩相;4—碳酸盐胶结成岩相;5—井号

测井行业个人总结

导语:《测井技术》所刊登的文章内容主要涵盖测井技术的理论研究、实验分析、仪器设计与数据采集、测井资料分析处理、石油地质解释、动态监测技术、软件开发以及科技信息动态等方面,内容覆盖了与测井相关的各个领域。下面是我给大家整理的测井行业个人总结内容,希望能给你带来帮助!

一、钻井地球物理-地球物理测井

钻井地球物理广泛应用于石油、天然气、煤、地下水和地热、金属与非金属矿产等资源勘探中, 以及基础地质研究和许多工程监测中, 凡涉及需要取得钻井(孔)资料时, 都可以进行钻井地球物理勘探。

钻井地球物理是地球物理学的一个重要组成部分, 同时它也是工业中实用性很强的一门工程技术, 工业部门习惯上称它为地球物理测井或简称测井。在国外也存在着类似的两种称呼,在该课程中简称测井。

测井以地质学、物理学、数学为理论基础,应用计算机信息技术、电子技术及传感器技术设计专门的测井仪器。将测井仪器置于井中沿井身进行测量,得出井壁地层的各种物理化学性质、地层结构及井身几何特性等各种信息,为石油、天然气和煤等矿产的勘探和开发提供资料和服务。

二、测井的概念

测井(钻井地球物理)是在勘探和开发石油、天然气、煤、金属矿等地下矿藏的过程中,利用各种仪器测量井孔地层的各种物理参数和井眼的技术状况,解决地质和工程问题的一种手段。测井是地球物理学的一个分支。

测井是获取地层信息的最直接的地球物理方法之一,通过在井下放置一定的测量仪器,同时在地面配置对井下仪器进行控制、操作、记录和分析的设备。沿井孔测量井孔地层剖面上不同地层物理参数的变化,然后对参数进行综合分析得到地层的各种地质特征。

三、测井的发展简史

世界上第一次测井是由法国人斯仑贝谢兄弟(C. Schlumberger & M. Schlumberger)与道尔(Doll)一起,在1927年9月5日实现的。 我国第一次测井是由著名地球物理学家翁文波,于1939年12月20日在四川巴县石油沟油矿1号井实现的。

1、模拟记录阶段2、数字测井阶段3、数控测井阶段4、成像测井阶段

四、测井工作的两个阶段

1、现场测取资料阶段

即将仪器运往井场,组装测井仪器,下到待测井段,上提仪器测量各种参数,得到满足一定要求的测井曲线。

2、资料处理解释阶段

将测井数据带回室内,在专用的测井解释工作站上用专用测井解释软件进行处理、解释,得到地层各种地质

参数。

五、测井在石油勘探开发中的应用

石油测井求取的主要储集层参数

储集层:具有孔隙、裂缝等储集空间,并且储集空间之间联通的地层称为储集层。根据储集空间类型可分为碎屑岩储集层和碳酸盐储集层。

岩石孔隙度:岩石内孔隙总体积占岩石总体积的百分比。一般用有效孔隙度评价储集层储集能力。

含油饱和度:含油体积占孔隙体积的百分比,同样可以定义含水饱和度和含气饱和度。

石油测井求取的主要储集层参数

渗透率:在压力差作用下岩石允许流体通过的性质。用于描述岩石渗透性优劣的参数。单位为μm2,1μm2表示长、宽、高为1cm的岩样两端压力差为一个大气压(atm)允许黏度为1×10-3Pa·S的1cm3液体在一秒内通过该岩样的能力。

储集层有效厚度:用测井曲线确定储集层的顶、底界面深度后,两个界面的深度差为储集层的厚度。扣除储集层中的夹层厚度,得到储集层的有效厚度。

六、测井在石油勘探开发中的应用

识别井孔剖面岩性,解释地层岩石矿物成分并计算其含量。

划分储集层,解释储集层所含流体性质(含油性),定量计算储集层参数。

结合其他物探方法计算油气储量。

进行地层层序分析、沉积学研究、地质构造研究、烃源岩与盖层研究。

计算地层压力、地层温度,分析岩石机械特性。

在钻井工程、采油工程及完井工程的应用等。

七、测井在煤田勘探开发中的应用

确定煤层的埋深、厚度及结构。

划分钻孔岩性剖面,提供煤、岩层的物性数据。

确定含水层位置及含水层间的补给关系。

测量地层产状,研究煤、岩层的变化规律、地质构造及沉积环境。

推断解释煤层的碳、灰、水含量,岩层的砂、泥、水含量。

提供地温、岩石力学性质等资料。

对其它有益矿产(煤层气)提供信息或做出初步评价。

八、测井在沉积学研究的应用

主要研究内容有:

相体几何形态:沉积岩体的几何形态是指总体形状和大小,不涉及内部层理构造,是沉积前地形、沉积环境和沉积后地质史的总体表现。

岩性及岩相分析:岩性分析主要是成分和结构分析。岩相分析包括岩性和沉积相的划分,盆地演化的动力学特征分析,沉积相分析,测井相分析等。

沉积构造:沉积构造是测井沉积学研究的重要内容, 包括沉积构造所造成的层理、裂缝及其产状、形状,界面特性和界面内物质结构等内容。

古水流和搬运方向:根据水流层理的特征(类型、角度、形式、分布)和方向(定向程度、发散程度、与古斜坡和砂体几何形状的走向关系)与对应的测井信息来确定古水流的方向及发育情况。

地球化学分析:自然伽玛能谱、岩性密度测井、激发伽马能谱测井等测井技术可直接测量到岩石中的10余种元素成分,使识别岩石成分和分析沉积环境的能力得到提高。

九、测井地质研究中正、反演问题

正演问题:把自然界各种需要研究的地质现象建立相应的地质模型、模式,研究各种测井方法在这种模型、模式中的响应。模型、模式可分为两大类,即数学模型和物理模型。

反演问题:用各种测井参数和曲线形态与各种不同的地质模型、模式建立关系,以便正确反映地下地质现象。反演问题包括两个因素,一是客观因素,即测井资料的准确性, 另为主观因素,即在推论和提出假设的过程中加进人的思想,这也是反演问题的关键。

第一章 自然电位测井

第一节自然电场的产生

一、扩散电动势产生的条件

1. 两种溶液的矿化度不同 2. 中间具有渗透性隔层 3.正负离子的迁移率不同

井中砂岩剖面的扩散电动势:泥浆滤液和地层水的矿化度不同;附着在地层上的泥饼具有渗透性;泥浆滤液和地层水的正负离子迁移率不同。

二、扩散吸附电动势

组成泥岩的粘土矿物,其结晶构造和化学性质只允许阳离子通过泥岩扩散,而吸附带负电的阴离子的作用称为阳离子交换作用。扩散结果 在浓度小的一方富集正电荷带正电,在浓度大的一方富集负电荷,形成扩散吸附电动势Eda: 扩散吸附电动势产生的条件:1.两种溶液的矿化度不同;2.两种溶液用渗透性隔层隔离;3.渗透性隔层对不同极性的离子具有不同的吸附性。

井中泥岩剖面的扩散吸附电动势:1. 泥浆滤液矿化度低于地层水矿化度2. 泥岩具有渗透性3. 泥岩具有吸附阴离子的阳离子交换能力。

当井壁附近地层水和泥浆滤液矿化度都较低时,且Cw>Cmf时泥岩剖面上的扩散吸附电动势为:

在矿化度较低的情况下,溶液的电阻率与溶液的矿化度成反比关系,因此上式可写为:

三、氧化还原电位

地下煤层与其接触的溶液(地层水或钻井液)发生氧化还原反应,从而在其接触面上形成氧化还原电位,最终形成沿井身的自然电位异常。当煤层处于氧化状态时,可形成自然电位正异常;当煤层处于还原状态时,可形成自然电位的负异常。

无烟煤和石墨的氧化反应最强烈,自然电位曲线表现为正异常。

瘦煤、炼焦煤、肥煤氧化反应强度递减,其自然电位正异常依次减小。

气煤和褐煤处于还原状态且强度不大自然电位表现为不大的负异常。

由于烟煤中含有的金属硫化物氧化作用很强,因此烟煤的自然电位正异常与其所含的金属硫化物有关。

四、 过滤电动势

在岩石中,岩石颗粒之间形成很细的毛细管孔道,当泥浆柱的压力大于地层的压力时,泥浆滤液通过井壁在岩石孔道中流过,形成过滤电动势。

在砂泥岩剖面的井中的自然电场主要由砂岩井段的扩散电位和泥岩井段扩散吸附电位组成。在煤层中自然电位以氧化还原电位为主。

第二节 自然电位测井及曲线特征

一、自然电位测井(Spontaneous Potential Logging)

进行自然电位测井时将对比电极N放在地面测量电极M用电缆送至井下,提升M电极沿井轴测量自然电位随井深的变化曲线该曲线称为自然电位曲线(SP曲线)。

二、自然电位测井曲线的特征

静自然电位:在相当厚的纯砂岩和纯泥岩交界面附近的自然电位变化最大其电动势E总称为静自然电位SSP:

泥岩基线:均质、巨厚的泥岩地层所对应的自然电位曲线,即Eda的幅度。而Ed的幅度称为砂岩线。所以静自然电位SSP是均质、巨厚的砂岩地层的自然电位读数与泥岩基线的`幅

淡水泥浆上下围岩为泥岩有限厚度的砂岩的自然电位曲线特征:

1. 曲线关于地层中点对称,地层中点处异常值最大;

2. 地层越厚,ΔUSP越接近SSP,地层厚度变小,ΔUSP下降,且曲

ΔUSP≤SSP;

3. 当h>4d时,ΔUSP的半幅点对应地层的界面,较厚地层可用半幅点法确定地层界面,

地线顶部变尖,底部变宽度差。

层变薄时,不能用半幅点法分层。

4. 实测曲线与理论曲线特点基本相同,由于测井时受多方面因素的影响,实测曲线不如理论曲线规则。

使用自然电位曲线时应注意:

自然电位曲线没有绝对零点,是以泥岩井段的自然电位曲线幅度作基线;

砂泥岩剖面中自然电位曲线幅度ΔUSP的读数是基线到曲线极大值之间的宽度所代表的毫伏数。

在砂泥岩剖面中,以泥岩作为基线,Cw>Cmf时,砂岩层段出现自然电位负异常;Cw

第三节 自然电位测井的影响因素

一、地层水和泥浆滤液中含盐浓度比值(Cw/Cmf)的影响二、岩性的影响

三、温度的影响四、地层水和泥浆滤液中含盐性质的影响

五、 地层电阻率的影响六、地层厚度的影响七、 井径扩大和泥浆侵入的影响

第四节 自然电位曲线的应用

一、划分渗透性岩层

在砂泥岩剖面中,当RwCmf)时,在自然电位曲线上,以泥岩为基线,出现负异常的井段可认为是渗透性岩层,其中纯砂岩井段出现最大的负异常;含泥质的砂岩层,负异常幅度较低,而且随泥质含量的增多,异常幅度下降。砂岩的ΔUSP还决定于砂岩渗透层孔隙中所含流体的性质,一般含水砂岩的 ΔU水SP比含油砂岩的ΔU油SP要高。

二、 估计泥质含量

1. 图版法 2. 利用经验公式估算:

三、 确定地层水电阻率Rw

1. 确定含水层的静自然电位SSP 2. 确定泥浆滤液等效电阻率Rmfe 3. 确定地层水电阻率Rw

四、判断水淹层

水淹层:含有注入水的储层。

SP曲线能够反映水淹层的条件及现象:当注入水与原地层水的及钻井液的矿化度不同时,与水淹层相邻的泥岩层出现基线偏移。偏移量的大小与水淹的程度有关。

第二章 普通电阻率测井

电阻率测井:是一类通过测量地层电阻率来研究井剖面地层性质的测井方法。普通电阻率测井包括梯度电极系测井、电位电极系测井。

第一节岩石电阻率与岩性、孔隙度、含有饱和度的关系

一、岩石电阻率与岩性的关系

离子导电的岩石主要靠连通孔隙中所含溶液中溶解的正负离子导电。

电子导电的岩石靠组成岩石颗粒本身的自由电子导电。金属矿物、无烟煤、石墨,以电子导电为主,电阻率极低。

二、岩石电阻率与地层水性质的关系

岩石骨架:组成沉积岩石的造岩矿物的固体颗粒部分叫做岩石骨架。岩石骨架主要靠很少的自由电子导电,其导电能力很差,因此沉积岩石的导电能力主要取决于所含地层水的电阻率。

1.地层水电阻率与地层水所含盐类化学成份的关系 2.地层水电阻率与矿化度和温度的关系

三、岩石电阻率与孔隙度的关系

沉积岩的导电能力主要取决于孔隙度和地层水电阻率Rw。岩石孔隙度越大或地层水的电阻率越低,岩石导电能力越强,

电阻率就越低;反之,则岩石导电能力差,岩石电阻率高。

四、含油岩石电阻率与含油气饱和度的关系

含油饱和度So :含油孔隙体积占孔隙体积的百分比。含水饱和度Sw :含水孔隙体积占孔隙体积的百分比。 阿尔奇(Archie)公式的应用:

1.确定地层孔隙度2.确定地层水电阻率和视地层水电阻率3.确定孔隙流体性质

第二节普通电阻率测井原理

普通电阻率测井研究的是稳定的电流场,电场强度E、电位U和电流密度J的关系:

一、均匀介质中的电阻率测量

U为:二、普通电阻率测量原理(p27)

电极系:能够在钻孔中实施供电和测量的装置。

电位电极系和梯度电极系电阻率公式的通式为 公式中K值随电极系不同而不同。电极系确定则K值为常数。沿井筒提升电极系,测量ΔU随井深的变化曲线,经横向比例刻度后即为岩层电阻率测井曲线,在均匀介质中所测得电阻率曲线应为一条直线。

三、非均匀介质中的电阻率测井

视电阻率Ra :在井剖面的情况下,测量的电位差除了受地层真电阻率Rt影响外,还要受Ri、Rmc、Rs、Rm,井径d,侵入带直径D,以及地层厚度h和电极系结构等因素的影响,因此不能用均匀介质中的电阻率计算公式简单地求解地层的真电阻率。但是在井中实际测量的电位差,仍然可以代入公式计算电阻率,在这种复杂情况下求出的电阻率称为地层的视电阻率,用Ra表示。

四、电极系

1.电极系的分类

电极系:是由供电电极A、B和测量电极M、N按一定的相对位置、距离组成的测量系统。电极系一般三个电极在井下,一个电极在地面。

成对电极:下井的三个电极中两个在同一线路(供电线路或测量线路)中,或叫同名电极,如A和B、M和N。 不成对电极:另外一个和地面电极在同一线路(测量线路或供电线路)中,叫不成对电极或单电极。

据电极间的相对位置的不同,可以分为梯度电极系和电位电极系。

2. 电位电极系

不成对电极到成对电极中靠近它的那个电极之间的距离小于成对电极间距离的电极系为电位电极系。

3. 梯度电极系

单电极到成对电极中靠近它的那个电极之间的距离大于成对电极间距离的电极系为梯度电极系。梯度电极系的深度记录点O在成对电极的中点。单电极距到O点的距离是梯度电极系的电极距。

相关百科

热门百科

首页
发表服务