
天文观测精确地检验了牛顿力学,并把它推上科学巅峰 1845年,当时的巴黎天文台台长阿喇果(Dominique F. J. Arago)建议勒威耶(Urbain Le Verrier)研究天王星运动的反常问题。勒威耶利用有关天王星的大量观测资料,运用牛顿万有引力定律计算出对天王星起摄动作用的未知行星的轨道和质量,并且预测了它的位置。他将计算结果呈送给法国科学院,与此同时他还写信给当时拥有较大望远镜的几位天文学家,请求帮助观测。他的工作在法国同行中受到了冷遇,但是却获得了德国天文学家伽勒(Johann G. Galle)的协助。1846年9月23日,伽勒收到勒威耶信的当天晚上就进行了观测搜寻。他仅用一个半小时就在偏离勒威耶预言的位置52′处观测到了这颗当时星图上没有的星,即后来大名鼎鼎的海王星。海王星的发现把牛顿力学推上了科学的巅峰。 后来,勒威耶发现水星的近日点进动,在排除太阳引力和其它已知天体的轨道摄动影响后,还有每百年43角秒的多余进动。这是牛顿引力所不能解释的。受海王星发现的启示,勒威耶由此预言了“水内行星”的存在。然而勒威耶穷其一生也无法找到这颗预言的行星。他的水星近日点进动观测结果后来被爱因斯坦用广义相对论成功地加以解释。与牛顿力学不同,在广义相对论中,两个没有自转的物体之间的引力与它们自转起来之后的引力是不同的。这一效应会引起自转轴的进动,水星进动就是由这一效应所产生的。 天文观测对爱因斯坦广义相对论的验证 广义相对论的验证主要是通过天文观测进行的。“天文验证”之一是用广义相对论成功地解释了水星近日点进动问题,计算的进动值在扣除了其它行星的影响后为每100年移动42.91〃,与观测值——43〃十分吻合。后来观测到的地球、金星等行星近日点的进动值也与广义相对论的计算值吻合得相当好。 “天文验证”之二是利用日全食的观测,验证了引力场中光线弯曲的量是符合广义相对论的。1911年,爱因斯坦就在理论上预言了这一现象。他认为在发生日全食时,可以通过测量太阳附近引力场的某一恒星的星光,与先前这颗恒星的位置相比较,便可以测出偏转的角度。从1912年到1922年,天文学家进行了多次日全食观测。特别是英国著名天文学家爱丁顿(Arthur S. Eddington)自爱因斯坦提出这一理论开始就支持他的预言,并为此做了大量的日全食观测。爱因斯坦关于“太阳的引力可能引起恒星光线偏折”预言的正确性,经坎普贝尔(William W. Campbell)1922年的观测结果的检验才最终被主流科学界所确认。。 “天文验证”之三是在一颗白矮星上观测到了谱线的引力红移。广义相对论认为,光线在引力场中传播时,它的频率会发生变化。当光线从引力场强的地方传播到引力场弱的地方时,其频率会略有降低,即发生引力红移现象。1911年,爱因斯坦计算从太阳射到地球的光线的相对引力红移变化是2×10-6。这个数值很小,测量起来相当困难。而白矮星的质量与太阳接近,但半径只有太阳的百分之一,其发出光的引力红移效应比较显著。1925年,美国天文学家亚当斯(Walter S. Adams)观测了一颗白矮星(天狼星B),测到的引力红移与广义相对论的理论计算值基本相符。 值得一提的是,在1974年,美国科学家赫尔斯(Russell A. Hulse)和泰勒(Joseph H. Taylor)发现了一颗新的脉冲双星PSR1913+16。通过对这颗脉冲星的转动周期衰减测量,间接证实了广义相对论所预言的引力波。赫尔斯和泰勒也由于此项工作而荣获1993年诺贝尔物理学奖。 天文观测推翻了托勒玫地心说的统治地位 哥白尼通过三十年的天象观测,渐渐地对长期以来居于宗教统治地位的托勒玫地心说产生了怀疑。哥白尼在他的《天体运行论》中详细讨论太阳、地球、月亮和各个行星的运动,认为太阳是不动的,是宇宙的中心,而地球只是一个围绕太阳转动的普通行星。 1609年,伽利略首次将望远镜用于天文观测,并以此发现了一些可以支持日心说的新的天文现象后,日心说才开始引起人们的关注。这些天文现象主要是木卫体系的发现直接说明了地球不是唯一中心,金星盈亏的发现暴露了托勒玫地心说体系的错误。然而,由于支持哥白尼日心说的数据与支持托勒玫体系的数据都不能与第谷的观测相吻合,因此日心说当时仍不具有优势。直至开普勒以椭圆轨道取代圆形轨道修正了日心说之后,日心说在与地心说的长期斗争中才取得了真正的胜利。人类终于认识到地球不是宇宙的中心。德国诗人歌德曾说:“哥白尼撼动人类意识之深,自古无一种创见、无一种发明,可与之相比。”可以毫不夸张地说是哥白尼的日心说揭开了近代科学革命的序幕。 然而,太阳真的位于宇宙中心吗?这是人们一直非常关心的问题。自从18世纪以来,包括赫歇尔等在内的许多著名天文学家,都认为太阳是在银河系中心。美国天文学家沙普利(Harlow Shapley)通过观测发现球状星团并不均匀地分布在全天,而是比较集中在南天,尤其是人马座一带。他大胆而明确地提出,这是由于太阳并不在银河系中心,而是远离中心的缘故,银河系中心在人马座方向。沙普利把太阳从银河系中心挪开,放到它应该在的地方,其见解意义重大。 1924年,哈勃利用威尔逊山天文台的2.54米望远镜分析一批造父变星的亮度以后断定,这些造父变星和它们所在的“星云”距离我们远达几十万光年,因而一定位于银河系外。这一发现使人们不得不改变对宇宙的看法,即银河系在宇宙中也是一个非常普通的星系。1925年,哈勃对河外星系的最新观测显示星系看起来都在远离我们而去,且距离越远,远离的速度越快。这项发现是20世纪天文学的重大成就,它颠覆了人类对宇宙已往的理解与认识。一直以来,人们都认为宇宙是静止的,而现在发现宇宙是在膨胀的,这一结论意义深远。今天,通过天文观测,人类终于认识到宇宙是没有中心的,整个宇宙各个部分都在彼此远离,并正在加速膨胀。 天文观测正逐渐推翻地球是宇宙生命中心说 人类在抛弃地球是宇宙中心地位的过程中,也提出了地球是否是宇宙中唯一的生命家园,即地球是不是宇宙生命中心的问题。事实上,每个人都在根据自己的认识来寻找着上述问题的答案。对这些问题的回答与思考贯穿于整个文学、艺术和科学的发展史中。新的科学发现使我们更为接近揭开太阳系外生命的一些基本问题,但又提出了更多的新问题。 随着新千年的到来,人类希望凭借自己掌握和拥有的先进的科学和技术能力来回答这些最古老和深奥的问题。虽然对此问题尚无确切的答案,但是至少太阳系外行星存在的理论已为近年的最新天文观测所证实。90年代以来,通过大口径光学望远镜观测,对发现具有类似太阳系的恒星行星系统有了许多突破性进展。到目前为止,天文学家已确定了400余颗有行星系统的恒星候选体。观测还表明,这些具有行星环绕的恒星系统和行星本身都存在多样性。约40颗恒星行星系统具有多行星存在,其中一个恒星系统拥有5颗行星,2个恒星系统拥有4颗行星。从统计来看,至少5%的类太阳恒星存在行星系统。最近已探测到一颗质量大约为2个地球质量的类地行星候选体。特别令人振奋的是天文学家相继在多个行星状星云和多颗行星上发现了生命所必需的一氧化碳、二氧化碳、甲烷和水等大气谱线。天文学家甚至已经能够通过大望远镜和先进的技术方法直接观测到围绕恒星旋转的行星了。目前,通过太阳系外行星的探测,正朝着推翻宇宙生命中心说的方向发展。越来越多的天文观测表明,地球并不是宇宙中唯一存在生命的星球。 我们有理由相信,人类与生俱来的好奇心和求知欲将是驱动人们进行太阳系外行星及其生命搜寻的原动力。新的天文观测和发现必将并继续深刻地影响和改变着整个人类的宇宙观,不断加深人类对宇宙的认识。这种在理性指导下的实践活动体现了现代的科学探索精神,也必将为人类认识自然、与自然和谐相处带来无穷的益处。
本来太阳系就是九大行星,我们小学自然课上学的就是太阳系是由:金星、水星、地球、火星、土星、木星、天王星、海王星、冥王星九大行星组成。
到我四十岁时,忽然从电视新闻中看到:
“由于冥王星没有固体表面,属于气态星球,所以不属于行星。”
就这样,太阳系九大行星又变成了太阳系八大行星,把个冥王星从太阳系给开除了。
所以太阳系不存在有没有第九颗行星的问题,只存在界定冥王星是不是行星的问题。
这个问题问的好。
太阳系本来是有第九颗行星,冥王星的,但是在我小学的时候(2006年的8月24日)国际天文联合会投票把冥王星提出了行星的队伍,降格为矮行星——于是太阳系里面就只剩下来八颗行星。
被开除出“行星”的冥王星
但是太阳系风波再起,冥王星被开除的第十年——2016年,《天文学杂志》发表了一篇论文,论文作者是来自加州理工大学的天文学家Mike Brown,他通过对太阳系边缘柯伊伯带中的一些天体怪异轨道的研究,太阳系可能还有一颗行星正在我们不知道的地方飘荡着。
太阳系边缘的柯伊伯带
该文章还称,根据相应的计算机仿真的结果,这颗行星有十个地球那么重,但是因为距离太阳太远(大概是太阳距离海王星的20倍),所以这颗还没被发现的行星需要花费超过一、两万年才能够绕太阳一周。甚至于还有科学家进一步地研究了这颗可能存在的卫星,给出了卫星可能存在的位置。
不过现在为止,这些结论都还是猜想——毕竟人们不是直接观察到了这颗行星,而是通过他的足迹(也就对曾经的轨道上的天体的影响)发现的,所以引起了很多争议,比如有人认为,这些柯伊伯带中天体的怪异运动不过是他们自己本身很怪,并不是由于这颗神秘的行星引起的,而且宇宙实在是太大了,即便是动用最先进的技术,现在人们都还没有发现这颗神秘的行星。下面是人们预测之中的行星九号的轨道图。
人们称这颗行星为Planet Nine,也就是行星九号
行星九号的假想图
那么为什么冥王星被划归为矮行星呢?被称为行星(大行星)的天体要符合三个条件,一是该天体须位于围绕太阳的轨道之上;二是该天体须有足够大的质量来克服固体应力以达到流体静力平衡的形状(近于球形);三是该天体须已经清空了其轨道附近的区域。冥王星不符合第三条条件。
答:冥王星当初被当作太阳系的第九大行星,但是在2006年的时候被除名了,目前只有八大行星;但是有研究表明,太阳系中有可能还潜伏着一颗还未被发现的大行星,轨道半径300~600个天文单位,质量超过五倍地球质量。
目前太阳系被认为的八大行星有金星、水星、地球、火星、土星、木星、天王星和海王星,其中发现最晚的是海王星,在1846年被发现。
而原来的冥王星(直径2370公里)现在被当做矮行星,冥王星是在1930年才被发现的,太阳系中的矮行星还有很多,比如谷神星(直径952公里)、鸟神星(直径1700公里)、塞德娜(直径1000公里)、阋神星(直径2326公里)等等,但这些都只能算是矮行星,或者叫类冥行星。
但是也有天文学家通过一些中小质量行星的轨道,推测太阳系中还存在一颗大行星,也许能成为太阳系的第九大行星,比如小行星2004 VN112和2013 RF98,两者的轨道几乎是重合的,而且光谱显示两者的成分高度相似,科学家推测这两颗小行星是在数百万年前,被一颗大质量行星的引力推到现在的轨道上。
部分其他小行星的轨道,也显示有一颗大行星的存在,科学家通过反推,勾画出了这颗未知大行星的轨道(黄色轨道)。
这颗大行星的引力,导致了小行星的轨道向太阳系的一边聚集,但科学家目前还未观察到这颗行星,也可能是这颗行星的轨道比预计的更远,或者反射率更低。
也有人猜测,这个未知的行星或许是一颗黑洞,一颗诞生于大爆炸初期的原初黑洞,具有行星级别的质量,如果真是这样,那么这颗黑洞大约只有一个苹果大小,我们在望远镜中根本无法看到它。
天文学家爱德华·维滕,提出可以向预计方向发射一组微型探测器,每个探测器质量大约为100克,探测器定时向地球发出一个脉冲信号,如果他们中的任何一个接近黑洞或者掉入了黑洞,就会被相对论时间膨胀效应影响,导致探测器发出信号的时间出现偏差,我们就可以推断出黑洞的存在。
但是这个方法的难点在于,需要探测器使用精确计时的原子钟,目前的精密原子钟还无法做到这么小,另外一个方案是提高射电望远镜的观测精度,来对每个探测器进行精确定位,测量探测器的运行轨道,从而判断探测器是否受到异常引力的影响。
类似问题此前也做过一次解答,有部分科学家认为第九颗行星是存在,并找到了疑似 行星九 的证据。
2016年1月, 麦克·布朗 (Mike Brown)带领的研究在《天文学》杂志发表文章说, 他们通过海王星轨道以外6颗已知天体的奇特聚集方式推测,在距太阳600A.U.~1200A.U.位置,应该还有一个“X行星”,其质量约是地球的10倍 ,和冥王星一样与太阳系的轨道平面存在一定的倾角。
布朗团队解释称,在已发现的柯伊伯带众多天体中,至少有12颗总是几乎同时穿越太阳系平面。这当中最古怪的6颗,近日点不仅都在黄道面附近,而且其空间位置本身也很聚集。如果这两现象均为偶然,其偶然概率不倒0.007%,而更大可能性是某处有一质量很大的行星存在,也就是所谓行星九。
麦克·布朗在太阳系行星方面的研究,还是有一定权威性的。而在他“杀死”冥王星之前的2004年,就已着手寻找太阳系第十大行星。冥王星降级后,这个项目自然变成寻找行星九。
长期从事研究行星九项目的团队远不止布朗一个,瑞典兰德大学天文学家亚历山大 · 马斯蒂尔也曾表示:第九行星很可能存在,但或许是太阳捕获的系外行星。
(行星九 艺术想象图)
虽然现在的 科技 水平有很大提升,但即使行星九真的存在,要想直接发现也是非常困难的。科学家们通过 广域红外巡天探测者(WISE)卫星 扫描确定,在太阳系10,000个天文单位范围内,不存在木星同等大小或质量的天体。这也就注定,假设的行星九若存在,其因更小质量和体积而又处于更遥远的奥尔特云边缘带,很难通过设备观测发现。
自从冥王星在2006年被降级为矮行星以来,太阳系九大行星的说法就被改变为八大行星。目前,我们只知道太阳系中有八个天体符合行星的最新定义。在八大行星中,位于最外侧的是海王星,它与太阳的平均距离约为30天文单位。那么,在海王星的外侧是否还潜伏着太阳系中的第九大行星呢?
此前,有研究表明,太阳系中可能真的存在第九大行星,它或许位于柯伊伯带的外侧。柯伊伯带是环绕太阳的一个圆环状结构,最近的地方在海王星轨道外侧,最远的地方距离太阳50天文单位。其中包含大量的小行星,还有一些矮行星,冥王星是其中最大的天体。
观测显示,一些柯伊伯带天体的运动轨道比较怪异,天文学家认为,这是因为它们受到了柯伊伯带外侧的第九大行星的引力影响。那么,如果第九大行星真的存在,它会是什么样子呢?
模型显示,第九大行星的质量可能达到了地球的10倍,半径则是地球的3倍。天文学家认为,第九大行星应该是一颗稍小于海王星(海王星的质量是地球的17.1倍,半径是地球的3.9倍)的冰巨行星,而不是一颗岩质行星。如果第九大行星真的存在,为什么天文学家还没有发现它呢?
地球、可能存在的第九大行星与海王星的对比图/Credit: PlanetUser
最主要的原因是这颗行星距离太阳非常遥远,亮度极低,可能比冥王星还要暗淡一万倍,所以很难通过目前的天文望远镜直接观测到。天文学家估计,第九大行星与太阳的最近距离为200至300天文单位,最远距离为600至1200天文单位,环绕太阳运行一圈所需的时间可能达到了2万年。目前,天文学家还在搜寻这颗可能存在的第九大行星。
自冥王星被确定为是一颗矮行星之后,人们熟知的太阳系九大行星理论也就变成了八大行星理论,然而这并不意味着太阳系的边缘就没有其他什么值得人们发现的。实际上,关于第九行星或X行星的理论已经存在一段时间,而最新发现的一颗天体很有可能能够支持这一理论。
这颗天体官方名叫2015 TG38,它有一个昵称叫“妖精(The Goblin)”,是一个被称为极端外海王星天体的组织成员,这意味着它的轨道距离跟太阳非常遥远。
据了解,当2015 TG38被发现的时候,它离太阳非常远--是冥王星跟太阳距离的两倍多,轨道呈长方形。
像2015 TG38这样的天体对天文学家来说是特殊的存在,因为它们的行为不会受到太阳系内更大天体--比如木星、海王星等的影响。如果它们没有被人们已知的行星拖曳,那就意味着为人类寻找第九行星或其他尚未发现的天体作用敞开了大门。
在研究2015 TG38的轨道时研究人员发现,似乎有一个看不见的天体作用于它。在没有看到行星本身的情况下,科学家们只能通过对轨道上其他天体的运动来进行判断。此前的一些例子已经表明,一些大的天体似乎正在影响着海王星以外天体的运动。
当然,这还算不上什么确凿的证据,但这却是向发现第九大行星又迈出了一步。
对于太阳系之中运行的行星,相信大家都是比较熟悉的,之前虽然说是太阳系之中有九大行星,可是后来发现冥王星,并不能够称之为行星之一,因此决定将这颗星球除名,所以现在的太阳系之中准确的来说应该只有八大行星。那么太阳系之中除了这已知的八大行星之外,是否还有别的行星存在呢?关于这个问题科学家一直在不断努力的 探索 ,而且在最近科学家更是找到了很多神秘的现象,很有可能证明太阳系之中还真的存在着第九大行星。
其实在几年前,美国科学家就曾经提出过,太阳系之中可能存在着一些神秘的行星,而且有可能存在着体积非常庞大的第九大行星,这个概率甚至达到了99%以上,也就是说这颗行星几乎是存在的,但是这只是科学家的推测,却并没有找到任何的证据能够证明。
虽然说可怜的冥王星已经被降级成为了矮行星,但是科学家认为其实太阳系刚刚诞生的时候,应该存在着上百颗的行星。不过这么多的行星拥挤在太阳系之中,不同的轨道上运行,造成太阳系之内可以活动的范围非常的小,所以这些行星不断运转的时候就会发生相互的碰撞,此时的太阳系不是很稳定,形成的时候引发了星球大战,当然这场巨大的星球大战之后,太阳系之内就剩下了很少的行星。
而最新的研究发现,在太阳系之内存在着一颗神秘的新的星体,这颗星体有可能就是第九颗行星,科学家还将这颗神秘的行星命名为9号行星。而且推测来说,这颗天体的质量很有可能要比地球质量大十倍以上,在太阳系的外围存在着这样的一个非常奇怪和极度拉长的轨道,而这颗神秘的星球就是在这个轨道上运行的。
这颗神秘的行星,最起码要花1万年到2万年的时间,才能绕着太阳运行一圈,当然到现在为止,还并没有观测到这颗行星的存在,不过科学家却通过一些数学模型以及计算机模拟推测出了这颗星球的存在。
科学家认为,这颗行星是冥王星质量的5000倍以上,而这颗巨大的行星引力也直接影响着太阳系外围很多矮行星,甚至是干扰到了海王星之外柯伊伯带中的天体运动。
也就是说,这颗命名为9号行星的巨大神秘行星,轻轻的推动着柯伊伯带中天体的运动,从而使这些天体与这颗行星之间一直保持着固定的距离。其实过去科学家一直不断的猜测,太阳系之中很有可能会存在着一些神秘巨大的行星,而且在过去几百年的时间,科学家也是为此不断的努力寻找 探索 ,虽然说我们现在的 科技 不断的在提高,但是对于太阳系的普查工作真还不是非常的完善,太阳系之中肯定会存在着很多神秘的天体是没有被科学家发现的。
因为科学家通过对柯伊伯带的不同天体的运行发现,包括2003年发现的塞德娜天体等五颗天体的运行,在近日点都是非常的一致,从运行的距离到轨道倾斜度都是完全一样的,这绝对不可能是一个巧合,也不可能是偶然的情况下出现的现象,偶然的一个巧合可以称之为纯属的巧合,如果很多的巧合叠加在一起,甚至保持完全的一致性,那么它的几率就会非常的小,甚至是不可能的。
既然不可能出现这样的巧合,那么就只能够有一种解释,就是在这些天体的背后,肯定存在着某种神秘的力量,导致这些天体出现了这样奇异的一致现象,科学家认为在这些天体的背后一定会存在着引力,正是这个神秘的引力导致这些天气出现了这样的现象。
而且为此还专门的使用了计算机模型进行了模拟,认为这些天体应该是受到了一个未被发现的巨型天体的影响,而这个神秘的天体很有可能,质量会非常的大,现在科学家为了证实这一想法,已经不断的通过各种的方法来检测,确认这颗行星是否真的存在,当然在科学家确认其存在之前,这一切还都只是科学家的一些理论推测。
而如果真的发现了这颗行星的存在,那么它将是继太阳系之中木星,土星,天王星,海王星之后的第五位成员,有可能也是形成于40亿年前,由岩石和冰的内核膨胀而形成的气态巨星,只不过躲在黑暗的角落里,所以并没有被人们发现而已。
根据最新天文学和物理期刊上科学家认为第九颗行星可能在太阳系的边缘附近存在。
在记载史册上本应就是九棵行星,后来经个国天文学家的不断预测,从九棵行星降至为八课行星那就是冥王星,说冥王星的天体不够足以,经个国专家的不断论坛把它示维诶星的行列,把它列为那棵行列,也是围绕着太阳运行的一棵冥王星。
浅论天文天文学历史 天文学的起源可以追溯到人类文化的萌芽时代。远古时代,人们为了指示方向、确定时间和季节,而对太阳、月亮和星星进行观察,确定它们的位置、找出它们变化的规律,并据此编制历法。从这一点上来说,天文学是最古老的自然科学学科之一。 古时候,人们通过用肉眼观察太阳、月亮、星星来确定时间和方向,制定历法,指导农业生产,这是天体测量学最早的开端。早期天文学的内容就其本质来说就是天体测量学。从十六世纪中期哥白尼提出日心体系学说开始,天文学的发展进入了全新的阶段。此前包括天文学在内的自然科学,受到宗教神学的严重束缚。哥白尼的学说使天文学摆脱宗教的束缚,并在此后的一个半世纪中从主要纯描述天体位置、运动的经典天体测量学,向着寻求造成这种运动力学机制的天体力学发展。 十八、十九世纪,经典天体力学达到了鼎盛时期。同时,由于分光学、光度学和照相术的广泛应用,天文学开始朝着深入研究天体的物理结构和物理过程发展,诞生了天体物理学。 二十世纪现代物理学和技术高度发展,并在天文学观测研究中找到了广阔的用武之地,使天体物理学成为天文学中的主流学科,同时促使经典的天体力学和天体测量学也有了新的发展,人们对宇宙及宇宙中各类天体和天文现象的认识达到了前所未有的深度和广度。 天文学就本质上说是一门观测科学。天文学上的一切发现和研究成果,离不开天文观测工具——望远镜及其后端接收设备。在十七世纪之前,人们尽管已制作了不少天文观测仪器,如中国的浑仪、简仪,但观测工作只能靠肉眼。1608年,荷兰人李波尔赛发明了望远镜,1609年伽里略制成第一架天文望远镜,并作出许多重要发现,从此天文学跨入了用望远镜时代。在此后人们对望远镜的性能不断加以改进,以期观测到更暗的天体和取得更高的分辨率。1932年美国人央斯基用他的旋转天线阵观测到了来自天体的射电波,开创了射电天文学。1937年诞生第一台抛物反射面射电望远镜。之后,随着射电望远镜在口径和接收波长、灵敏度等性能上的不断扩展、提高,射电天文观测技术为天文学的发展作出了重要的贡献。二十世纪后50年中,随着探测器和空间技术的发展以及研究工作的深入,天文观测进一步从可见光、射电波段扩展到包括红外、紫外、X射线和γ射线在内的电磁波各个波段,形成了多波段天文学,并为探索各类天体和天文现象的物理本质提供了强有力的观测手段,天文学发展到了一个全新的阶段。而在望远镜后端的接收设备方面,十九世纪中叶,照相、分光和光度技术广泛应用于天文观测,对于探索天体的运动、结构、化学组成和物理状态起了极大的推动作用,可以说天体物理学正是在这些技术得以应用后才逐步发展成为天文学的主流学科。 人类很早以前就想到太空畅游一番了。1903年人类在地球上开设了第一家月亮公园。花50美分就能登上一个雪茄状、带翼的车,然后车身剧烈摇晃,最后登上一个月亮模型。 同一年,莱特兄弟在空中哒哒作响地飞行了59秒,同时一位名为康斯坦丁·焦乌科夫斯基、自学成才的俄罗斯人发表了题为《利用反作用仪器进行太空探索》的文章。他在文内演算,一枚导弹要克服地球引力就必须以1.8万英里的时速飞行。他还建议建造一枚液体驱动的多级火箭。 50年代,有一个公认的基本思想是,哪个国家第一个成功地建立永久性宇宙空间站,它迟早就能控制整个地球。冯·布劳恩向美国人描述了洲际导弹、潜艇导弹、太空镜和可能的登月旅行。他曾设想建立一个经常载人的、并能发射核导弹的宇宙空间站。他说:“如果考虑到空间站在地球上所有有人居住的地区上空飞行,那么人们就能认识到,这种核战争技术会使卫星制造者在战争中处于绝对优势地位。 1961年,加加林成为进入太空的第一人。俄国人用他说明,在天上飞来飞去的并不是天使,也不是上帝。美国约翰·肯尼迪竞选的口号是“新边疆”。他解释说:“我们又一次生活在一个充满发现的时代。宇宙空间是我们无法估量的新边疆。”对肯尼迪来说,苏联人首先进入宇宙空间是“多年来美国经历的最惨痛的失败”。唯一的出路是以攻为守。1958年美国成立了国家航空航天局,并于同年发射了第一颗卫星“探险者”号。1962年约翰·格伦成为进入地球轨道的第一位美国人。 许多科学家本来就对危险的载人太空飞行表示怀疑,他们更愿意用飞行器来探测太阳系。 而美国人当时实现了突破:三名宇航员乘“阿波罗号”飞船绕月球飞行。在这种背景下,计划在1969年1月实现的两艘载人飞船的首次对接具有特殊的意义。 20世纪的80年代,苏联的第三代空间站“和平”号轨道站使其航天活动达到高峰,都让美国人感到眼热。“和平”号被誉为“人造天宫”,1986年2月20日发射上天,是迄今人类在近地空间能够长期运行的唯一载人空间轨道站。它与其相对接的“量子1号”、“量子2号”、“晶体”舱、“光谱”舱、“自然”舱等舱室形成一个重达140吨、工作容积400立方米的庞大空间轨道联合体。在这一“太空小工厂”相继考察的俄罗斯和外国宇航员有106名,进行的科考项目多达2.2万个,重点项目600个。 在“和平”号进行的最吸引人的实验是延长人在太空的逗留时间。延长人在空间的逗留时间是人类飞出自己的摇篮地球、迈向火星等天体最为关键的一步,要解决这一难题需克服失重、宇宙辐射及人在太空所产生的心理障碍等。俄宇航员在这方面取得重大进展,其中宇航员波利亚科夫在“和平”号上创造了单次连续飞行438天的纪录,这不能不被视为20世纪航天史上的一项重要成果。在轨道站上进行了诸如培养鹌鹑、蝾螈和种植小麦等大量的生命科学实验。 如果将和平号空间站看作人类的第三代空间站,国际空间站则属于第四代空间站了。国际空间站工程耗资600多亿美元,是人类迄今为止规模最大的载人航天工程。它从最初的构想和最后开始实施既是当年美苏竞争的产物,又是当前美俄合作的结果,从侧面折射出历史的一段进程。 国际空间站计划的实施分3个阶段进行。第一阶段是从1994年开始的准备阶段,现已完成。这期间,美俄主要进行了一系列联合载人航天活动。美国航天飞机与俄罗斯“和平”号轨道站8次对接与共同飞行,训练了美国宇航员在空间站上生活和工作的能力;第二阶段从1998年11月开始:俄罗斯使用“质子-K”火箭把空间站主舱——功能货物舱送入了轨道。它还担负着一些军事实验任务,因此该舱只允许美国宇航员使用。实验舱的发射和对接的完成,将标志着第二阶段的结束,那时空间站已初具规模,可供3名宇航员长期居住;第三阶段则是要把美国的居住舱、欧洲航天局和日本制造的实验舱和加拿大的移动服务系统等送上太空。当这些舱室与空间站对接后,则标志着国际空间站装配最终完成,这时站上的宇航员可增至7人。 美、俄等15国联手建造国际空间站,预示着一个各国共同探索和和平开发宇宙空间的时代即将到来。不过,几十年来载人航天活动的成果还远未满足他们对太空的渴求。“路漫漫其休远兮,吾将上下而求索”,人类一直都心怀征服太空的欲望和和平利用太空资源的决心。1998年11月,人类第一个进入地球轨道的美国宇航员、77岁的老格伦带着他未泯的雄心再次踏上了太空征程,这似乎在告诉人类:照此下去,征服太空不是梦。 [编辑本段]天文学概况 天文和气象不同,它的研究对象是地球大气层外各类天体的性质和天体上发生的各种现象——天象,而气象研究的对象是地球大气层内发生的各种现象——气象。 天文学所研究的对象涉及宇宙空间的各种物体,大到月球、太阳、行星、恒星、银河系、河外星系以至整个宇宙,小到小行星、流星体以至分布在广袤宇宙空间中的大大小小尘埃粒子。天文学家把所有这些物体统称为天体。地球也是一个天体,不过天文学只研究地球的总体性质而一般不讨论它的细节。另外,人造卫星、宇宙飞船、空间站等人造飞行器的运动性质也属于天文学的研究范围,可以称之为人造天体。 宇宙中的天体由近及远可分为几个层次:(1)太阳系天体:包括太阳、行星(包括地球)、行星的卫星(包括月球)、小行星、彗星、流星体及行星际介质等。(2)银河系中的各类恒星和恒星集团:包括变星、双星、聚星、星团、星云和星际介质。(3)河外星系,简称星系,指位于我们银河系之外、与我们银河系相似的庞大的恒星系统,以及由星系组成的更大的天体集团,如双星系、多重星系、星系团、超星系团等。此外还有分布在星系与星系之间的星系际介质。 天文学还从总体上探索目前我们所观测到的整个宇宙的起源、结构、演化和未来的结局,这是天文学的一门分支学科——宇宙学的研究内容。天文学按照研究的内容还可分为天体测量学、天体力学和天体物理学三门分支学科。 天文学始终是哲学的先导,它总是站在争论的最前列。作为一门基础研究学科,天文学在不少方面是同人类社会密切相关的。时间、昼夜交替、四季变化的严格规律都须由天文学的方法来确定。人类已进入空间时代,天文学为各类空间探测的成功进行发挥着不可替代的作用。天文学也为人类和地球的防灾、减灾作着自己的贡献。天文学家也将密切关注灾难性天文事件——如彗星与地球可能发生的相撞,及时作出预防,并作出相应的对策。[编辑本段]太阳系 (注:在2006年8月24日于布拉格举行的第26界国际天文联会中通过的第5号决议中,冥王星被划为矮行星,并命名为小行星134340号,从太阳系九大行星中被除名。所以现在太阳系只有八大行星。文中所有涉及“九大行星”的都已改为“八大行星”。) 太阳系(solar system)是由太阳、8颗大行星、66颗卫星以及无数的小行星、彗星及陨星组成的。 行星由太阳起往外的顺序是:水星(mercury)、金星(venus)、地球(earth)、火星(mars)、木星(jupiter)、土星(saturn)、天王星(uranus)和海王星(neptune)。 离太阳较近的水星、金星、地球及火星称为类地行星(terrestrial planets)。宇宙飞船对它们都进行了探测,还曾在火星与金星上着陆,获得了重要成果。它们的共同特征是密度大(大于3.0克/立方厘米)、体积小、自转慢、卫星少、主要由石质和铁质构成、内部成分主要为硅酸盐(silicate)并且具有固体外壳。 离太阳较远的木星、土星、天王星及海王星称为类木行星(jovian planets)。宇宙飞船也都对它们进行了探测,但未曾着陆。它们都有很厚的大气圈、主要由氢、氦、冰、甲烷、氨等构成、质量和半径均远大于地球,但密度却较低,其表面特征很难了解,一般推断,它们都具有与类地行星相似的固体内核。 在火星与木星之间有100000个以上的小行星(asteroid)(即由岩石组成的不规则的小星体)。推测它们可能是由位置界于火星与木星之间的某一颗行星碎裂而成的,或者是一些未能聚积成为统一行星的石质碎块。陨星存在于行星之间,成分是石质或者铁质。 星,距离(AU),半径(地球),质量(地球),轨道倾角(度),轨道偏心率,倾斜度,密度(g/cm3) 太 阳,0 ,109 ,332,800 ,--- ,--- ,--- ,1.410 水 星 ,0.39 ,0.38 ,0.05 ,7 ,0.2056 ,0.1° ,5.43 金 星 ,0.72 ,0.95 ,0.89 ,3.394 ,0.0068 ,177.4° ,5.25 地 球 ,1.0 ,1.00 ,1.00, 0.000 ,0.0167 ,23.45° ,5.52 火 星 ,1.5, 0.53, 0.11 ,1.850 ,0.0934, 25.19° ,3.95 木 星 ,5.2 ,11.0 ,318 ,1.308 ,0.0483 ,3.12° ,1.33 土 星 ,9.5, 9.5 ,95 ,2.488 ,0.0560 ,26.73° ,0.69 天王星 ,19.2, 4.0 ,17 ,0.774 ,0.0461 ,97.86° ,1.29 海王星 ,30.1 ,3.9 ,17 ,1.774 ,0.0097 ,29.56° ,1.64 行星离太阳的距离具有规律性,即从离太阳由近到远计算,行星到太阳的距离(用a表示)a=0.4+0.3*2n-2(天文单位)其中n表示由近到远第n个行星(详见上表) 地球、火星、木星、土星、天王星、海王星的自转周期为12小时到一天左右,但水星、金星自转周期很长,分别为58.65天和243天,多数行星的自转方向和公转方向相同,但金星则相反。 除了水星和金星,其它行星都有卫星绕转,构成卫星系。 在太阳系中,现已发现1600多颗彗星,大致一半彗星是朝同一方向绕太阳公转,另一半逆向公转的。彗星绕太阳运行中呈现奇特的形状变化。 太阳系中还有数量众多的大小流星体,有些流星体是成群的,这些流星群是彗星瓦解的产物。大流星体降落到地面成为陨石。 太阳系是银河系的极微小部分,太阳只是银河系中上千亿个恒星中的一个,它离银河系中心约8.5千秒差距,即不到3万光年。太阳带着整个太阳系绕银河系中心转动。可见,太阳系不在宇宙中心,也不在银河系中心。 太阳是50亿年前由星际云瓦解后的一团小云塌缩而成的,它的寿命约为100亿年。[编辑本段]宇宙航天 宇宙是广漠空间和其中存在的各种天体以及弥漫物质的总称。 宇宙是物质世界,它处于不断的运动和发展中。 千百年来,科学家们一直在探寻宇宙是什么时候、如何形成的。直到今天,科学家们才确信,宇宙是由大约150亿年前发生的一次大爆炸形成的。 在爆炸发生之前,宇宙内的所存物质和能量都聚集到了一起,并浓缩成很小的体积,温度极高,密度极大,之后发生了大爆炸。 大爆炸使物质四散出击,宇宙空间不断膨胀,温度也相应下降,后来相继出现在宇宙中的所有星系、恒星、行星乃至生命,都是在这种不断膨胀冷却的过程中逐渐形成的。 然而,大爆炸而产生宇宙的理论尚不能确切地解释,“在所存物质和能量聚集在一点上”之前到底存在着什么东西? “大爆炸理论”是伽莫夫于1946年创建的。 大爆炸理论 (big-bang cosmology)现代宇宙系中最有影响的一种学说,又称大爆炸宇宙学。与其他宇宙模型相比,它能说明较多的观测事实。它的主要观点是认为我们的宇宙曾有一段从热到冷的演化史。在这个时期里,宇宙体系并不是静止的,而是在不断地膨胀,使物质密度从密到稀地演化。这一从热到冷、从密到稀的过程如同一次规模巨大的爆发。根据大爆炸宇宙学的观点,大爆炸的整个过程是:在宇宙的早期,温度极高,在100亿度以上。物质密度也相当大,整个宇宙体系达到平衡。宇宙间只有中子、质子、电子、光子和中微子等一些基本粒子形态的物质。但是因为整个体系在不断膨胀,结果温度很快下降。当温度降到10亿度左右时,中子开始失去自由存在的条件,它要么发生衰变,要么与质子结合成重氢、氦等元素;化学元素就是从这一时期开始形成的。温度进一步下降到100万度后,早期形成化学元素的过程结束(见元素合成理论)。宇宙间的物质主要是质子、电子、光子和一些比较轻的原子核。当温度降到几千度时,辐射减退,宇宙间主要是气态物质,气体逐渐凝聚成气云,再进一步形成各种各样的恒星体系,成为我们今天看到的宇宙。大爆炸模型能统一地说明以下几个观测事实: (1)大爆炸理论主张所有恒星都是在温度下降后产生的,因而任何天体的年龄都应比自温度下降至今天这一段时间为短,即应小于200亿年。各种天体年龄的测量证明了这一点。 (2)观测到河外天体有系统性的谱线红移,而且红移与距离大体成正比。如果用多普勒效应来解释,那么红移就是宇宙膨胀的反映。 (3)在各种不同天体上,氦丰度相当大,而且大都是30%。用恒星核反应机制不足以说明为什么有如此多的氦。而根据大爆炸理论,早期温度很高,产生氦的效率也很高,则可以说明这一事实。 (4)根据宇宙膨胀速度以及氦丰度等,可以具体计算宇宙每一历史时期的温度。大爆炸理论的创始人之一伽莫夫曾预言,今天的宇宙已经很冷,只有绝对温度几度。1965年,果然在微波波段上探测到具有热辐射谱的微波背景辐射,温度约为3K。
太阳系是原始太阳爆炸形成的太阳系是怎样形成的,这是天文学的基础理论之一,这一基础理论搞不清楚,其他的很多天文学理论就搞不清楚。可到目前为止,太阳系是怎样形成的科学家们也没搞清楚。地球膨裂说认为,太阳系是原始太阳爆炸形成的。46亿年前,太阳因内部的核聚变而发生爆炸,飞出许多熔融的火球,这些熔融的火球冷却后形成了行星、月亮、小行星、卫星和慧星,地球就是其中之一。一些大的火球在冷却的过程中,由于受到表面张力的作用,形成了球形。一些小的火球来不及收缩成球形,而冷却成了不规则的形状,形成了火星和木星间的小行星带、小行星。一些小一点的火球由于离大火球较近而被“俘获”,形成了大火球的卫星。一些离太阳较近的行星具有较重的物质;一些离太阳较远的行星,具有较轻的物质。这是因为离太阳较远的行星具有的液态氢等物质和太阳表面的熔融物质一样,并且较轻,而且处在太阳表面,因此它们在太阳爆炸时获得了较大的离心力,飞离太阳较远;距离太阳较近的行星具有的岩石、金属等物质和太阳表面下面的熔融物质一样,并且较重,而且处在太阳表面的下面,因此它们在太阳爆炸时获得了较小的离心力飞离太阳较近。太阳系是原始太阳爆炸形成的证据:1、质量守衡经科学家们观测,太阳的质量是太阳系质量的99.87%,太阳系中行星的质量是太阳系的0.13% (1)。那么太阳的质量+太阳系中行星的质量=太阳系(原始太阳)的质量。也就是99.87%+0.13%=100%。这足已证明太阳系是原始太阳爆炸形成的。2、角动量守衡太阳角动量是太阳系的0.73% ,太阳系中行星的角动量是太阳系的99.27%(2)。那么太阳的角动量+太阳系中行星的角动量=太阳系(原始太阳)的角动量。也就是0.73%+99.27%=100% 。这足已证明太阳系是原始太阳爆炸形成的。3、能量守衡(转动能量守衡)因为天文计算中不可能绝对准确,所以我们可以把天文学家们关于太阳、行星的质量,太阳、行星的角动量占太阳系的百分比看成是整数。也就是把太阳的质量看成是太阳系质量的99.%,太阳系中行星的质量看成是太阳系的1% 、太阳的角动量看成是太阳系的1%,太阳系中行星的角动量看成是太阳系的99% 。这也就是说太阳的质量和行星的质量之比为99/1,太阳的角动量和行星的角动量之比为1/99。这也就是说太阳的质量和行星的质量之比和太阳的角动量和行星的角动量之比互为倒数1/99=1/99。我们设太阳的质量为m ,太阳系中行星的质量为m1 ,根据角动量公式mr2ω,设太阳的角动量为mr2ω ,太阳系中行星的角动量为m1r12ω1 。这样太阳的质量和行星的质量之比与太阳的角动量和行星的角动量之比互为倒数,也就是m1/ m= mr2ω/m1r12ω1 (1) 。我们假设太阳系是原始太阳爆炸形成的。原始太阳爆炸形成太阳系之后,行星在太阳万有引力的拖拽下围绕太阳公转,太阳的转动能就会不断向行星转移,直至太阳的转动能等于行星的转动能为止。根据实心球转动能公式E=2/5mr2ω2,我们设太阳的转动能为E=2/5mr2ω2 ,太阳系中行星的转动能为E1=2/5 m1r12ω12 。太阳的转动能等于行星的转动能,也就是2/5 mr2ω2 =2/5 m1r12ω12 , 也就是mr2ω2 = m1r12ω12 (2) 。根据(2)式得出 mr2ω/m1r12ω1= ω1/ω (3)根据(1)、(3)式得出 m1/ m =ω1/ω (4)根据(1)、(4)式得出ω1/ω= mr2ω/m1r12ω1 (5)根据(5)式得出mr2ω2 = m1r12ω12 (6)根据(6)式得出我们假设的(2)式成立,太阳的转动能=太阳系中行星的转动能,太阳的转动能+太阳系中行星的转动能=原始太阳的转动能,转动能守衡。4、行星的公转轨道是椭圆形。我们知道,椭圆形公转轨道是因为离心力大于向心力;圆形公转轨道是因为离心力等于向心力。以地球为例,地球在近日点自西向东公转时,离心力大于向心力,所以地球离太阳越来越远,到远日点时离心力等于向心力:地球在远日点自西向东公转时离心力小于向心力,所以地球离太阳越来越近,到近日点时离心力大于向心力。地球的公转轨道为什么是椭圆形呢?地球膨裂说认为,因为地球是太阳发生爆炸飞离太阳的,所以离心力大于向心力。这就像人造卫星的初始地球轨道是椭圆形一样。因为人造卫星是从地球上发射出去的,人造卫星有一个飞离地球的离心力,而且离心力大于向心力,因此人造卫星的初始地球轨道是椭圆形。因为人造卫星是被月球“俘获”的,离心力等于向心力,所以人造卫星的初始月球轨道为是圆形按照星云说的观点,太阳和行星是同源的,它们都是原始星云形成的,因此它们的公转轨道应该是圆形的。5、八大行星的近日点都在太阳的同一侧。为什么八大行星的近日点都在太阳的同一侧呢?这是因为八大行星是在太阳近日点的一次爆炸时同时飞出的。这就像人造卫星的地球公转轨道近地点就是人造卫星的发射点一样。按照星云说的观点,太阳和行星是同源的,不可能八大行星的近日点都在太阳的同一侧。6、太阳系角动量分布异常我们假设太阳系是原始太阳爆炸形成的,就应该太阳的转动能等于行星的转动能,也就是mr2ω2 = m1r12ω12 (2)。根据(2)式得出mrω2 /m1r1ω12= r1/r (3)根据(1)、(3)式得出 m1/ m = r1/r (4)根据(1)、(4)式得出 r1/r = mrω2 /m1r1ω12 (5)根据(5)式得出mr2ω2 = m1r12ω12 (6)因为m1/ m =1/99,所以 mrω2 /m1r1ω12=1/99 。也就是行星的角动量是太阳系角动量的99% 。因此,太阳系角动量分布异常是原始太阳爆炸形成太阳系的证据。如果太阳系是原始星云形成的,上述太阳系是原始太阳爆炸形成的6个证据就无法解释。参考文献:(1)、查百度:“太阳的质量是太阳系质量的99.87%,太阳系中行星的质量是太阳系的0.13%”。 (2)、查百度:“太阳角动量是太阳系的0.73% ,太阳系中行星的角动量是太阳系的99.27%”。作者:赖柏林
269 浏览 2 回答
196 浏览 2 回答
169 浏览 2 回答
104 浏览 3 回答
360 浏览 2 回答
275 浏览 3 回答
288 浏览 2 回答
303 浏览 2 回答
99 浏览 2 回答
212 浏览 1 回答
311 浏览 4 回答
146 浏览 3 回答
213 浏览 4 回答
245 浏览 6 回答
315 浏览 3 回答