这是一篇 PHD的论文,谈论有关 无线传感网络 的,你看下,是否符合你需要,如果类型都不一致,那就没必要翻译了。Mechanisms for energy conservation in wireless sensor networksSupervisor: Maurizio BonuccelliThesis commettee: Paolo Ferraggina, Piero MaestriniExternal referees: Stefano Basagni, Mani SrivastavaNational commettee: Bugliesi, Meo, and Panzieri December 27, 2005 AbstractIn this thesis we address the problem of reducing energy consumption in wireless sensor We propose a suit of techniques andstrategies imported from other research areas that can be applied to design energy-efficient protocols in sensor They includetime series forecasting, quorums systems, and the interaction between sensor properties and protocol We apply these techniques to the time synchronization problem, to efficiently collecting data from a sensor network, and to ensuring stronger data consistency guarantees in mobile We show in [1,2,3,4] that time series forecasting techniques, and in particular autoregressive (AR) models, can be applied to sensor networks to conserve We study a simple type of time series models with a short prediction We have chosen this model because it is capableof predicting data produced by real-world sensors measuring physical phenomena, and it is computationally tractable on modern-generation sensor We apply these models to solve two relevant problems in sensor networks: the problem of efficiently collecting sensor data at the sink, and the time synchronization We propose an energy-efficient framework, called SAF Similarity--based Adaptable query Framework [1,2] ), for approximate querying and detecting outlier values in sensor The idea is to combine local AR models built at each node into a global model stored at the root of the network(the sink) that is used to approximately answer user Our approach uses dramatically fewer transmissions than previous approximate approaches by using AR models and organizing the network into clusters based on data similarity between Our definition of data similarity is based on the coefficients of the local AR models stored at the sink, which reduces energy consumption over techniques that directly compare data values, and allows us to derive an efficient clustering algorithm that is provably optimal in the number of clusters formed by the Our clusters have several interesting features that make them suitable also for mobile networks: first, they can capture similarity between nodes that are not geographically adjacent; second, cluster membership adapts at no additional cost; third, nodes within a cluster are not required to track the membership of other nodes in the Furthermore, SAF provides provably correct error bounds and allows the user to dynamically tune answer quality to answer queries in an energy and resource efficient In addition, we apply the AR models to solve the time synchronization problem from a novel perspective which is complementary to the well-studied clock synchronization problem [3,4] More precisely, we analyze the case in which a sensor node decides to skip one or more clock adjustments to save energy, or it is temporarily isolated, but still requires an accurate estimate of the We propose a provably correct clock method based on AR models, which returns a time estimate within a constant (tunable) error bound and error This method is highly adaptable and allows the sensor to decide how manyclock adjustments it can skip while maintaining the same time accuracy, thus saving In addition, we propose a suit of deterministic methods that reduce the time estimation error by at least a factor More precisely, we propose a provably correct deterministic clock reading method, called the DCR method, which exploits information regarding the sign of the clock deviation, and can be applied to reduce by half the frequency of the periodic clock adjustments, while maintaining the same error bound [3,4] This method is of both practical and theoretical In fact, it leads to a noticeable energy saving, and shows that a stronger but realistic clock model can lead to a refinement of the optimality bound for the maximum deviation of a clock that is periodically In addition, we propose a generalized version of the DCR method that enhances its accuracy depending on the clock stability, and a method that guarantees the monotonicity of the time values We analyze for the first time quorum system techniques in the context of sensor networks: we redesign them and show their benefits in terms of energy consumption [6] Quorum systems have the potential to save energy in sensor networks since they can reduce noticeably the amount of communication, improve the load balance among sensor nodes, and enhance the scalability of the However, previous quorum systems and quorum metrics, proposed for wired networks, are unsuitable for sensor networks since they do not address their properties and These observations have motivated us to redesigning quorum systems and their metrics, taking into account the limitations and characteristics of sensors (, transmission costs, limited energysource, physical radio broadcast), and the network More precisely, we redefine the following quorum metrics: load balance, access cost and quorum capacity, and devise some strategies based on some characteristics of sensor networks that reduce the amount of communication when designing quorum systems for sensor We apply these strategies to design a family of energy-efficient quorum systems with high In particular, we propose a quorum construction that reduces the quorum access cost, and propose an energy-efficient data diffusion protocol built on top of it that reduces the energy consumption by reducing the amount of transmissions and In addition, we analyze quorum systems in case of high node More precisely, we study the difficult problem of guaranteeing the intersection between two quorums in case nodes move continuously along unknown paths [7] We address this problem by defining a novel mobility model that provides a minimum set of constraints sufficient to derive strong data guarantees in highly mobile Also in this case, we show the unsuitability of previous quorum systems, and provide a condition which is necessary to guarantee data availability and atomic consistency under high node We propose a new classof quorum systems, called Mobile Dissemination (MD) quorums, suitable for highly mobile networks, and propose a quorum construction which is optimal with respect to the quorum size (, message transmissions) [7] Then, we apply the MD quorum system to implement a provably correct atomic read/write shared memory for mobile and sparse Bibliography [1] D Tulone, S M PAQ: Time series forecasting for approximate query answeringin sensor In P of the 3rd European Workshop on Wireless Sensor Networks, 21-37, Feb [2] D Tulone, S M An energy-efficient querying framework in sensor networks for detecting node Submitted to [3] D T On the feasibility of global time estimation under isolation conditions in wireless sensor To appear in A[4] D T A resource-efficient time estimation for wireless sensor In P of the 4th Workshop of Principles of Mobile Computing, 52-59, Oct [5] D T How efficiently and accurately can a process get the reference time? I S on Distributed Computing, O Brief announcement, 25-[6] DTulone, E D D Redesigning quorum systems for wireless sensor Submitted to [7] D T Is it possible to ensure strong data guarantees in highly mobile networks? Submitted to