首先采用液相氧化法对聚丙烯腈(PAN)基碳纤维进行氧化处理,确定了碳纤维氧化处理的最佳条件。利用氧化处理后的PAN基碳纤维增强环氧树脂复合材料,并对复合材料的机械性能进行测定,确定了复合材料成型的最佳工艺条件。研究表明,影响PAN基碳纤维氧化后性能的主要因素是氧化时间和氧化温度。PAN基碳纤维在微波热源中氧化反应较缓和,且自身强度损失不大。采用四因素四水平正交实验讨论了各因素对实验结果的影响,确定了PAN基碳纤维氧化处理的最佳条件:反应温度为100℃、反应时间为15 min、重铬酸钾浓度为20%、硫酸浓度为30%。在此工艺条件下对碳纤维进行氧化处理后,失重率为5775%;碳纤维与环氧树脂间的接触角为10°;碳纤维改性后表面羟基含量为25 mmol/g,内酯基含量为75 mmol/g,羧基含量为21 mmol/g;碳纤维改性后拉伸强度为12 GPa;碳纤维-环氧树脂界面的层间剪切强度为12 MPa。采用四因素四水平正交实验讨论了各因素对复合材料模压成型结果的影响。研究表明,影响复合材料机械性能的主要因素是碳纤维含量和成型温度。正交试验确定了复合材料最佳成型工艺条件:成型温度为160℃;成型压力为12 MPa;保压时间为30 min;复合材料中碳纤维含量为4%。在此条件下制得的复合材料,拉伸强度为66 MPa;弯曲强度为51 MPa;抗冲击强度为05 KJ/m2。通过红外分析发现,氧化处理后碳纤维表面的羟基、羰基等含氧官能团显著增加,有效的提高了碳纤维的表面活性;X射线衍射结果表明碳纤维氧化后内部结构没有发生变化;电子扫描显微镜观察发现,氧化处理使得碳纤维表面的沟壑增多,呈现出粗糙不平的表面,碳纤维在复合材料中分散均匀。复合材料拉伸破坏断面观察发现,碳纤维虽有少量从基体中拔出,但损伤区域相对整齐,表明增强体碳纤维和基体环氧树脂之间结合良好。冲击断面形貌表明,复合材料断裂界面相对齐平,增强体碳纤维和基体环氧树脂之间结合相对紧密,碳纤维发挥了一定的强度作用并分散了受到的应力,碳纤维和环氧树脂同时起到了承载作用。