人工智能可以辅助医生,提高工作效率,让很多环节智能化。
人工智能可以辅助医生诊疗,机器可以记忆大量的医学文献、病历资料、教科书、药物说明书、临床指南、影像图片及病理切片。帮助医生作出判断,在将来的临床工作中 , 如化验单诊断、病理诊断、或影像学诊断, 人工智能完全可以辅助医生诊断甚至可能替代医生进行独立诊断。人工智能可以帮助规范医疗行为,经验不足的医生或许能从人工智能系统得到学习及提高。
随着时代的发展,人工智能在一些常见病方面的某些方面可以取代原来必须由医生来完成的工作,这样也可以把医生从繁重的事务中抽离出来精力做只有人类才能完成的工作,把工作完成得更好。
人工智能和类似技术可以加速疾病的诊断和早期发现。通过移动设备进行实时决策和与患者接触的能力可能会带来更好的结果。
人工智能助力辅助诊断事实上,国外早已有科学家和医生正在利用人工智能来从海量数据,比如电子健康记录、影像诊断、处方、基因组分析、保险记录甚至是可穿戴设备所产生的数据中来提取有用信息,来为特定的一类人群而不是特定疾病来制定合理的卫生保健计划。最为知名的当属IBM的“Waston”医生。人的大脑的记忆容量和时间是有限的,难以记住并理解日新月异的医学研究论文和上万种疾病。但人工智能不同,它可以通过深度学习技术,可以不间断从大量医学书籍、电子病历等完善自己。然后通过认知分析技术,凭借从各种渠道搜集的海量数据,迅速给出“意见”,指导医生做出诊断和治疗决策,并且不会因为人的各情绪导致缺诊或误诊,同时患者能够更快速地获得医疗服务,而医疗机构也可节省成本。对于医生来说,通过人工智能可以辅助诊断,减少筛选对比病例的时间,为患者制定准确的治疗方案;对于患者来说,可以更快速的完成健康检查,获得更为精准的诊断建议,节省大量的时间、金钱成本;对于医疗来讲,深度学习可以提高准备效率,同进系统性降低医疗成本。基因分析和精准医疗当然,人工智能不仅仅只在辅助诊疗方面发光发热,它在基因分析和精准医疗方面更能展现自己的优势。精准医疗要想实现精准一定是建立在数据之上的,主要的是基因数据。对于很多疾病,尤其是罕见病来说,找到基因上微小的变化就很可能找到了解决问题的钥匙,但这同样也意味着巨大的计算量。在没有深度学习之前,这几乎是不可想象的,但随着深度学习的出现,像IBM Waston、Google大脑、百度大脑这些应用深度学习的计算处理系统,他们能够不断的通过已有数据进行训练,在“黑盒”中得出规则,并完成一些罕见病的早发现、早诊断。人工智能的计算能力还有效地推动更多精准治疗新药的出现,让我们攻克现有的一些疑难杂症,比如癌症、艾滋病等一些当前医疗水平较难处理的疾病。在美国像AtomWise、Flatiron Health等公司已经在尝试这方面的创新。人工智能仍然代替不了医生虽然人工智能在医学领域的应用越来越广泛,但人工智能终究不能代替医生。人工智能这项技术,其最大的作用在于整合海量的信息,从之筛选出有价值的数据,是作为医生诊断的辅助。而到真正的治疗阶段,则更多需要医生对患者面对面的沟通、交流,来确定合适的治疗方案。而患者也更需要医生亲切的关怀,是有血有肉的交流方式,而不是机器冷冰冰的问答。
326 浏览 3 回答
261 浏览 3 回答
352 浏览 4 回答
271 浏览 4 回答
81 浏览 5 回答
357 浏览 8 回答
314 浏览 1 回答
160 浏览 5 回答
137 浏览 8 回答
245 浏览 3 回答
248 浏览 5 回答
301 浏览 8 回答
133 浏览 6 回答
337 浏览 10 回答
322 浏览 8 回答
187 浏览 4 回答
183 浏览 11 回答
358 浏览 4 回答
109 浏览 4 回答
88 浏览 8 回答