在高中数学实际教学过程中,有些教师严重忽视了教师扮演的角色,出现过分重视学生独立学习的现象,这是高中数学 教育 工作者不容忽视的问题!下面是我为大家整理的高中数学教学问题探究论文,欢迎阅读! 高中数学教学问题探究论文篇一 1、关于存在的问题 1.1学生接受不了容量较大、难度较强的高中教材。初中学习数学时,初中教材内容简单通俗,题型较少比较容易,学生很轻松的掌握数学知识的来龙去脉,教材对概念描述简单,一些数学定理根本没有论证,教材之间衔接较缓。高中教材内容极为抽象,注重于变量、字母的研究,注重计算、分析理论、注重逻辑性、抽象性的知识呈现。例如高一就出现集合、映射、函数等众多的抽象概念,符号极多,定义、定理教材叙述极为严格,具有高起点、难度很大,容量有多的特点。近几年教材的调整,初中教材降低的幅度较大,高中教材也降低了一些,但是由于受高考的制约,教师不能也不敢降低难度,直接造成了高中数学教学的难度根本没有降低,可以肯定说,调整后的高中教材不但没有降低难度,反而难度更大了。高中一年级时间紧,数学容量大,教学进度极快,学生不适应高中数学学习也就不足为怪了。 1.2学生不适应初中与高中课标中部分知识点的衔接。初中数学课程标准对一些知识要求简单理解,高中教材也没有进行适当补充,一些初中学生应该掌握的知识,学生只知道肤浅的内容,或者只知道一个结论而已,结论是怎样来的,用结论解答什么问题,解答的途径 方法 等一概不知。出现了高一学生上课时常遇到没有学过的知识。例如:初中内容一元二次方程的判别式,根与系数的关系,二次函数的图像解二次不等式诸多问题,课程标准要不高,学生接触过简单知识点,高中学习感到特别难以接受。一些教师没有办法,只有进行补充,占据了大量时间,为完成教学任务,只有加快速度。导致了初中数学知识没掌握,高中数学知识被落下了的惨剧。 1.3学生不能很快适应高中老师的教学方式。初中教材内容少多、难度不大、要求较低,教师教学进度不快,一些重点、难点,反复讲解,多次练习,逐一击破。一些教师为了学生中考取得好的成绩,不厌其烦的进行演练,有的问题达到了炉火纯青的地步。造成了有的学生学习数学积极性的丧失,出现了学生“重知识,轻能力”、“重试卷,轻书本”的错误。学生进入高中学习,教材的丰富容量、要求较高、进度很快、信息广泛、难度加深,知识的重点难点就更不用说了。新课程标准的高中教学通过设导、设问、设陷、设变,启发引导学生去思考、去解答,注重学生思想方法的渗透,思维品质能力的培养,提倡学生自主学习。刚刚入学的高中生很难适应这种教学形式,跟不上教师的讲课,严重影响了数学的学习。 1.4学生没有及时调整自己的心理及 学习方法 。高中一年级学生面对一切都是新的:新环境、新教材、新同学、新教师、新集体……,学生一定有一个由陌生到熟悉的经历。紧张而残酷的中考,进入了理想的高中学习,一些学生有松口气的心理,入学后不紧张,优哉游哉。一些学生中考前就听到高中数学如何难学的信息,产生了敬而远之的心理。高中数学一些抽象的概念例如映射、集合、异面直线更让学生无所适从,影响了高一新生的学习质量。初中教师讲解得很细,训练的熟练,学生经过训练,概念、公式、题型了如指掌,只要对号入座即可取得好成绩。学生围着老师转,完全听命于老师,不注重自主思考、归纳 总结 。高中学习内容较多,学习时间较少,要求学生必须归纳总结,掌握数学思维方法,触类旁通。高一学生学习数学,仍然使用 初中学习方法 ,造成学习阻力很多,完成老师当天布置的作业都很艰难,预习、复习时间没有了,严重影响学习质量的提高。 1.5新课程的辅导资料不尽完善。新课程改革进行几年了,书市上教辅资料繁多,这些教辅资料和老教材教辅资料一脉相承,有的只是对顺序做了调整而已。内容可谓涛声依旧,没有体现新课程标准理念,让师生对学好数学提出异议。 2、关于几项对策 措施 2.1掌握学生学情,进行有效衔接。高一开学伊始,召开新生座谈会,调查学生入学成绩,进行相关测试,了解学生学习基础,什么学习习惯,初中数学教师讲课特点。研究初中高中教学大纲、教材,掌握初高中知识体系,找到初高中知识最佳衔接点,有的放矢对学生讲授,进行有效衔接。 2.2激发学生学习的兴趣,实现心理衔接。教师必须发挥情感和心理的积极作用,兴趣是进行有效活动的必要条件,要让学生学好数学,一定要激发学习数学的兴趣,运用多媒体教学手段,调动学生学习数学的欲望,让学生树立学好的信心,注重良好的学习习惯培养,鼓励学生大胆质疑,标新立异,自主学习,提倡探究学习,让学生适应高中数学学习,学生的每一次成功。教师要及时肯定表扬鼓励,实现心理衔接。 2.3关于教材内容的衔接。高一教学中把重点放在基础知识上,不能过分强调难题、偏题、高考题,让学生接受数学,喜欢数学,完成数学知识的学习,践行新课程理念,教师教学采用“低起点、小梯度、多训练、分层次”进行,温习初中旧知识,学习高中新知识,实现初高中教材内容的衔接。 2.4关于教学方式的衔接。高中数学要求学生观察、类比、归纳、分析、综合建立严密的概念, 教学方法 上必须实现较好的衔接。发挥教师的主导作用,突出学生的主体主用,让学生自主探索、合作交流,真正理解和掌握数学知识和数学思想方法,直接获得数学活动 经验 。 2.5关于学法指导、良好学习习惯的培养。必须体现学生为本的理念。彻底改变学习方式,倡导学生在教师的指导,互相交流、主动参与。激发学生想象思维,鼓励课堂上踊跃发言,培养学生养成良好的学习习惯,加强学习方法的指导,提高教学质量。 2.6关于培养学生数学思维品质。教师一定注重加强学生的 思维训练 ,开展有效思维活动,摒弃思维惰性,把学生分析问题能力上的衔接好。 作者:张宇欣 工作单位:吉林省公主岭市怀德第一中学 高中数学教学问题探究论文篇二 一、高中数学教学现状 目前,在高中数学的教学实践中,学生主要采用题海战术以及死记硬背的方式,培养学生自主解决问题的能力,搜集各种的题目让学生去练习,并且对解题方法进行死记硬背,然后在碰到类似题型的时候就机械的模仿其解题套路,不自己寻找问题解决的办法。而教师则采用传统的满堂灌式的教学方法,将不同类型的数学习题与具体的解题思路全部告知学生,长此以往,学生失去了对数学学习的主动性与积极性,极大的影响到学生自主解题能力与 创新思维 能力的培养,一旦遇到以前没有接触过的题目类型,就变得束手无策。因此,在新课标的倡导下,教师与学生都需要积极的转变观念,注重对问题解决能力的培养,从而提高高中数学教学的有效性。 二、学生问题解决能力的培养 首先,巩固基础知识的教学,为学生自主解决问题提供必要的保障。通过对知识与能力两者的内在关系进行分析,发现学生“自主解决问题”的能力的培养与有效提高主要取决于两个因素:一,教师在实践教学中,对学生整个知识基础与技能状况的准确把握;二,在此基础之上,为学生“自主解决问题”能力的培养,提供必要的知识与技能的准备。因此,在高中数学的实践教学中,教师不仅需要通过各种途径全面的把握学生对知识的掌握程度,而且还需要采取有效的措施为学生在新旧知识间架出一座“桥梁”,注重对学生既基础知识与技能的教学,从而为学生学习新的数学知识并解决新的数学问题提供智力方面的支持。同时,在教学中,教师还需要注重对知识的积累,帮助学生进行知识的分类与整理,从而为其自主的分析问题与解决问题创造良好的条件。其次,创设问题情境,引导学生自主发现问题。积极培养学生的“自主解决问题”的首要任务就是让学生在学习中,自主的发现问题,并提出问题。问题是思维的起源,任何一个思维过程都指向了一个具体的问题,而且问题也是创造的基础,一切的创造也从问题开始[1]。在高中数学的教学实践中,创设一个“问题情境”,就是相当于建立一个良好的学习环境,它能够有效的激发广大学生学习的主动性与积极性,从儿进行自主的思考与探讨,积极的发现问题。因此,在数学课堂中,教师就需要对学生的“最近发展区”实施全面的把握,并在此基础之上创设出一些“问题情境”,使学生能够“跳一跳”就能自主的发现并提出问题。如在对“等比数列”这一知识开展教学的时候,教师就可以这样创设“问题情境”:有一天,兔子与乌龟赛跑,乌龟在兔子前方1公里处,而已知兔子的速度是乌龟的10倍,当兔子向前追1公里时,乌龟同样前景了1/10公里;而当兔子追到1/10公里处的时候,乌龟又向前走了1/100公里;当兔子赶到1/100公里处时候,乌龟又向前走了1/1000公里……问:在相同的时段内,兔子与乌龟各自的路程是多少?兔子能追上乌龟吗?通过这种形式的问题情境的创设,让学生观察到数列的特点,进而引出有关等比数列的概念,激发学生的学习兴趣,从而引导学生发现相应的问题并提出问题。最后,培养创新思维,挖掘新型的数学思维方法,为学生“自主解决问题”提供条件。在高中数学的学习过程中,创新思维是分析问题与解决问题的重要构成部分,对开发学生的智力有着重要的作用,因此,在高中数学的实践教学中,教师要积极培养学生的创新思维,鼓励学生进行大胆的猜想,从而提出问题[2]。同时,教师还需要积极鼓励学生挖掘新型的数学思维方法,并将其进行全面的把握与应用,从而真正体会到数学学习的本质,并将其运用到实际的数学问题的解决当中,使整个数学的解题的思维能力可以得到有效的培养的提高,进而发展学生的“自主解决问题”的能力。 三、结束语 数学作为一门基础的应用学科,要求学生具备较强 想象力 、 逻辑思维 能力与推理的能力。然而在实际的学习过程中,由于学生缺乏对问题的自主解决能力,导致学生一般都认为数学比较难学,不愿意学习数学,进而产生“厌学”心理。因此,在高中数学的教学实践中,教师要注意对学生的“自主解决问题”能力的充分培养,从而有效的提高学生对数学问题的解决能力,进而提高学习效果[3]。 作者:冯春瑞 工作单位:甘肃省华亭县教育局 高中数学教学问题探究论文篇三 1高中数学教学过程中存在的若干问题 1.1过分重视学生的自主学习,忽略教师的引导作用 在高中数学教学过程中,丰富学生的学习风格以及方法,能够促使学生更加会学习,为之后他们一生的学习与发展打下良好的基础。除此之外,在高中数学实际教学过程中,严重忽视了教师扮演的角色、过分重视学生独立学习的现象。由于教师角色的缺失,学生的认知水平,只是在原地徘徊,导致课堂教学。教学过程是学生自主建构的统一和教师指导。当学生遇到困难,教师要引导学生认为,当学生的思维是窄的,教师应该开阔自己的思维。总之,教师的指导是确保学生学习的方向和有效性的重要前提。 1.2教学课堂上缺乏对学生进行正面教育 高中数学新课程强尊重个性差异和学生的学习,鼓励学生积极参与。学习有困难,贫困学生给予及时的表扬和鼓励的自信,但这并不意味着学生盲目歌颂。赞美和批评的完整的识别和动机。一方面,我们要善于发现学生的闪光点,思想,及时,适当的表扬和鼓励,让学生得到发挥;另一方面,学生的错误意见,明确指出,要澄清模糊数学问题。 1.3教学课堂上教师的角色缺乏平衡性 新数学课程要求提高学生主动观察,实践,猜测,推理,数学教学和学习活动的验证和交换。学生的学习风格,阅读,实践,自主探索,合作交流等。但老师指导,合作者和促进者,成为课堂教学的领导者。新课程倡导民主,开放性,科学课程,强调“教师即课程”。这就要求教师不仅要成为课程的实施,应该成为课程的建设者和开发者。新课程与旧课程之间的比较,它们之间的根本区别在于新课程要求培养学生的创新精神和促进教学过程中的学生的个性发展,强调学生在自己的感情,并引导他们进行自己的意见,让他们成为数学学习的主人,不仅是对传统的教学方法,在教学转移。然而,在实际的学习项目,因为学生的认知上的局限性和个体差异,不可避免地会出现各种意想不到的问题,就必须充分发挥教师的主导作用,教师应及时评价,正确处理学生的经验,多了解,理解和共识,多元 文化 的普世价值之间的关系。此外,在新课程把太多的重点放在对个性差异的尊重和学习的学生,鼓励学生积极参与,以夸张赞美的激励效果,忽略错误校正LED,培养学生的自信心理,影响了他们的身心健康。 2高中数学教学内容存在的若干问题 2.1教学内容难度进一步加大 新课程理念下,我们使用的是人教版教材编写的一个,与旧教材相比似乎难度降低,但也增加了一些新的内容,而这些困难的部分新增加的不小。我觉得新课程教材是完全按照市重点高中学生的实际情况,制备,不考虑农村学生。如算法初步内容,涉及的知识在计算机语言,具有较高的逻辑相关的知识,抽象和专业。这些内容在农村的学生很难学,因为地区的差异,他们计算机知识的掌握是不够的,甚至可以说,这方面的知识是没有的。新的数学课程,所需的内容分为五个模块,高中完成所要求的5个模块和两个选修模块。教学内容的增加,教师为了完成教学任务,一味追求教学进度,有时一类的两个或三个小时的内容,没有实践,没有消化,没有巩固,使学生了解不全面,甚至能记住的知识不了解或不了解的深入,当然不会解决问题,这势必增加,学习的难度。 2.2教学过程中没有充分发挥教师的引导作用 在实际教学中,重视学生的学习自主性,而忽视教师的积极引导,一些教师认为,新课程是要充分发挥学生的主动性,让学生自己学习,而忽视了教师的必要的,模糊的积极引导,数学知识的准备接受课程的学生,降低了课堂教学的有效性。 2.3新课改背景下淡化了教学素材的实际作用 在新课程的要求,在高中数学教学中,充分利用各种资源,完成补充材料,以扩大,延伸,组合,并把它们放进学生的实际生活,但由于教师个体的差异和课程资源的认识程度,在教学实践中,教学资源教师片面发展未能完全控制的教学内容,教学内容的泛化,甚至出现模糊现象,面对这种情况,教师要合理利用现代化的教学手段,充分利用教学书的配套光盘制作高质量课件来丰富他们的教学。我们应该根据教学内容的特点,并充分发挥计算机辅助,精心制作多媒体课件的适用,以达到最佳的教学效果。 2.4过分强调计算机与信息技术教学 随着信息网路技术的日益盛行,计算机辅助教学,信息技术是数学教育现代化的重要手段。例如,在几何中的高中数学教学过程中,进行适当的教学课件,利用多媒体辅助教学手段充分,从而能够达到更好的教学效果。由此可见,计算机教学在高中数学教学过程中,具有十分重要的教学辅助作用,从而、在当前高中数学教学课堂教学中,使用计算机信息技术教学成为教学的主要手段,安全忽略其使用是否过量。计算机技术教学纵使再好也不能什么事情都依赖于多媒体网络,如基本的算术,想象力,学生数学活动的逻辑推理,数学证明应该依靠自己来完整的,因此,我认为掌握好教学信息技术与传统教学之间的平衡,注重有效的整合,整合最好的。 3结语 综上所述,高中数学教学过程中仍旧存在部分不足,需要进一步加强对教学问题的解决,为广大师生进行教学和学习提供一个良好的学习环境,尽最大可能的去规避这些不足点的再次出现。 作者:王俊民 工作单位:甘肃省白银市平川中学
核心素养培育下高中数学分层教学的意义和方法论文
在学习和工作的日常里,大家总免不了要接触或使用论文吧,论文是一种综合性的文体,通过论文可直接看出一个人的综合能力和专业基础。那么你知道一篇好的论文该怎么写吗?以下是我精心整理的核心素养培育下高中数学分层教学的意义和方法论文,仅供参考,欢迎大家阅读。
摘要: 随着新课标改革的推进,我国对培养学生核心素养的重视程度日渐加深。为了避免传统教育模式中“满堂灌”和“填鸭式”的教学方式,激发学生在日常学习中的积极性、主动性,教师应该打破传统的模式,运用分层教学模式,从而使学生在学习知识的同时,还能提升自身的综合素质。
关键词: 核心素养;高中数学;分层教学;
在当前新课改的背景下,各个学科在课堂上的授课模式发生改变已成为必然趋势。高中数学作为一门主要学科,在新课改过程中一定会遭遇诸多问题。另外,教师的教学质量和学生的课堂认知,也会受到学生学习水平的制约。因此,在因材施教理念的指导下,一种新型、科学的教学模式应运而生,那就是分层教学。分层教学能在很大程度上避开教师教学过程中遇到的问题,对教师整合教育资源有着重要的意义。基于此,在数学课堂上,民主性也会体现得淋漓尽致。因此,从核心素养的视角来看,开展分层教育已显得刻不容缓。
一、基于核心素养实施分层教学的意义
成绩分层在高中阶段已经变得尤为明显。基于此,教师应该针对不同学生的状况进行分层教学,同时还要尊重个体之间的差异,对不同学生给出不一样的教学方案,从而尽可能弥补学生知识上的不足。教师在授课过程中不能简单地向学生灌输知识,应该以学生为主体,并根据不同学生的需求,帮助他们制定适合的学习计划。这样才符合高中阶段学生的身心特点。教师充分利用这种分层教学的模式,能更好地调动学生的学习积极性,使学生的学习效果更为显着。[1]
二、基于核心素养实施分层教学的方法
(一)学习水平与分层教学
由于高中数学越来越难,各个学生对于知识的理解也会出现偏差,从而造成了学生学习水平的参差不齐。相对于初中数学而言,高中数学与之存在很大差异。例如,在初中或小学阶段,学生对于奇数、偶数和分数都有一套唯一的计算方式。到了高中,数学增加了复数、象限、排列组合之类的内容。正因如此,高中数学的繁杂性和多变性导致学生两极分化的现象很严重。在进行分层教学时,教师应按不同需求将学生分为几个小组,采用各个小组互相帮扶的形式进行教学,从而达到提升学生整体成绩的目的。
(二)备课内容与分层教学
上课之前,高中数学教师应认真备课,明确本堂课的教学目标和不同学生对已学知识的熟悉程度。在备课过程中,核心素养应成为教师评判学生的主要依据,包括学生根据已学知识举一反三的能力和对知识由来的掌握能力。如果能做到这两点的就属于学优生,能做到其中一点的.为中等生,若都没掌握的可归结为后进生。然后,根据不同层次的学生,教师可设计不同的教学方法。例如,在数列知识的学习中,有一种错位相减的解题方式,学优生可以根据自己对知识点的理解进行举一反三;中等生则可根据基础知识来解决一般问题;后进生则应先了解知识点,而后尝试根据所学知识进行简单运算。[2]
(三)预习模式与分层教学
传统教学模式在高中数学课上依然是最常见的教学方式。为提升不同层次学生的学习效率和成绩,教师应根据不同的学生准备相应的学习任务,从而在课堂教学时能实行分层教学。例如,在预习数学课本上的新知识时,教师可对学生提出要求:在预习结束后,学优生要试着从刚学到的知识中寻找解题思路;中等生要将新知识和之前学过的内容进行整理比对,并在做题实践中提出自己的疑问;后进生要对新的知识有一个简单了解,并在接下来的课上积极提问。即使教学任务繁重,教师也应定期参加相关培训和磨课,从而制定更有效的分层教学法。
(四)课后练习与分层教学
学生若想提升数学成绩,适当、充足的训练是不可少的。数学本身就是一门以计算为主的科目。因此,课后相关的练习是不可或缺的。教师也一定要认真对待课后作业,应根据不同学生挑选不同的题型。例如,学生在学习应用题和数值运算时,应该选择难度适中的题型。对于计算题,学优生一般可以很快做完。他们的主要精力可以放到解应用题上。一些学优生甚至还有时间做一下附加题。中等生一般可以解一些常见的应用题。后进生则会把精力主要放在计算题的解答上。教师一定要关注授课过程中学生学习状态的变化,从而激发他们学习的积极性。[3]
三、结束语
总之,应试教育正在稳步向素质教育的方向转变。教师在日常教学中,为了保证每个学生的健康成长,必须坚持因材施教、学以致用的教学理念。分层教学也充分满足了当前教学新背景下的教育理念,从而体现出了一种健康向上的教育价值观。只有切实执行基于核心素养的高中数学分层教学,才能稳步提升教师的教学质量和学生的综合素质,进而推动我国教育事业的稳步发展。
四、参考文献
[1]张美芳.核心素养背景下高中数学分层教学的探究[J].考试周刊,2018(53):106.
[2]赵芳芳.高中数学分层教学策略:数学核心素养的渗透性[J].数学大世界(上旬版),2017(10).
[3]王雅琴.刍议高中数学核心素养的教育价值及教学渗透策略[J].张家口职业技术学院学报,2018,113(1):85-86.
一、初高数学衔接势在必行据我了解,很多名校很早就提出并着手解决初高数学衔接的问题,并且还开发了具体的校本教材。为什么初高数学衔接如此受到重视,显而易见,高一现在已真正成了学生学习数学的“困难期”,数学两极分化严重,相当一部分同学可能是人生中第一次丧失对数学的信心!第一次有自己是“数学差生”的感觉,并且我们还不能想当然的把“学好高中数学”仅仅定义为班上尖子生的特权,解决好初高数学衔接问题势在必行!二、问题的根源在哪里?(1)客观的说,初高中数学知识之间存在断层,正是由于这种断层造成很多同学难以在较短时间内适应高中数学的学习。根据新课改的理念和课标要求,初中数学教材在难度、深度和广度上有所降低,体现了“浅、少、易”的特点,那些在高中学习中经常用到的知识有的被删除,有的淡化了要求,从而加重了高中数学的负担。就出现了学生在课堂上感觉到老师讲得太快,每节课的容量太大,要求太高,有些初中根本就没有学的知识和方法,在高中直接进行应用,让学生很茫然。例如:1.立方和与差的公式初中已删去不讲,而高中的运算还在用。2.因式分解初中一般只限于系数为“1”的二次多项式,对系数不为“1”的涉及不多,而且对三次或高次多项式因式分解几乎不作要求,但高中教材则应用广泛,如利用因式分解解方程和不等式,以及应用因式分解进行合理变形等。(到高中后,学生解一元二次方程大部分同学用的还是求根公式,不仅解题效率低,并且思维层次不高,不利用对某些含参数的方程进行根的分析)3.二次根式中对分子、分母有理化初中不作要求,而分子、分母有理化是高中函数、不等式常用的解题技巧。4.初中教材对二次函数要求较低,但二次函数却是高中贯穿始终的重要内容。配方、作简图、求值域、解二次不等式(学生很陌生)、判断单调区间、求最大、最小值,研究闭区间上函数最值等等是高中数学必须掌握的基本题型与常用方法。5.二次函数、二次不等式与二次方程的联系,根与系数的关系(韦达定理)在初中不作要求,此类题目仅限于简单常规运算和难度不大的应用题型,而在高中二次函数、二次不等式与二次方程相互转化被视为重要内容,高中教材却未安排专门的讲授。6.图像的对称、平移变换,初中只作简单介绍,而在高中讲授函数后,对其图像的上、下;左、右平移,两个函数关于原点,轴、直线的对称问题必须掌握。就拿图像的左右平移来说,学生只是在讲二次函数顶点式的时候通过定点坐标的变化来感受左右平移的规律,并未真正理解函数平移的本质,就拿一次函数的左右平移来说,学生大部分都不会,并且初中老师也不会去讲!这不属于考试内容,直接导致到高中后学生对f(x)和f(x+a)的关系弄不清,更谈不上数形结合了。7.含有参数的函数、方程、不等式,初中不作要求,只作定量研究,而高中这部分内容视为重难点。方程、不等式、函数的综合考查常成为高考综合题。8.几何部分很多概念(如重心、垂心等)和定理(如平行线分线段比例定理,射影定理,相交弦定理等)初中生大都没有学习,而高中都要涉及。(2)高中数学的呈现方式以及思维方法和初中数学相比急剧突变1、就呈现方式来说,初中数学教材新知识的引入与学生日常生活实际很贴近,比较形象,并遵循从感性认识上升到理性认识的规律,学生一般都容易理解、接受和掌握,而高中数学一开始,概念抽象,定理严谨,逻辑性强,教材叙述比较严谨、规范,抽象思维和空间想象明显提高,知识难度加大,且习题类型多,解题技巧灵活多变,体现了“起点高、难度大、容量多”的特点。这样,不可避免地造成了学生不适应高中数学学习的情况。2.高中数学思维方法与初中阶段大不相同。初中阶段,很多老师为学生将各种题建立了统一的思维模式,如解分式方程分几步;因式分解先看什么,再看什么。即使是思维非常灵活的平面几何问题,也对线段相等、角相等,分别确定了各自的思维套路。因此,初中学习中习惯于这种机械的、便于操作的定势方式,甚至已经产生了依赖心理。高中数学在思维形式上产生了很大的变化,数学语言的抽象化对思维能力提出了高要求。这种能力要求的突变使很多高一新生感到不适应,故而导致成绩下降。当然了,假如辩证的看待这个问题,高中数学思维方式的突变是符合学生心智发展规律的,高中生心智基本已经成熟,也需要从经验型抽象思维向理论型抽象思维过渡,最后还需初步形成辩证型思维。关键是老师如何引导学生实现平稳过渡。(3)以上两方面的原因导致学生学习困难,从而心态也随之发生了变化,甚至某些学生产生了破罐破摔的想法,再加上老师的心理辅导不够及时,自我的调节能力又太弱,从而导致恶性循环发生,从此一蹶不振。三、初高数学衔接实施的一些具体建议1、在充分了解学生学情的基础上,编好 “衔接教材”,尽量做到有的放矢,实施过程中要把它当作实实在在的教学内容来讲,不能够轻描淡写!当然了,可以根据需要逐步渗透!2、在高一刚开始授课时,尽量做到低起点、小步子,缓坡度,稳步子;夯实基础,降低难度,3、严格控制难度,最大限度调动每个学生的积极性。高一毕竟不同于高三,要循序渐进,要培养学生良好的学习习惯。每次考试的难度可以控制在0.65左右。3、适时进行高中数学的学法指导和心理辅导,让学生快速适应高中数学的学习模式。4、教师要摆正心态,不能急躁,讲授概念和方法要耐心、细致!并且还要适时的对学困生进行鼓励,就像我刚开始提到到的,一部分学困生可能是人生中第一次受到这样的打击,第一次有自己是“数学差生”的感觉,老师如果鼓励及时就很有可能会挽救很多这样曾经很辉煌但是现在很落魄的学生!附录:需要补充或强化的内容1.数与式的运算:补充立方和(差)公式、两数和(差)立方公式(它是二项定理的最佳接洽点,也即是二项定理的最进发展区。)、三个数的和的平方公式的推导及应用(正用和逆用);强化根式、分式的运算与化简。(二次根式:适当补充相当的运算。如整体运算等)2.因式分解:补充十字相乘法、分组分解法和添项、拆项法;强化公式法。(十字相乘法和分组分解法。要求是非常熟练。尤其是十字相乘法,它是解一元二次方程最快的方法,当然它也就是解一元二次不等式的最快的方法。)3.强化一元二次方程的根的判别式及应用;补充一元二次方程的根与系数的关系。4.补充不等式的解法:包括一元二次不等式及其解法;简单分式不等式的解法;含绝对值的不等式的解法。5.强化配方法求二次函数的定点和对称轴,强化二次函数的图像和性质,补充二次函数在给定区间上的最值问题。(这是整个高中阶段非常重要的基础问题,可以说,很多综合题的求解,最终都可转化为二次函数在给定区间上的最值问题。)6.补充一元二次方程根的分布(区间根)。7.补充简单的二元二次方程组的解法。(初中新课程标准下的数学教材删除了解三元一次方程组和二元二次方程组。当然也就删除了解方程组的基本思想:消元和降次。而这些思想方法在高中是必不可少的,高中的要求是学生能列就能解。)8.补充可化为一元二次方程的分式方程和无理方程的解法(初中教材删除了可化为一元二次方程的分式方程和无理方程,同时也就删除了用换元法解分式方程和无理方程的思想;删除了分式转整式、无理转有理的重要思想方法)。9.补充三角形的“四心”的定义及几何性质。10.补充平面几何有关的定理与性质:包括等比定理、合分比定理;平行线分线段成比例定理;三角形内角平分线定理;三角形外角平分线定理;直角三角形中的射影定理;梯形中位线性质。11. 补充与圆有关的定理:包括圆内接四边形及其性质定理、垂径定理、弦切角定理、相交弦定理、切割线定理。12.补充圆内接(外切)正多边形的边长、半径、边心距和中心角的关系;尤其是圆内接(外切)正三角形、正四边形、正六边形的边长、半径、边心距和中心角的关系。(二)需要补充或强化的数学思想方法数学方法主要有:(1)配方法(在高中有着相当重要的地位与作用,初中虽也涉及,但还需使学生能熟练掌握配方法的基本过程)。(2)换元法(也是最基本的数学方法之一,在数学解题中有着不可估量的作用,初中对该方法的训练已大大弱化,高中数学却经常使用)。(3)待定系数法(作为基本的数学方法初中要求明显降低,高中教学可进行系统的讲授与训练)。(4)反证法。数学思想主要有:函数方程的思想、数形结合的思想、分类讨论的思想、化归与转化的思想。其中衔接教学的重点内容是: 十字相乘法、分组分解法和添项、拆项法分解因式;一元二次方程的根与系数的关系;一元二次不等式及其解法;简单分式不等式的解法;含绝对值的不等式的解法;二次函数在给定区间上的最值问题;一元二次方程根的分布;三角形“四心”的定义及几何性质。难点是:添项、拆项法分解因式;简单分式不等式的解法;含绝对值的不等式的解法;二次函数在给定区间上的最值问题;一元二次方程根的分布;三角形内(外)角平分线定理;与圆有关的定理及应用。
197 浏览 2 回答
340 浏览 4 回答
317 浏览 4 回答
206 浏览 3 回答
293 浏览 2 回答
348 浏览 2 回答
239 浏览 3 回答
163 浏览 3 回答
131 浏览 2 回答
345 浏览 3 回答
324 浏览 3 回答
142 浏览 2 回答
237 浏览 4 回答
118 浏览 2 回答
168 浏览 2 回答