高数学习对许多大一学生生来讲, 有些困 难,成绩不理想.教师一直在苦苦思考:虽 然教师在授课进程中尽了种种努力, 但还 是有许多学生学习不好, 这是什么原因? 调查显示:这部分学生或者学习兴趣不高, 或者学习不得要领.因而, 高数学习必须 充分调动学习者的积极性, 掌握适合的学 习方式,才能有所收获. 1 学习者要意识到学习高数的重要 性, 提高学习兴趣, 变被动学习为主 动学习 据懂得, 许多学生意识不到高数学习 的重要性,他们对大学课程里学习高数的 重要性不甚清楚,也没有学习的热情,更谈 不上积极性了. 1 . 1 数学教育具有重要的基本性作用与素 质教育作用 现代信息、空间技巧、核能利用、基 因工程、微电子、纳米材料等引领的新技 术111ttt, 以及现代人文科学的定量剖析需 要以数学为主要基本. 数学学科严密的定义方法、缜密的逻 辑思维、全面的系统剖析是辩证唯物主义 思想在数学学科中的集中反应, 在大学生 素质教育中起着不可替代的作用.素质表 现在数学意识、数学语言、数学技巧、数 学思维四个方面.素质的提高有助于学生 形成良好的思想道德素质,科学文化素质, 生理心理素质,从而提高人的素质. 这是有例子可以验证的.以北京大学 地质系为例,一个系就培养了48 位中科院 院士, 而这得益于李四光先生的理念—— 加强数理基本, 原因就是学生的工科数学 基本好、逻辑思维强、头脑清晰. 1 . 2 培养对高数的兴趣能激发学习热情 “兴趣是最好的老师”.心理学家布鲁纳 认为:“学习是主动的进程,对学生学习内因的 最好的激发是对所学教材的兴趣.”“有了兴 趣就会乐此不疲,好之不倦,就会挤时间学习 了.”学生只有对学习感兴趣,能把心理活动 指向和集中在学习的对象上,感知活泼,注意 力集中,察看敏锐,记忆持久而准确,思维敏锐 而丰盛,强化学习的内在动力,调动学习的积 极性,激发智力和创造力,提高学习效率. 1.2.1 提高学习高数的兴趣首先从了 解数学史做起 我们可以首先懂得中国数学史,懂得中 国数学的萌芽、发展、全盛、衰弱的进程 和原因;我们还可以从高数中的微积分发现 的历史谈起,通过对历史的懂得和感受来体 会到数学的博大高深,激发探求对数学美的观赏也可以提高学 习高数的兴趣 数学是美的,但是这种美不易被人觉察, 往往被人误认为数学是枯燥的.树枝的生 长和股票技巧中蕴含着斐波纳奇数列,斐波 纳奇数列中蕴含着黄金分割,黄金分割率大 到宇宙,小到微生物,无处不在,数学具有数 字美,符号美,图形美,思想美,方式美,撼人 心魄,令人着迷,可以有意识地主动懂得. 2 学习高数要注重基本知识( 基础概 念、基础理论、基础方式) 的懂得及 消化 华罗庚有一句话:“我研究数学、学习数 学是从小学一、二、三、四、五、六册开始 的,研究学问要从基本做起.”少年牛顿也是 从基本知识、基础公式重新学起,扎扎实实、 步步推进的.高职学生广泛基本薄弱,很多高 职学生也不注重对基本知识的懂得和掌握,往 往一知半解,好高骛远,结果是徒劳无益. 基础理论体现在定理的内容和论证,以 及实际问题抽象出的理论模型.认真思考 书上每个理论模型来源,明白是从哪个实际 情况中抽象出来的,会很大程度地提高解决 综合问题的能力.证明部分也要加以重视, 因为证明进程是一个逻辑推理进程,能很好 地锻炼大脑,会加深对定理的懂得,提高运 用能力.推导正是高数的精华所在,是需要 下工夫反复揣摩的,不懂之处要多问. 基础方式的领悟体现在形成一个知识关 系网络.比如高数中基础所有的重要概念 都是用它定义和研究的;用变量代替不变量 的常用技能,体现在常数变易法解微分方 程,微分的思想,非线性问题的线性化方式; 化整为零、积零为整、分割求和积分的思 想,应用问题中的元素法;由特殊到一般、以 及化庞杂为简单的研究思维方式等等. 学习和方式的运用中, 培养人的逻辑 思维、抽象思维、空间想象、以及自学能 力,培养科学的世界观,严密的科学态度, 增强学习意志,形成良好的个性品质. 3 高数学习要调整心理状态, 注重学 习方式 不要有畏难心理,要知道难是相对的, “面对悬崖峭壁,一百年也看不出条缝来, 但用斧凿,能进一寸则进一寸,能进一尺则 进一尺,不断积聚,飞跃必来,突破随之.” 树立三心:信心、决心、恒心.克服懒惰, 多思考、多归纳. 学习进程中遇到困难时, 一定不要气 馁,增强克服困难的信心与意志,相信自己 一定能学好,积极调整状态,探索学习方式. 3 . 1 紧跟教师的授课节奏, 做到高效听课 预习,先大略通读教材,不懂地方可以打 个问号;上课一定要认真听讲,对章节内容提 纲挈领,分清主次.感到重要的内容要记载 下来,不要一字不漏地记下来,只需简略几 笔,抓住精华即可.课后及时归纳总结,注意 思路的积聚,随时把收获、疑难、与前后知 识点的联系和区别、例题的不同解法等,一 切随时想到的体会整理下来,哪怕仅是大脑 的灵光一闪也要及时标注,以便于巩固加深 懂得.最好定期自我检查掌握情况. 3 . 2 采用适当的数学记忆方式 学习不仅要求懂得,还要有机械的记忆, 比如符号,公式,基础定义,解题技能和方式. 寻找适合的记忆法,助于知识的持久度. 采用形象记忆、类比记忆、系统记忆. 高数的符号较多,识记困难,造成学习 障碍.可以仔细察看特点,形象记忆.很多 是其英文解释的第一个字母,比如说微分, 其中可以懂得为英文“differential”(微分) 的首字母,积分号可以懂得为“sum”中首 字母的拉伸, 可以加深对定义的懂得.系 统记忆合适于对章节知识间的联系对照学 习中,有助于对知识整体脉络的梳理把握. 记忆方式是相辅相成的,可以交叉运用. 适当解题, 不断改正自己的思维 一定要做习题,初学新知识时,不妨参 照定理或公式依葫芦画瓢, 努力识记知识 点,再试图脱离教材独立练习,检查自己对 知识掌握程度,不会的内容,是自己思维的 断层,有些内容学习者可以自我改正,较难 内容,学习者需要请教教师或者参阅学习资 料,寻找一些知名教科书,注意察看,找出知 识的特点以及迁移,多角度、多方面地思 考,过于抽象的内容不妨举出具体例子来形 象思考,自己的思维慢慢就会全面而深刻, 知识也会融会贯通,厚书也就读薄了.去探 索的知识,才是掌握得最好的. 但也不提倡做大量的习题.习题并非 都有价值,尤其是现在题海中所遇到的题 目,很多都是在低级重复,反反复复并不能 得到有益启示.而有些综合题, 就是将一 些知识点揉在一起,而且明明能说得简单 的话, 却故意说得很庞杂、很曲折、绕圈 子、设陷阱.学习者应该坚持清醒,思考一 些真正富有启示性的问题, 多研究问题的 意义.通常,越是简化问题,就越是能得到 深刻而有价值的结论.做完一题, 不停留 在原有层次,多追问一些为什么,往往能导 致柳暗花明的新境界.有时要把不理解知 识暂时跳过,回过火看就解决了.