无理函数最值问题求解举例武延霞摘要:无理函数的最值问题在中学数学中求解比较困难,本文将结合例题给出无理函数最值问题的几种解法,如换元法,微分法,几何法,复数法,向量法等等。关键词:无理函数最值 复数法 向量法 数学中的函数最值问题求解是常见的,在日常生产生活、科研中都会遇到。解决方法也是很多,如图象法,均值不等式法,换元法,向量法等等,到大学的课程中我们常用的是求导法,这些方法在实际运用中灵活多变。而无理函数的最值问题在中学数学中求解比较困难,本文将结合例题给出无理函数最值问题的几种解法。1 换元法: 根据函数表达式的特点,将某一部分看作一个整体用一个新的变元来代替,以达到简化表达式、变为熟悉且易于求解的形式。例1:求 的最小值。解:函数的定义域为 ,令 ,则 , 当 即 时, 取最小值 。2 微分法:若 在区间 上可导, 是 的唯一稳定点,并且 是 的极值点,则当 是极大(小)值点时, 就是 在 上的最大(小)值。例2:求 的最小值 。解: 在 上可导,所以 令 得稳定点 (舍负)。又 时, , 时, 的最小值为 3 几何法:运用数形结合的思想将最值问题转化成几何图形的性质问题,通过几何的有关知识求解。例3: 、 两地合用一个变压器,若两地用同型号线架设输电线,问变压器设在输电干线上何处时,所需输电线最短。解:设 长为 , ,由题意可知求出 的最小值即可。又 建立直角坐标系,如图所示:则 , , ,原问题就转化为求 轴上一点 到 两点距离和的最小值问题。由几何知识,点 在线段 上时 取最小值( 为 关于 轴的对称点)。此时 , 将变压器建在 之间离 处所需输电线最短。4 复数法:求形如 的最小值,令复数 满足 , 且 或 为常数,利用不等式 来求解。例4:求函数 的最小值。解:令 , 则 ,由不等式 可得 在这里能否取到呢?我们来验证一下:若 ,则 与 在同一条直线上且方向相反, 而由上式可推得 ,矛盾。 不是 的最小值。由此我们知道 不能任意取,究竟怎么样取值才能使不等式 中等号成立? 若想利用不等式中号,即 ,取 ,由 为一常数, 的实部需取 ,设 的虚部为 , 反向,则 , 此时 ,其中不等号可以取到, 同理,若想利用不等式中 号,即 ,取 , , ,同样解出 总结上述过程,我们可以用“用加取等号取反,用减取等号相同”来概括 和 的取法,即如果利用 ,我们取 与 中 的符号相反;如果利用 ,我们取 与 中 的符号相同。5 向量法:构造函数 使 为常数。令 , ,则 ( 为 的夹角)根据 的取值范围可以求得函数的最值。例6:求函数 的值域。解: 的定义域为 ,令 , ,则 , , ( 为 的夹角) 时 , , 与 的终点如图1所示 由图1可知 与 同向时, 与 的夹角最小,此时 当 时, 与 的夹角最大,此时 所以值域为 。 注:求 的最值,利用 ,需要 为一常数,若不是常数,可以进行适当的系数配凑使其为一常数。例2:求函数 的值域。解:由题意可知定义域为 ,令 , 则 , ,由 得: , 与 的终点如图2所示当 与 同向时, 与 的夹角最小,此时 当 时, 与 的夹角最大,此时 所以值域为 结束语:本文讨论了常见的几种无理函数的一些解法,还有许多无理函数以及它们的解法没有讨论到,有待进一步研究。参考文献:[1]李宇祎.函数最值问题的处理方法[J].雁北师范学院学报,2004,01:52-53页.[2]潘玉晓.关于函数最值问题的探讨[J].南阳师范学院学报,2004年第4卷第9期.[3]武增明.用 解两类无理函数最值问题[J].数学教学杂志社,2006,11:31页.[4]孙家永.函数最值之正规求法及舍弃原理[J].高等数学研究 2006年第5期: 47页.[5]张怀德.极值点与最值点、稳定点及拐点的关系[J].甘肃高师学报 2005年第十卷第五期.[6]刘安.关于连续函数最大最小值的唯一性准则[J].衡阳师范学院 2005年3月.[7]华东师范大学数学系.数学分析第二版[M].北京:高等教育出版社, 1991年3月第2版: 192页.[8]华东师范大学数学系.数学分析第三版[M].北京:高等教育出版社,145页.[9]杨宝珊.闭区间上连续函数最值点的讨论[J].内蒙古教育学院学报.1997年12月第4期.[10]陈祥平.闭区间上连续函数最值[J] .昌潍师专学报 2000年第19卷第2期.